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Abstract

Speculative execution is a feature integrated into most modern CPUs. Although intro-
duced as a way to enhance the performance of processors, the release of Spectre attacks
showed that it is a significant security risk. Since CPUs from various vendors, includ-
ing Intel, AMD, ARM, and IBM, implement speculative execution, all different kinds
of devices are affected by Spectre attacks, for example, desktop PCs and smartphones.
Spectre attacks exploit the branch prediction mechanisms of the CPU and then use a
cache covert channel to leak secret data. Several attack variants have been discovered
since the release, including Spectre-PHT which targets the Pattern History Table of the
CPU. The success rate of the attack primarily depends on the size of the speculation
window. A larger speculation window implies a higher likelihood for the attack to suc-
ceed. The window size can be influenced by the choice of the condition in Spectre-PHT
attacks.

This thesis explores the limits of Spectre-PHT attacks. We present a large-scale test
framework for CPUs of four different manufacturers, Intel, AMD, ARM, and IBM. The
framework tests different conditions and their influence on the speculation window and
detects the size of the speculation window for a spyecific condition automatically. We
developed methods for robust measurements and evaluated the success rate of the attack
and the throughput for each condition. The attacker has two possibilities to extend the
size of the speculation window. First, one can use instructions in the condition which
take a long time to execute. This includes simple integer or floating point instructions
arranged in a dependency chain and accesses to DRAM, which are slow when the data is
uncached, or the corresponding TLB entry is missing. On Intel and AMD platforms, this
also includes AVX instructions executed when the AVX unit is disabled. Our analysis
shows that dependency chains give the best results on almost all platforms. Accessing a
flushed variable or a variable without a present TLB entry in the condition maximizes
the speculation window on all platforms. Second, the attacker can use fast instructions
in the condition and make them slow. Our tests cover this scenario by combining port
contention and instruction dependency chains. We demonstrate that this has a positive
effect on the success rate of the attack.

We suggest how our analysis results can be combined with Foreshadow, another tran-
sient execution attack. Foreshadow has not yet been shown to work using speculative
execution as an exception suppression mechanism. We show that the reason for this
cannot be a too small speculation window.
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Kurzfassung
Speculative Execution ist eine Funktionalität, die in die meisten modernen CPUs einge-
baut ist. Man konnte dadurch die Geschwindigkeit und Effizienz von Prozessoren erhöhen,
aber die Veröffentlichung von Spectre Attacken hat gezeigt, dass sie auch ein signifikantes
Sicherheitsrisiko darstellt. CPUs verschiedener Hersteller wie Intel, AMD, ARM und
IBM integrieren Speculative Execution in ihre Prozessoren, weshalb zahlreiche Geräte,
beispielsweise Desktop PCs und Smartphones, von Spectre Attacken betroffen sind.
Spectre Attacken nutzen Ressourcen zur Sprungvorhersage in Prozessoren aus und ver-
wenden danach eine Seitenkanalattacke, basierend auf dem Cache, um geheime Daten zu
lesen. Diverse Varianten von Spectre Attacken wurden seit der Veröffentlichung entdeckt.
Dazu zählt auch Spectre-PHT, welche die Pattern History Table der CPU ausnutzt.

Diese Arbeit zielt darauf ab, Grenzen einer Spectre-PHT Attacke bezüglich der Erfol-
gsrate zu finden. Wir präsentieren ein Test Framework für CPUs vier verschiedener Her-
steller, Intel, AMD, ARM und IBM. Das Framework testet verschiedene Conditions und
deren Einfluss auf die Größe des Speculation Windows. Wir entwickeln Methoden für
robuste Mesungen und evaluieren die Erfolgsraten der Attacke und den Throughput für
jede Condition. Der Angreifer oder die Angreiferin hat zwei verschiedene Möglichkeiten
um das Speculation Window größer zu machen. Erstens kann er oder sie Instruktionen
verwenden die eine lange Ausführungszeit haben. Das sind beispielsweise Instruktions-
abhängigkeitsketten und Zugriffe auf den DRAM, welche langsam sind, wenn die Daten
nicht im Cache liegen oder der zugehörige TLB Eintrag nicht vorhanden ist. Unsere
Analyse zeigt dass Instruktionsabhängigkeitsketten die besten Resultate auf fast allen
Plattformen geben. Zweitens kann er oder sie schnelle Instruktionen verwenden und
diese dann langsam machen. Unsere Tests decken dieses Szenario ab, indem Port Con-
tention und Instruktionsabhängigkeitsketten kombiniert werden. Wir zeigen, dass dies
einen positiven Effekt auf die Erfolgsrate der Attacke hat.

Wir zeigen wie unsere Analyseresultate mit Foreshadow, einer anderen Transient Execu-
tion Attack, kombiniert werden können. Es wurde noch nicht gezeigt, dass Foreshadow
mit Speculative Execution als Fehlerunterdrückungsmechanismus funktioniert. Wir be-
weisen, dass dies nicht an einem zu kleinen Speculation Window liegen kann.
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Chapter 1

Introduction

Transient execution attacks came up with the discovery of Meltdown [50] and Spectre
[44] and have been shown to be very powerful. The basis of these attacks are instructions
which are executed transiently by the CPU. Transient means that the CPU executes the
instructions, but for some reason, their result must not be made visible on an architec-
tural level, and they are rolled back [44]. An example for this might be that the CPU
speculates on taking a branch and predicts the wrong result: it executes the instructions
first, but later undoes their architectural effects, but the microarchitectural side effects
are not rolled back, which leaves traces in various parts of the CPU, most importantly,
the cache.

It is possible that these traces depend on secret data. The attacker can then leak this
secret data using a cache side-channel attack. Cache side-channel attacks are timing
attacks and based on the observation that accessing cached memory is faster than ac-
cessing uncached memory. There exist various techniques for mounting such attacks,
including Flush+Reload [92], Flush+Flush [27], Evict+Reload [28] and Prime+Probe
[80].

The two most common cases where a CPU executes transient instructions are out-of-
order execution and speculative execution [12]. Both are essential performance features
of modern CPUs, mainly to handle the delay caused by busy execution units. Out-of-
order execution means that instructions are not executed in the same order in which
they are committed [50]. For example, consider a scenario where the CPU fetches two
mutually independent instructions, a load from memory and the addition of two regis-
ters. It can first issue the load and send it to the proper execution unit. After that,
it handles the addition while the load is being processed. It might happen that the
addition completes before the load, even though the execution of the load started first.
Out-of-order execution yields a significant performance improvement since the load will
take longer than the addition. However, out-of-order executed instructions might some-
times cause exceptions, e.g., divide-by-zero. In this case, the CPU has to rollback all the
instructions which were already executed before the erroneous instruction, causing tran-
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2 CHAPTER 1. INTRODUCTION

sient execution. Speculative execution improves the performance of programs containing
branches. When the CPU locates a branch, it must wait until all involved operations are
finished to decide on the outcome of the branch. This would be a huge bottleneck and
inefficient resource usage because the CPU would simply stall. Instead, it relies on the
information of the branch predictor, suggesting whether or not to take the branch [12],
and speculatively continues execution on the suggested location. However, the branch
predictor might make an incorrect prediction, causing the CPU to rollback the changes.

Spectre [44] is an example of a transient execution attack which by now exists in nu-
merous variants, each targeting a different branch prediction mechanism: Spectre-PHT
uses the Pattern History Table, Spectre-BTB the Branch Target Buffer, Spectre-STL
the CPUs memory disambiguation prediction and Spectre-RSB the Return Stack Buffer
[12]. Several defenses against Spectre attacks have been published [91, 42, 44, 41, 83].
One idea is to make it harder to set up cache covert channels [44], which often comes
with a heavy performance loss and does not prevent the attacker from using another
side-channel to leak. One could also use serializing instructions like memory fences after
taking a branch, for example the lfence instruction. lfence guarantees that all memory
loads preceding the instruction are finished before lfence is executed [38], preventing
also speculative loads from memory.

In this thesis, we evaluate Spectre-PHT attacks on different platforms using a fully-
automated framework. This framework evaluates the performance in terms of success
rate and throughput of the attack using different conditions and automatically deter-
mines the ideal size of the speculation window for each condition. It is ported to all our
test devices, which are a Intel CPUs (Skylake), a AMD CPU (AMD Ryzen), a ARM
CPU and a IBM Power9 CPU. Our analysis shows that the success rate of the attack de-
pends on the condition which checks if the array index is out of bounds in a Spectre-PHT
attack.

In a real-world setting, we are sometimes confronted with code situations differing from
artificial Spectre attacks. For example, the array bounds check might not only check
whether the index is smaller than the array size, or the attacker might be unable to flush
the bounds check variable. Therefore, we want to look at different forms of conditions
in Spectre-PHT attacks and their influence on the performance of the attack. The
condition can either use instructions which take a long time to execute or instructions
which are slow because of some external influence. Instructions which take a long time to
execute are instruction chains, loading uncached data from DRAM, loading data without
an existing TLB entry or AVX instructions on Intel and AMD. Instruction chains are
formed by executing the instructions multiple times in succession. Each instruction
depends on the previous one, which is why they are also called dependency chains. A
condition depending on uncached data takes long to evaluate because data must be
loaded from DRAM. If one has to load data which does not have an existing TLB entry,
a whole page table walk has to be done in order to find out the physical address to load
from. This is a very costly operation and therefore conditions depending on data without
a TLB entry take long to evaluate. It has been shown that AVX units are disabled in
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Intel CPUs when they are unused due to power saving. Using an AVX instruction when
the unit is disabled requires additional power-up time.

An attacker can also slow down the execution of instructions by exploiting port con-
tention. In this scenario, the attacker starts a second process on a different logical core,
but on the same physical core and executes instructions which will contend a specific
execution port. One important performance measurement for Spectre-PHT attacks is
the size of the speculation window, i.e., how many instructions are executed specula-
tively. The size of the speculation window differs from platform to platform and depends
heavily on the condition in use, which we also show with this thesis.

Foreshadow, another transient execution attack, was shown to work using userspace
exception handlers as an exception handling mechanism and TSX as an exception sup-
pression mechanism. However, there is no proof-of-work using speculative execution as
an exception suppression mechanism. We demonstrate successfully that the reason for
this is not due to a too short speculation window, by altering the condition in a way
that the speculation window is extended to the maximum.

1.1 Outline

This thesis is structured as follows: Chapter 2 provides detailed background information
on CPU architectures, explains how CPU caches work and discusses the most important
CPU optimization mechanisms. Additionally, we give an overview of transient execution
attacks and more details on Spectre attacks. In Chapter 3, we describe the automated
attack analysis framework. Chapter 4 discusses the results of our analysis. Chapter 5
applies the insights of our analysis in real-world settings. Finally, Chapter 6 concludes
and summarizes our work.



Chapter 2

Background

In this chapter, we discuss background information required to understand the remainder
of the thesis. In Section 2.1, we give an overview of the currently most widely used CPU
architectures. In Section 2.2, we explain how CPU caches work, how they are structured
and to which extent they form a security risk. Modern CPUs make use of several
techniques to optimize for performance, which we explain in Section 2.3. Sections 2.4
and 2.5 will give more details on two optimization techniques, out-of-order execution,
and speculative execution. Section 2.6 addresses why these concepts are also a security
threat in the form of transient execution attacks. In Section 2.7, we explain the concept
of port contention and how it can be exploited.

2.1 CPU Architectures

When talking about the architecture of buildings, we describe how the building is con-
structed, how it looks like and how it is designed. The term CPU architecture is aligned
with these definitions and describes the structure and design of a CPU. One must distin-
guish between the microarchitecture and the instruction set architecture (ISA) of a CPU
[68]. Generally speaking, the instruction set architecture defines which instructions and
concepts, for example, out-of-order execution or speculative execution, are supported
by a processor while the microarchitecture gives the concrete implementation [66]. Two
different processors which implement the same ISA might still have a different microar-
chitecture. For example, the microarchitecture of an Intel Skylake processor is different
from the microarchitecture of an Intel Haswell processor.

The machine can either be a reduced instruction set computer (RISC) or a complex
instruction set computer (CISC) [81, 57, 16, 39]. RISC focuses on simple instructions
[66]. Each instruction does exactly one operation and typically takes one clock cycle to
execute. RISC provides many general-purpose registers but only a few addressing modes.
The ARM Cortex-A57 CPU and the IBM Power9 CPU both are RISC. This has the
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advantage that the processor design is simpler and the execution time per instruction
is lower. The disadvantage is that the number of instructions per program is higher
compared to CISC. CISC optimizes for a low number of instructions needed to perform
one operation [66]. Each instruction typically takes more than one clock cycle. CISC is
characterized by fewer general-purpose registers but several addressing modes. The Intel
and AMD CPUs we use as test devices are CISC. The advantage is that fewer instructions
are needed per program. The disadvantage is that more complexity is introduced to the
CPU and one single instruction takes longer to execute.

2.1.1 Intel

Intel, as one of the biggest CPU manufacturers, produces not only processors for desktop
PCs and laptops, but also for other application areas like smartphones and low-power
computing. Since we use desktop PCs for our tests, we want to describe the microar-
chitecture of those processors, in particular of Intel Skylake processors, since this is our
test device. Their desktop processors implement the x86 instruction set architecture. Si-
multaneous multithreading (SMT), or hyper-threading as Intel calls it, is a fundamental
concept which was introduced by them in 2002 [56]. Roughly speaking, this technology
provides a possibility to nearly double CPU cores without doubling hardware resources.
The introduction of logical cores enables this: One physical core has two or more logical
cores, which share hardware resources such as the execution engine, the branch predictor
or the L1 and L2 caches. We extensively describe this term in Section 2.3. Figure 2.1
shows a sketch of a logical core in an Intel Skylake CPU.

In general, the structure of a logical core can be divided into three areas: the front-end,
the back-end or execution engine, and the memory subsystem [56, 52]. The task of
the front-end is to fetch instructions from memory. Since we have a CISC architecture,
instructions are decoded into µops in the next stage. All these steps are performed fully
in-order. The branch predictor influences which instructions are fetched and decoded.
The decoded instructions are queued up in the allocation queue which serves as the
interface between front-end and back-end. The µops are handed over to the back-end
via the reorder buffer [89, 37]. This buffer serves as a central element of the back-end
because it keeps track of the state of the operation, i.e., it tracks if the instruction is
already ready to be executed, retired or even discarded. Once µops arrive in the reorder
buffer, the scheduler assigns them to a suitable execution port. Each execution port
connects to one or more execution units. Each execution unit has its own task. For
example, on Intel Skylake CPUs, execution port 6 has two associated execution units,
one for performing arithmetic and logical operations on integers and one for handling
branches. Instructions which manipulate memory, i.e., load and store instructions, are
sent to the memory subsystem by the scheduler. The back-end design is constructed
in an out-of-order fashion: it is not guaranteed for all the operations to be executed
in-order. If possible, the scheduler assigns the operations in a way that the execution
ports are all occupied optimally. It might happen then, that for µops o1 and o2, which
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Figure 2.1: Sketch of a logical core in an Intel Skylake CPU. The front-end fetches and decodes
instructions into µops, influenced by the branch predictor. The µops are handed over to the
back-end and stored in the reorder buffer. The scheduler assigns them to a suitable execution
unit (Integer ALU unit, floating point operations, integer vector operations, etc.) on a specific
execution port. Loads and stores to memory are forwarded to the memory subsystem. Once an
operation is executed, it returns to the reorder buffer, where it eventually retires [52, 20].

were executed in exactly this order, µop o2 finishes before o1. However, to keep the
execution functionally correct, operations have to retire in-order, i.e., o1 before o2.

For our tests, we use an Intel i7-6700K (Skylake). Skylake was released in 2016 and
represents the 8th generation of Intel CPUs [55].
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2.1.2 AMD

AMD also offers a wide variety of products. Again, we focus on Desktop systems which
implement the x86 instruction set architecture. Just like Intel, they use SMT as an
optimization mechanism. The first CPU supporting SMT was introduced much later
than Intel did with the AMD Zen architecture in 2017 [17]. The following section
describes the structure of a single logical core in a physical core of our test CPU, an
AMD Ryzen Threadripper 1920X, as illustrated in Figure 2.2.

A single logical core comprises the parts front-end, back-end, and memory subsystem
[1, 3], as we already saw it in the previous section for Intel processors. The most
significant difference in design between Intel Skylake and AMD Zen CPUs is the split
back-end: floating point and integer operations are executed independently from each
other in separate parts of the execution engine. Both the integer and the floating point
execution resources have their own scheduler distributing the instructions.

The front-end’s task is to fetch and decode instructions in-order [53, 1]. The branch
prediction unit influences this process. The µops are further passed to the µop queue
which serves the same purpose as the allocation queue in Intel CPUs. The next step
is to dispatch these instructions from the µop queue. In the dispatch-step, the CPU
decides if the operation is an integer instruction or a floating point instruction to send
it to the correct part of the back-end.

In AMD Zen microarchitectures, the back-end can be furthermore divided into three
parts, the integer execution unit, the floating-point execution unit and the retire control
unit (RCU) [1, 2]. The integer execution unit has six scheduling queues (instead of
one big scheduler on Intel systems) which manage the µop-execution-port assignment.
Two of those six queues are for memory operations only. These schedulers issue µops to
execution ports, just like in Intel systems. There are four ALUs for integer operations and
two for address generation [1]. The floating point execution unit is structured similarly to
the integer execution unit. The only difference is that there is only a single scheduling
queue which distributes the instructions to one out of four execution ports. Between
those two parts lies the retire queue, managed by the RCU (Retire Control Unit). It
collects all possibly out-of-order executed operations and makes sure they retire in-order.
The third part of the overall core, the memory subsystem, does not differ significantly
from Intel platforms. It consists of a load buffer, a store buffer and the caches.

2.1.3 ARM

Compared to the manufacturers we described in previous sections, ARM focuses more
on mobile and low-power computing. Their processors are generally RISC. Our test
device is an Nvidia Jetson TX1 board which internally uses in total four CPU cores
(ARM Cortex-A57). The ARM Cortex-A57 implements the ARMv8-A instruction set
architecture. The whole CPU has a simple structure, and simultaneous multithreading
is not implemented which means four physical cores are operating, to a certain degree,
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Figure 2.3: Sketch of a physical core in an ARM Cortex-A57 CPU. The front-end fetches and
decodes instructions into µops, influenced by the branch predictor. The µops are handed over
to the back-end via the dispatch unit. Then they are distributed to one of the eight execution
ports. For memory manipulating instructions, the memory subsystem is used. The results are
gathered in the Dispatch Unit, which makes sure the instructions retire in the correct order.

independently from each other, not sharing caches or execution ports as it is done in
the Intel Skylake processor and the AMD Zen processor. Figure 2.3 shows a sketch of a
physical core of an ARM Cortex-A57 CPU.

In a physical core of the ARM Cortex-A57 CPU, we have three parts, the front-end,
back-end or execution engine, and the memory subsystem [24, 7, 6]. The front-end
fetches instructions and decodes them. They are then placed in the instruction dispatch
unit where they wait to be dispatched to the suitable execution unit. The dispatch
unit consists of a reorder buffer and a scheduler. The out-of-order back-end consists
of eight execution units. There is one dealing branches exclusively, two for integer
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ALU operations, one for integer ALU combined with division, multiplication and CRC
computation, two for floating-point operations, one for load operations and one for store
operations. Finally, instructions retire in-order in the reorder buffer. The memory
subsystem consists of buffers for load and store as well as the L1 and L2 caches.

2.1.4 IBM Power

IBM Power9 is the only system we investigate which is purely used for servers nowa-
days. The microarchitecture implements the Power ISA, an instruction set architecture
developed by the OpenPOWER Foundation, which is heavily supported by IBM. The
Power ISA is a RISC design.

Since the IBM Power9 is a server CPU, it focuses on performance a lot. The CPU works
with 16 logical cores, grouped in four physical cores (SMT4). However, the design of
Power9 also supports SMT8 cores [78, 51].

One notable thing about the IBM Power9 architecture is the sliced design of the processor
[78, 31]. Each physical core comprises four slices; a slice is a logical core. A slice is as
a basic computation block, consisting of an execution unit for integer operations, a unit
for floating point operations and one for address generation coupled together with units
for load and store. Two slices are combined into a super-slice. There is only one unit for
integer divisions per super-slice. One physical core consists of two super-slices. There is
only one branch slice per physical core.

Figure 2.4 shows the sketch of an SMT4 core of an IBM Power9 CPU. In general, the
division into front-end, back-end and memory subsystem can also be recognized in an
IBM Power9 CPU. The front-end is as usually responsible for fetching and decoding
instructions. The dispatch unit is the entry point of the back-end, which operates out-
of-order. The dispatch unit is responsible for assigning the instruction to either the
branch slice or one of the four other slices. The slice processes the instruction and - if
necessary - interacts with the memory subsystem.

2.2 CPU Caches

CPUs have been optimized a lot in recent years in terms of speed and performance.
This performance is not only determined by the internal components of the CPU, but
also by the time it takes to interact with external peripherals. One of these peripherals
is the main memory, a volatile storage medium used to store all kind of data needed
for operations of a computer. The CPU has the possibility to store data internally
in registers, but this space is limited. Therefore, the CPU needs to swap out data
to the main memory sooner or later. For example, the main memory stores parts of
the OS kernel while the OS is running or parts of the program binary for a specific
process. Unfortunately, this memory is not as fast as the CPU, and considerable latency
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Figure 2.4: Sketch of a physical core in an IBM Power9 CPU. The front-end fetches and
decodes instructions into µops, influenced by the branch predictor. The µops are handed over to
the back-end via the dispatch unit. Then they are distributed to either the branch slice or one
of the other slices, depending on the instructions. The results are gathered in the Dispatch Unit
which makes sure the instructions retire in the correct order.

is introduced when loading or storing data. Caches aim to close this gap between CPU
and memory performance and are a part of every modern processor.

Caches are small banks of fast memory, storing small portions of data from the main
memory. Whenever the CPU needs to access data from DRAM, it first looks for the
data in the cache. If it finds the data there, the slow memory access can be skipped, and
data is retrieved much faster. However, we cannot just remove DRAM entirely because
caches are limited in size. Increasing their size would again lead to higher access times.
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Table 2.1: Size of caches (L1 data cache, L1 instruction cache, L2 cache, L3 cache) of our test
devices. The ARM Cortex-A57 does not have an L3 cache.

L1d L1i L2 L3

Intel i7-6700K 32 KB 32 KB 256 KB 8192 KB

AMD Ryzen Threadripper 1920X 32 KB 64 KB 512 KB 8192 KB

ARM Cortex-A57 32 KB 48 KB 2048 KB -

IBM Power9 32 KB 32 KB 512 KB 10 240 KB

Caches were introduced because of observations based on the principle of locality [32, 75].
It says that programs tend to use data, instructions, and addresses not only once, but
multiple times during execution in spatial or temporal proximity. The program likely
will need this data again soon and ideally will be cached by then. Locality comes in
two dimensions, temporal locality, and spatial locality [32, 30]. Temporal locality talks
about the observation that data is used over time repeatedly and in temporal proximity.
Spatial locality means that multiple data blocks needed by the program tend to be near
to each other in memory.

2.2.1 Structure of a Cache

Caches are organized hierarchically [32]. In modern CPUs, these hierarchies are called
levels , and all of our test devices have three of them (L1, L2, and L3), except the
ARM Cortex-A57, which has two, as shown by Table 2.1. The L1 cache is the smallest
and fastest cache which is closest to the CPU. Typically it is divided into instruction
cache and data cache. As the name suggests, the instruction cache is used to store
instructions, i.e., whenever the CPU fetches instructions from memory, it first searches
the L1 instruction cache. If it finds the code there, it can circumvent the load from
memory, which is costly. Respectively, the L1 data cache is searched before loading data
from memory. The cache which is on the last level of the cache hierarchy is called the
Last Level Cache (LLC). For our Intel, AMD and IBM test processors the LLC is the
L3 cache, for the ARM processor, it is the L2 cache.

Cache sizes differ between CPUs. Table 2.1 gives an overview of cache sizes on our test
CPUs. As we can see, the L1 caches of our test CPUs are between 32 KB and 64 KB. The
L2 caches are larger with a size between 265 KB and 512 KB. Only the ARM Cortex-A57
has a larger L2 cache (2048 KB) because it does not have an L3 cache. L3 caches of the
Intel, AMD and IBM test CPUs have a capacity of 3-10 MB.

As mentioned in the previous section, our test CPUs are multi-core CPUs, and some of
them implement simultaneous multithreading as an optimization. For reasons of space
and efficiency, caches are often not exclusive for one specific logical core. For example,
our Intel and AMD test CPUs share L1, and L2 caches between logical cores and the
LLC is shared between physical cores.
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Figure 2.5: Memory hiearchy

Cache levels can be inclusive, non-inclusive or exclusive [62, 32]. If cache level A is
inclusive to cache level B then A contains all data which is also contained in B. For
example, Intel CPUs usually use inclusive L3 caches [32], which means that everything
that can be found in the L1 or L2 cache is also contained in the L3 cache, but there
might be data which is solely in the L3 cache. Inclusiveness makes cache coherence
easier, with the trade-off of wasting memory due to duplicate data storage [62]. If cache
level A is exclusive to cache level B then A does not contain any data which is contained
in B. The advantage of this is that cache space is not wasted. The disadvantage is that
enforcing cache coherency is more difficult. If cache level A is non-inclusive to cache
level B then A is neither inclusive nor exclusive to B. For example, Intel’s L2 caches
are non-inclusive, which means that data residing in the L2 cache may or may not exist
in the L1 cache.

To make sure that multiple cached copies of data that reside in different cores are up-to-
date, so-called cache coherence protocols are defined. Cache coherence is an issue related
to multi-core processors and the fact that not all caches are shared between cores [94, 5].
Imagine a situation between cores A and B of a multi-core CPU with three cache levels
where both A and B have a block of a specific memory address in their L1 cache. Cache
coherency problems can occur when A writes data to the address. The data might be
updated in the A’s private L1 cache, but when B attempts to read the data, it will not
read the most recent version unless it is notified about the change of the value in some
way. The cache coherence protocol defines a consistent cache update policy. It ensures
that all caches contain the most recent version of data at any given point in time.

Frequently, modern caches are divided into sets or ways. Each cache set is again divided
into multiple cache lines, also known as blocks. Each cache line or block is tagged to
indicate which memory address it belongs to [32]. Additionally, each line has a valid bit.
The valid bit indicates if the data is still up-to-date or if a write to memory has already
happened earlier and invalidated the cache line. It is also used to determine if the cache
line is empty. If there are n cache lines in a cache set, the cache is said to be n-way set
associative [33]. If addresses a and b are congruent, the values at addresses a and b are
stored in the same cache set.

Directly-mapped caches are caches where data from one specific address can be stored
at exactly one location in the cache. Fully-associative caches are caches where data
from one specific address can be stored anywhere in the cache. Respectively, n-way set
associative caches are a solution between directly-mapped and fully-associative caches.
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Figure 2.6: Basic operation of a 5-way set-associative cache. From the virtual and/or physical
address, index, tag, and cache line offset are retrieved. Based on the index, the correct cache
set is selected (1). Then the cache set is searched for data with a matching tag (2). If this data
exists, the valid bit is checked (3). If the valid bit is 1, the data can be retrieved.

2.2.2 Operation of a Cache

In case the CPU wants to read data from memory, it follows the memory hierarchy
shown in Figure 2.5. That is, it starts at the L1 data cache and looks for the data in
there. Three information pieces are needed to search a cache: tag, index and offset.
First, the correct cache set is selected by the index. This cache set contains multiple
lines (n lines in an n-way set associative cache), and now one must find out which line
contains the requested data. This is done using the tag, which is first computed from the
data address and which must be compared with the tags in the cache. If a tag matches
the computed one, the CPU found the correct cache line. Nevertheless, it might still be
that an old version of the data was found or that the cache line is empty. Therefore, the
CPU also checks if the valid bit is set. If all these requirements are fulfilled, the correct
data is found and does not have to be loaded from memory (cache hit). If one of these
steps fails, the CPU repeats the procedure for the L2 and L3 caches as well. In case
there is no cache hit on any one of these levels, the CPU has to load data from memory
(cache miss). This process is illustrated in Figure 2.6.

There are different possibilities which data to choose for tags and indices. Generally,
either the physical or virtual address is used [49]. Virtual addresses are known instantly
when the memory access happens, but physical addresses must first be retrieved from
the address translation process. This process is quite costly, and therefore virtually
indexed caches are faster in general. On the other hand, virtual addresses are only
unique per process, and therefore multiple copies of the same data might be in the cache
simultaneously.

One can distinguish between four different methods for cache tagging and indexing:
VIVT (virtually indexed, virtually tagged), PIVT (physically indexed, virtually tagged),
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VIPT (virtually indexed, physically tagged) and PIPT (physically indexed, physically
tagged). VIVT caches are fast because there is no need to retrieve the physical address.
However, the virtual tag is not unique, and the same piece of data might be in the cache
twice, for example when processes share memory. PIVT caches have no advantage, for
small caches since, on the one hand, latency is introduced to retrieve the index and
collisions happen because of the virtual tag. VIPT caches are often used because the
cache set can be selected while the physical address for the tag is retrieved, leading to
an overall performance gain due to parallelism. Additionally, there will not be duplicate
data in case shared memory is used. PIPT caches have the major drawback of slowness
because of the physical address in use. There are no collisions in connection with shared
memory. Today, most L1 caches are VIPT whereas PIPT is used for L2 and L3 caches
[26]. The L1 cache set selection and the TLB lookup to retrieve the physical address
can be done in parallel. Once the physical address is available, the L1 cache line can be
slected. In case an L1 cache miss is encountered, the L2 cache is searched. Since the
physical address is already available from the last step, it is convenient to use it for both
tag and index.

As already mentioned above, it will happen that the cache is full and data, which is
required by the program, cannot be found in the cache. To make space for new, more
recent data, parts of the cache must be evicted. The cache replacement policy is used
to decide which data to evict. There are several strategies [69, 72]. For example, the
Least-Recently Used (LRU) strategy tracks the age for each cache line and replaces the
one with the highest age. Whenever data is accessed, the age of the line is reset and
incremented for the other lines. Pseudo-random policies select a random cache line to
evict. A pseudo-random number generator is used as a source of randomness. Research
showed that in modern CPUs, adaptive replacement policies are frequently in use [88].
They try to tune the cache replacement policy in a way such that the best results for
the programs currently being executed are achieved [70]. Often, this involves observing
accesses to cache lines and trying to figure out access patterns.

2.2.3 Cache Attacks

There are various forms of cache attacks, including Flush+Reload [92], Flush+Flush
[27], Evict+Reload, [28] and Prime+Probe [80]. Researchers showed various attacks in-
volving caches to build efficient covert channels. For example, in 2017, Maurice et al. [58]
proposed an error-correcting, high-throughput covert channel using caches which can
transmit more than 45 KBps. Other microarchitectural attacks like Spectre or Melt-
down rely on cache attacks in order to transmit the leaked data to the attacker process.

Cache attacks exploit the timing difference which occurs between loading cached and
loading uncached data. As mentioned in the previous section, loading data from memory
takes a long time. Caches speed up this process, but the difference in timing between a
cache hit and a cache miss is so significant that it can be exploited, as shown in Figure
2.7. In a typical cache attack, there are two processes, a victim and an attacker process.
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Figure 2.7: Differences between timing of cache hits and misses on Intel, ARM, nd AMD

The attacker process wants to spy on the victim process. Both processes run on the
same machine.

Flush+Reload is a classic cache side-channel attack which requires shared memory be-
tween the attacker and the victim [92, 29]. It exploits the observation that attacker
and victim share the LLC. Therefore, if either the attacker or victim accesses data, it is
loaded into the LLC. If either the attacker or victim flushes a cache line, it is thrown out
of the LLC. The first step the attacker takes is to map shared memory into his address
space, for example a shared library [85]. The attacker wants to learn when the victim
accesses address a. Therefore, the attacker flushes a from the cache and waits until the
victim has finished executing the victim program. Now, if the victim ever accessed a, it
will most likely be in the cache; otherwise, if the victim never accessed a, it will not be
in the cache. In the last step, the attacker measures the time it takes to access a. If a is
in the cache, the attacker gets a cache hit and the access time is low. If a is not in the
cache, the attacker gets a cache miss and the access time is high. There are several ways
how one can evict cache lines: x86 platforms provide the unprivileged clflush instruc-
tion, ARM provides several management instructions for their data cache (e.g. dc csw)
and IBM Power offers dcbf (data cache block flush). Time is measured using the rdtsc
instruction on x86, ARM provides a monolithic clock source, and IBM Power provides
a special purpose register which can be read out to retrieve a stable timing source.

Flush+Flush [27] is a variant of Flush+Reload which relies on differences in the execution
time of the clflush instruction. It is based on the observation that if data is not cached,
clflush is faster. For example, on Intel CPUs clflush starts at the LLC. Uncached data
is not in the LLC, which is inclusive to the L2 and L1 cache. Therefore, the L2 and L1
cache do not have to be checked, which saves time.

Evict+Reload [28] is also a variant of Flush+Reload. It is useful on platforms where a
clflush-like instruction is either not available or privileged. To evict data at address a
from the cache, the attacker fills the cache with addresses that are congruent to a until
a is evicted from the cache. How many addresses must be accessed before a is evicted
depends on the replacement policy in use.

Prime+Probe [65] has the advantage of not requiring shared memory. As a downside,
it requires accurate knowledge about the cache replacement policy, which is only docu-
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mented by manufacturers in rare cases, and the physical address. The attack consists of
two phases, called prime and probe respectively. Assume the attacker wants to know if
a specific cache set s was accessed by the victim. In the first step, the prime phase, the
attacker fills the cache set s, according to the cache replacement policy. Then, the victim
process is executed, and if it accesses data in s, it evicts data from the attacker. The
attacker enters the probe phase in which he measures the access times to the memory
addresses which he used in the prime phase. If he encounters a cache miss, the victim’s
program has accessed s.

2.3 CPU Optimization Mechanisms

In recent years, there have been numerous tweaks applied to CPUs to gain the most per-
formance from it. Instruction pipelining is probably the oldest and most fundamental
optimization concept. It takes advantage of parallelism introduced to the fetch-decode-
execute action. Manufacturers have also done small modifications on a much lower level,
the instruction level, including move elimination, zero idioms, and one idioms. Specula-
tive execution and branch prediction are amongst the more sophisticated optimization
techniques, where the CPU tries to make assumptions about future program execution
by guessing. Out-of-order execution aims at reordering instructions in a way such that
they can be executed in the most efficient way (for example, execute a load from memory
before an arithmetic instruction). Since speculative execution and out-of-order execu-
tion are significant for this thesis, they are described detailed in Section 2.5 and Section
2.4. On a higher level, there is simultaneous multithreading, which takes advantage of
the concept of logical CPU cores.

2.3.1 Instruction Pipelining

The IBM 7030 Stretch is considered the first pipelined machine [67], constructed in 1959.
Today, pipelining is the key technique used for building efficient CPUs.

The main idea of pipelining is to divide the execution of an instruction into multiple
steps [23]. By parallelizing the processing of these steps, multiple instructions can be
executed in parallel. Each of these steps is called a stage in a pipeline [32, 74]. The term
pipeline comes from the topological structure of this system since stages are chained one
after each other. Instructions enter at the one end, go through all the stages and leave
at the other end. The basic RISC pipeline covers five stages: fetch, decode, execute,
memory access and write-back [32]. Today, CPUs use more than just five stages: Intel
Skylake and Haswell CPUs have 14-19 [52], AMD Zen CPUs have 19 [53], and IBM
Power9 CPUs have 12-16 pipeline stages [51]. Although, the total execution time of all
instructions is reduced, the execution time of a single instruction is slightly increased
because the pipeline introduces complexity to the overall CPU architecture which must
be managed [32].
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1 sub eax, eax

2 xor eax, eax

Listing 2.1: Zero idioms

1 add ecx, 2

2 mov eax, ecx

Listing 2.2: Example of
move elimination.
The first instruction can be
reformulated to add eax, 2,
the second can be eliminated.

1 mov eax, 10

2 mov ebx, 10

3 cmp eax, ebx

Listing 2.3: Example where
the CPU does not apply
move elimination, but could.

During the execution of instructions, pipeline hazards might occur which cause the
pipeline to stall. Generally, hazards occur whenever it is not possible to execute all the
instructions which are currently in the pipeline in the given order. They are categorized
into three types: data hazards, control hazards and structural hazards [32, 79, 15].
Data hazards occur when the current instruction depends on results which are not yet
available, for example, when the result will be computed by an instruction earlier in
the pipeline. Control hazards arise from instructions changing the value of the program
counter, for example, a branch instruction. Structural hazards occur when the execution
of an instruction requires a specific resource, an execution port or similar, which is
currently exhausted. Hazard handling is done by stalling the pipeline, i.e., waiting until
the hazard resolves.

2.3.2 Move Elimination, Zero Idioms, and Ones Idioms

Optimization can also happen on the instruction-level by filtering out instructions which
technically should not require any resources. Although they have to wander the whole
pipeline, they do not require execution resources like execution units.

Zero idioms are data-independent instructions which will result in setting a register to
zero. The CPU recognizes these instructions and handles the execution in the register
allocation phase by allocating an empty register [20, 10]. The instruction never requires
any execution resources. Since those instructions are independent of each other, they are
called dependency-breaking instructions [20]. Listing 2.1 shows examples of zero idioms.

Ones idioms are data-independent instructions which will result in setting a register to
one. Unlike zero idioms, they will need an execution unit [20]. Intel CPUs only apply
this to pcmpeq instructions, which compare two MMX registers. If the registers are
equal, the destination register is set to all ones, otherwise to all zeros [38].

Move elimination applies to register-to-register moves and chained register-to-register
moves [52, 20]. Register-to-register moves are mov instructions which have registers as
operands. If they are preceded by any other instruction, it can be eliminated, and the
instruction can be rewritten to store the results into the desired register directly. An
example is given in Listing 2.2. Here, the preceding instruction is the add instruction in
the first line. The CPU can eliminate the mov in the second line and directly use eax
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as the destination register of the add instruction.

Move elimination is not applied in all possible cases, as shown in Listing 2.3. The cmp
instruction is not modified to work with immediate values directly. The reason for this
is that adding more logic for move elimination would also add more complexity to the
pipeline. On the AMD Zen platform, move elimination can also be done for floating
point operations [53].

2.3.3 Branch Prediction

Branch Prediction is a feature most modern CPUs implement. It is as old as pipelin-
ing and also very powerful. The IBM 7030 Stretch is considered the first machine to
implement it [76].

As already mentioned in the previous section, control hazards happen when a branch
instruction enters the CPU’s pipeline. Theoretically, the pipeline must stall until the
branch is fully evaluated because it is not known before whether to take the branch or
not. Therefore, the CPU consults the branch prediction unit to guess whether to take
the branch or not. Following the recommendation of the branch predictor, the branch
which is most likely taken is fed into the pipeline, and the instructions are executed
speculatively until the result of the branch instruction is finally known. Section 2.5 gives
more details on speculative execution. If it turns out in the end that the guess was right,
execution time was saved. If the opposite is the case, the other branch will be fed into the
pipeline, and everything which was executed speculatively will be discarded. However,
in the end, the cycles which were wasted due to a misprediction are not significantly
more than what would have been needed without branch prediction [20].

We distinguish between two basic branch prediction methods, static and dynamic predic-
tion. While static prediction happens at compile time, the CPU does dynamic prediction
at runtime. Dynamic prediction has the big advantage that it can adapt dynamically
to the program’s behavior [14, 46]. The major downside is that additional hardware
resources are needed which not only consumes chip area but also adds complexity to the
total chip architecture [79]. In the following, we focus on dynamic prediction.

Modern CPUs apply branch prediction to conditional branches, but prediction also hap-
pens for unconditional branches in terms of predicting the jump target address. Uncon-
ditional branches are always taken, for example, returning from a function or calling a
function. Conditional branches might or might not be taken, depending on the outcome
of the branch instruction, for example, an if-then-else-statement [20].

The two central microarchitectural elements for performing those predictions are the
Pattern History Table (PHT) and the Branch Target Buffer (BTB) [79, 20, 93]. The
PHT maps a branch address to one or more bits, depending on the prediction strategy,
which indicates whether the branch was taken in the past or not. In contrast to that, the
BTB extends this prediction by providing knowledge about the target of the branch. The
BTB maps a branch address to the correct target address. Whenever an unconditional
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Figure 2.8: Example implementation of branch prediction in a processor. The branch history
register stores the three previous outcomes of a branch, i.e., if it was taken or not. Based on
that, the selection in the pattern history table is made, which contains a counter. This counter
finally predicts whether to take the branch or not.

branch is executed, or a conditional branch is taken, the BTB is searched for the target
address. If it does not contain the target address, for example when the branch is taken
for the first time, the target address is inserted into the table as soon as it is known. The
second time the branch is taken, the target address can easily be fetched from the BTB
instead of having to wait for the PC to increment and deliver the correct target address
[20]. However, the BTB provides only predictive information, also due to its size limit.
There is no guarantee that the branch target provided by it is the correct branch target,
especially for conditional branches. Very often, modern CPUs combine PHT and BTB
into one single hardware component [20].

There are various methods how to implement branch prediction. The simplest way is to
equip the BTB with a two-bit counter [20]. The counter is incremented if the branch is
taken and decremented if it is not taken. It can never exceed 3 or fall below 0. If the
BTB is asked to predict if the branch is taken, a counter value of 0 or 1 means to not
take it, a counter value of 2 or 3 means to take it.

A second approach is to combine the PHT with a branch history register, as illustrated
in Figure 2.8. The branch history register, a shift register, stores the history of the last
n outcomes of the branch (0 for not taken and 1 for taken). In Fiugre 2.8, n equals 3.
For example, if the branch was taken and then not taken twice, the value in the branch
history register would be 100. For each of the possible 2n combinations, a counter,
working as described in the previous section, is stored in the PHT [20]. According to
Fog [20], this method is called two-level adaptive predictor.

Modern CPUs apply the two concepts described above in some form. However, manu-
facturers keep secret the exact structure and operations of the branch prediction units.
Almost all information which is currently known has been reverse-engineered [53, 52, 51,
24, 20].
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1 add ebx, eax

2 mov ebx, byte[ebx]

3 add edx, ecx

Listing 2.4: Execution sequence as given by binary

2.3.4 Simultaneous Multithreading

Simultaneous Multithreading (SMT) is a technique that introduces logical cores to run
on a single physical CPU core [82]. These logical cores have their own architectural
state, but actually they run on the same physical core. The underlying assumption
which justifies why SMT pays up is that a single process or thread most of the times
cannot utilize the whole CPU core, but two processes might. The hardware execution
resources are either completely shared or statically partitioned [56]. Shared means that
all hardware threads can use a particular resource. For example, AMD Zen CPUs share
the µop cache and schedulers as well as execution units. Statically partitioned means
that the component is divided into as many parts as logical cores and each hardware
thread only accesses his part of the resource. AMD Zen processors statistically partition
components like the retire queue and the µop queue.

Most modern CPUs use a form of SMT today. Intel has been using hyperthreading for
quite a few years now, but also AMD provides SMT technology. IBM Power9 provides
CPUs having 4 or 8 hardware threads per core. ARM introduced SMT in their Cavium
line and in 2018, they also started the ARM Cortex-A65AE CPUs which also implement
SMT [47].

SMT provably has several security issues. Since logical cores share multiple microar-
chitectural components, an attacker running on one logical core can spy on the victim
running on the other logical core. This also creates several side channels, various attacks
exploiting SMT have been published, including PortSmash [4], TLBleed [25], and several
Spectre variants [12].

2.4 Out-of-Order Execution

Out-of-order execution is another powerful optimization technique applied by pipelined
processors. The first machine implementing out-of-order execution was the IBM Sys-
tem/360 Model 91 in 1966 [36], but today most modern CPUs implement it.

On the hardware level, the reorder buffer is the central element supporting out-of-order
execution in the CPU. It contains µops, as they are waiting to be scheduled to one or
more execution units. The µops might be reordered there and sent to the scheduler.
After their execution, the µops return to the reorder buffer. The order in which µops
are retired is often not the same as the order in which µops are executed, which is the
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Figure 2.9: Control-flow speculation, value or data speculation and memory disambiguation
lead the CPU to speculatively execution. Whenever speculative execution or out-of-order execu-
tion is not successful, the CPU does a rollback, and we talk about transient execution. Whenever
speculative execution or out-of-order execution is successful, the CPU commits the results into
the architectural state, and we talk about architectural execution.

reason why this concept is called out-of-order execution. In the reorder buffer, the µops
wait for their retirement. Retirement refers to making changes (caused by the execution
of an instruction) architecturally visible. Retirement has to happen in-order; otherwise,
this destroys the programmer’s illusion of programs being executed in-order.

The reason why CPUs apply out-of-order execution is performance [32]. For example,
the CPU might not be able to execute a specific instruction because operands of that
instruction are not ready yet. Then, the CPU can execute another, later, instruction
first, for which the input is already known, instead of waiting for the first instruction
to be ready to execute. However, the later instruction, which is executed while the
operands of the first instruction become available, must be independent from the first
one [20]. Independent means that no operand of the instruction depends on the previous
one.

Consider the example in Listing 2.4, which shows a sequence of three instructions as
given by the binary. The mov -instruction in line 2 depends on the add -instruction
in line 1. The CPU cannot execute the mov without the add being completed. The
dec-instruction in line three is independent of the previous instructions. The CPU can
execute it any time. Now, assume that the CPU wants to execute line 2 and realizes it
needs the result of the add to do this. It can execute the dec-instruction in line three
out-of-order while it is waiting for the add to be finished.
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2.5 Speculative Execution

As already mentioned in earlier sections, speculative execution is applied whenever the
processor has to execute a branch instruction. Due to out-of-order-execution, the CPU
might not yet know whether to take the branch or not. Theoretically, a pipeline stall
happens, and the CPU has to wait until the result is computed. This is a huge bottleneck,
and, therefore, the CPU uses branch prediction and continues executing instructions
speculatively [40]. This means that the results of these instructions are not retired and
are not architecturally visible unless the result of the branch is known [20]. Once it
is known for sure by computing the branch instruction whether to take the branch or
not, the speculatively executed instructions are either rolled back, in case the prediction
was wrong, or committed if the prediction was correct [12]. However, one must not
forget that branch prediction or formally control-flow speculation is only one possibility
to induce speculative execution on a CPU, as shown in Figure 2.9.

Value or data speculation relies on the concept of value locality, which means that the
same value results from the same instruction multiple times in a row [48, 60]. Respec-
tively, the CPU speculates on the result of operations when - for some reason - the result
cannot be known immediately.

Another option for the CPU to speculate is memory dependence speculation [90, 61]. To
overcome memory latency, the CPU internally uses a store buffer [53, 52]. Whenever
the CPU has to perform a write to memory, it puts information about the write into the
store buffer such that execution can continue and the pipeline does not stall. However,
a load might be issued which depends on an earlier store. If the store has not yet been
handled, it still resides in the store buffer, and the CPU performs store-to-load forwarding
[20, 9, 90]. This means that the store from the store buffer must be forwarded to the
load because the load cannot load from memory since it will read an old value. Memory
dependence speculation predicts if this is the case, i.e., it predicts if a load depends on
an earlier store [90] and, therefore, indirectly allows the CPU to predict whether the
data has to be searched in the store buffer or not.

Figure 2.9 gives an overview of the two types of execution which might happen in a CPU.
Architectural execution means that the results were committed and are architecturally
visible. Transient execution means that the CPU executed instructions it should not
have, for example, because of a branch misprediction, and the results are rolled back.
Transiently executed instructions do not leave architectural traces, but microarchitec-
tural traces, for example, changes in the CPU’s cache state. It has been shown that this
can be a security issue since an adversary can use for example a cache covert channel to
make those traces architecturally visible [12, 50, 44].

The speculation window (or instruction window) describes the time frame in which the
CPU executes instructions speculatively. The size of this window is limited, and this
thesis focuses on analyzing this limit in different situations. Attackers benefit from a
larger speculation window because more instructions can be executed before the rollback
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1 if(x < len)

2 maccess(oracle[array1[x] * 4096]);

Listing 2.5: Spectre-PHT gadget

happens, leaving more microarchitectural traces.

2.6 Transient Execution Attacks

Transient execution attacks exploit the observation that transiently executed instructions
leave microarchitectural traces [12]. These traces are made architecturally visible by
attackers using - in most cases - a cache covert channel, as already described in the
previous sections.

The fundamental works in this direction were published in January 2018. There has
been Meltdown et al. [50], exploiting out-of-order execution to read kernel memory from
userspace. Spectre attacks [44] leak information through speculative execution in com-
bination with branch prediction.

Since then, there has been done a lot of research in this direction. New attack variants
of both Spectre and Meltdown are discovered continuously [43, 34, 54, 86, 84, 8, 77, 12].

We briefly describe Meltdown-like attacks since they are relevant for parts of this thesis.
We also show how to improve Spectre attacks, so we are describing them in more detail.

2.6.1 Spectre Attacks

Spectre attacks target transient execution caused by speculative execution. Several Spec-
tre variants have been discovered, what they all have in common is that they exploit
the CPU’s branch prediction mechanisms by mistraining the respective prediction unit.
Canella et al. [12] propose a categorization of those attacks based on the type of mis-
training and the prediction unit. Spectre-PHT (Variant 1) uses the Pattern History
Table (PHT) [44], Spectre-BTB (Variant 2) uses the Branch Target Buffer (BTB) [44],
Spectre-STL (Variant 4) exploits store-to-load forwarding, and Spectre-RSB exploits
mispredictions of the Return Stack Buffer (RSB) [54, 45]. Besides that, there have been
various attacks based on the original Spectre attacks [13, 64, 73, 11].

Spectre-PHT (Spectre Variant 1) exploits conditional branch misprediction. It requires
the existence of a Spectre gadget as suggested by Listing 2.5, and can be located in any
arbitrary function. array1 is an array of len bytes, and oracle is an array of 256 *

4096 bytes. First, a bounds check is done which prevents an out-of-bounds access to
array1. The function maccess is used to access the memory on a given address. The
goal of the attacker is to leak a secret located in the victim’s process. Before the attack
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begins, the attacker ensures that all entries of oracle are not cached, for example by
using the clflush instruction. The actual Spectre attack consists of multiple phases.
In the first phase, the branch-mistraining is done. There are four different strategies
for branch mistraining [12]. The attacker can either mistrain within the same address
space as the victim or in another, attacker-controlled address space. Furthermore, the
attacker can use a branch at the same address as the victim (in-place) or a branch at
a congruent address (out-of-place). The goal of the mistraining phase is to influence
the branch predictor in a way that it will recommend to take the branch the first time
after the mistraining phase. In the second phase, the gadget is executed with an invalid
x, i.e., x >= len. The branch predictor recommends taking the branch because it was
trained like that before. maccess is called with an invalid x and speculatively loads
oracle[array1[x]*4096] into the cache. However, the CPU later realizes that the
branch was mistakenly taken and actually should not, so it does a rollback. In the last
phase of the attack, the attacker leaks the value of the secret byte, array1[x], via a
cache covert channel by finding out which location in oracle was cached. He will get
cache misses for all indices of oracle which were not cached, but one cache hit for index
array1[x]. The attacker effectively leaked array1[x].

What we see in Spectre-PHT attacks is a race condition since it is not guaranteed
that the speculative execution happens before the condition is evaluated. Depending
on various factors, for example, interrupts or the workload on execution ports, the
evaluation might be finished before the speculation can happen. In this thesis, we try to
make this situation more unlikely by extending the speculation window. Spectre-PHT
attacks have shown to be feasible on Intel, ARM, AMD, and IBM Power9 processors.
Recently, a proof-of-concept was published for RISC-V platforms [22]. It was also shown
that not only transient loads but also transient stores to memory are possible in Spectre
attacks [43]. The gadget would change to oracle[array1[x]*4096] = value;.

Spectre-BTB (Spectre Variant 2) targets indirect branch misprediction, more specifically
the prediction of branch targets. The attacker poisons the BTB with addresses he wants
the victim to jump to [12, 44]. A prerequisite for a successful attack is again the existence
of a gadget which transfers the secret data to the attacker over a covert channel. An
attacker who wants to mistrain the branch target predictor must be aware of the virtual
address of the gadget in the victim’s address space. The attacker can then start a co-
located process on the same physical core as the victim and execute indirect branches
to the victim’s gadget address. The BTB is shared among logical cores, and therefore
the BTB will be poisoned with the gadget address.

Spectre-STL (Spectre Variant 4) exploits store-to-load forwarding [12, 35] and misspec-
ulating memory dependencies. In Spectre-STL, the store buffer is bypassed because of
a wrong prediction and old values are read from memory while the CPU searches the
store buffer for the correct value.

Spectre-RSB exploits the Return Stack Buffer (RSB) [12, 45]. The RSB is a stack
containing return addresses of previous call instructions. When the CPU executes a
return instruction, it does not use the BTB but the RSB to predict the target of the
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1 int v = *secret;

2 maccess(array2[v * 4096]);

Listing 2.6: Transient execution sequence in Foreshadow-SGX

unconditional jump. Due to the limited size of the RSB, incorrect speculations can easily
occur because old entries get overwritten by new ones if too many return instructions
are issued. The same thing can happen vice versa: if there are more return instructions
than entries in the RSB, the CPU uses the BTB instead, and one can run a Spectre-BTB
attack [45].

Since the release of Spectre attacks, several attacks based on the original Spectre at-
tacks have been discovered. SGXPectre [13] demonstrates how to disclose secrets from
Intel SGX enclaves using Spectre-BTB while SGXSpectre [64] tries the same but using
Spectre-PHT. NetSpectre [73] shows how to leak secrets using Spectre over the network.
SMoTherSpectre [11] combines port contention and Spectre to disclose secret informa-
tion.

2.6.2 Meltdown Attacks

Meltdown attacks exploit transient out-of-order execution [50, 12], more specifically ex-
ploit the observation that exceptions are only raised when instructions retire. Whatever
is executed out-of-order before the exception appears leaves microarchitectural traces
and can be read out by an attacker using a covert channel. Canella et al. [12] propose a
categorization of Meltdown attacks based on the type of exception. Meltdown-US (sim-
ply called Meltdown) uses a page fault raised because of an access to kernel memory from
userspace [50]. Foreshadow exploits a page fault occurring because of a zeroed present
bit [84, 86]. There exist various other non-PF-based Meltdown variants, for example,
Meltdown-GP which exploits a general protection fault [8].

Meltdown-US can be used to read kernel memory from userspace. In modern operating
systems, page tables are equipped with the supervisor flag, which indicates whether a
page belongs to the user space or the kernel space. Whenever a userspace process tries
to access a kernel page, the supervisor flag is checked, and a page fault is thrown due
to insufficient permissions. The attack consists of three phases. In the first phase, the
attacker chooses a kernel memory location which he wants to leak and loads it into a
register by dereferencing it. Dereferencing a memory location triggers a page table walk,
and a page fault is raised because a kernel space access is detected from user space by
checking the supervisor flag.

In the second phase, which happens before the exception is raised, the attacker tran-
siently executes an instruction which accesses a cache line depending on the secret value
in the register. Note that meanwhile, the exception is raised and must be handled, other-
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wise the program aborts. There are several possibilities, including an exception handler,
a TSX transaction or speculative execution. The last phase is the same as in Spectre
attacks: the attacker finally leaks the secret by launching a cache covert channel.

Foreshadow [84, 86] is a variant of Meltdown and comes in three different types. In-
tel named Foreshadow-type attacks L1 Terminal Fault (L1TF). The initial variant,
Foreshadow-SGX, was published as an attack against Intel-SGX. Intel SGX is a se-
cure enclave, a private region of memory residing inside the virtual address space of
a process, allowing secure computations, for example for cryptographic purposes. An
attacker who wants to exploit Foreshadow-SGX has the goal to read a secret value which
is stored in the enclave from outside. The attack comprises three phases. In the first
phase, the attacker makes sure that the enclave secret resides in the L1 cache. This can
be done by calling an enclave function which accesses the secret. In the next phase, the
attacker makes the enclave page non-present, for example by calling mprotect. In the
fourth phase, the attacker executes code as shown in Listing 2.6. It starts with derefer-
encing secret, which causes a page fault due to the cleared present bit of the previous
phase, skipping SGX’s abort page handler, which is called whenever an enclave address
is accessed from the outside. However, the instruction of line 2 is executed transiently,
loading the contents into the cache. The last phase of the attack involves a standard
cache covert channel to leak the secret value.

Two more Foreshadow variants, Foreshadow-OS and Foreshadow-VMM were published
[86], both generalizing Foreshadow-SGX to a Meltdown variant targeting a zeroed present
bit. While Foreshadow-OS exploits terminal faults to read kernel memory from user
space, Foreshadow-VMM allows an attacker, who controls a virtual machine, to read
any chosen physical memory address in L1 from the host.

2.7 Port Contention

PortSmash, an attack exploiting SMT and execution ports, was published in 2018 [4],
followed by SMoTherSpectre [11] in 2019. Both attacks exploit port contention on Intel
platforms. Port contention occurs when too many µops requiring the same execution
port have to be executed in a small amount of time. The scheduler is responsible for
managing which µops will be sent to which execution ports and do this assignment as
efficient as possible, e.g., by applying load balancing. Each execution port fulfills a
specific task. Therefore, µops can only be sent to the ports which can actually execute
them. For example, the popcnt instruction can solely be scheduled to port 0 on an Intel
Skylake CPU, while shld can be issued to port 0 or port 6 [21].

One can build a covert channel out of this, given the prerequisite that sender and receiver
are co-located to each other. Co-located means that they run on the same physical core,
but on a different logical core. Sender and receiver agree on two instructions, one for
sending a 0 and one for sending a 1. For example, they can choose popcnt for sending
a 0 and fadd for sending a 1. If the sender wants to transmit a 1, it starts executing
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a sequence of popcnt instructions. Concurrently, the receiver executes first a sequence
of popcnt and secondly a sequence of fadd instructions and measures the execution
times of both sequences. Either port 0 (in case both execute popcnt) or port 5 (in case
both execute fadd) will be contented, yielding more time consumption which allows the
receiver to know if either 0 or 1 was transmitted.

As proposed by Aldaya et al. [4], this covert channel can be transformed into a side
channel which they call PortSmash. The prerequisites are - same as for the covert
channel - the co-location of victim and attacker. The main idea is that the attacker
contends one or more ports and can draw conclusions about what the victim executes
by measuring the time consumption of the issued instruction sequence. If the instructions
executed by the victim depend on a secret, the attacker can learn about this secret.



Chapter 3

Attack Analysis Setup and
Framework

In this chapter, we first describe the automated framework we use to analyze Spectre-
PHT attacks. We describe the structure of the framework and the interaction of the
framework’s components. Additionally, we give details on how tests are executed fully
automatically and which configurations can be made by the user. In the second part of
the chapter, we outline a test scenario in our framework. We describe which categoriza-
tion was applied to the test scenarios.

3.1 Automated Framework

We provide an automated framework for testing scenarios involving Spectre-PHT at-
tacks. This framework was ported to all our test platforms, i.e., it can be used on Intel,
AMD, ARM and IBM Power. The test devices used for our experiments are described in
Table 3.1. All of them except the ARM Cortex-A57 have simultaneous multithreading
enabled.

The primary goal of our analysis is to give insights on how different conditions increase or
decrease the performance of Spectre-PHT attacks on different platforms. The design of
our experiment is sketched in Listing 3.2. By performance, we mean the likelihood that
an attacker can leak data. Respectively, increased performance means the attack works
better, and the leakage rate is higher. Generally, one can configure four parameters:
test id, repetitions, process repetitions and cache miss which we describe in
the following. Note that test id is the only non-optional parameter. repetitions,
process repetitions and cache miss can be chosen by the user, but are provided by
the framework by default.

29
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Table 3.1: Overview of test devices used in the experiments

Motherboard/SoC CPU SMT (#logical/#physical) Compiler

Z170-WS i7-6700K X gcc 7.3.0

4.00GHz (4/2)

AMD PRIME X399-A AMD Ryzen Threadripper 1920X X gcc 7.2.0

3.50GHz (24/12)

Nvidia Tegra TX1 ARM Cortex-A57 × gcc 5.4.0

2.00GHz (4/4)

Raptor Talos II IBM Power9 X gcc 7.3.0

2.154GHz (16/4)

3.1.1 Attack Accuracy (TPR) and Throughput

The goal of our analysis is to provide an exact measurement which allows us to compare
attacks using different conditions. For this purpose, we use the true positive rate (TPR)
and throughput in bytes per second achieved by a specific attack scenario.

As suggested by Listing 3.2, in one test run we leak one byte and check the outcome of
the experiment. For this purpose, we define b, a predefined byte, (H in our example),
and a, a byte which is not equal to b. The outcome of the experiment can either be true
positive, true negative, false positive or false negative:

1. The result is true positive in case we tried to leak b and actually leak b.

2. The result is false negative in case we tried to leak b but leaked any byte a.

3. The result is false positive in case we did not try to leak b but leaked b.

4. The result is true negative in case we did not try to leak b but actually leaked any
byte a.

Our analysis focuses on the condition positive scenario, i.e., we are only interested in
true positive and false negative results. In a more practical setting, this means that in
one test run we try to leak b and check if b was effectively leaked (increment the counter
for true positives) or not (increment the counter for false negatives). From the number of
true positives and false negatives, we compute the true positive rate (TPR), also known
as recall [18].

Not all tests leak bytes equally fast. For example, a test which accesses a chain of
flushed variables might achieve a higher TPR than a test which involves a multiplication
chain, but due to repeatedly flushing the cache it might be slower in leaking than the
multiplication test. We capture this by stating the throughput in bytes per second.
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1 char access_array(int x)

2 {

3 int res = 0;

4 asm volatile(

5 "mov $0, %%r11\n"

6 "imul %%r11d, %%r11d\n"

7 "imul %%r11d, %%r11d\n"

8 "imul %%r11d, %%r11d\n"

9 "add %1, %%r11d\n"

10 "mov %%r11d, %0" : "=r"(res) : "r"(x) : "r11");

11 if(res < len)

12 maccess(oracle + data[x] * 4096);

13 }

Listing 3.1: Example of a dependency chain for x86 with n = 3, i =imul

3.1.2 The test id Parameter

test id selects which test should be executed, i.e., which condition should be used in the
Spectre-PHT attack gadget. Since each platform has its own instruction set architecture,
the instructions, as well as the conditions, will be slightly different for each. Examples
are the basic condition, x < len, single integer ALU operations, AVX instructions and
referencing uncached memory. A detailed overview is given in Section 3.2. In Chapter 4,
when we discuss analysis results, we apply an intuitive naming scheme to the test cases.
This naming scheme is also explained in Section 3.2.

A large part of our tests works with dependency chains. A dependency chain consists of
n instructions is, where s ∈ {1, ..., n} and it holds that is depends on is−1, i.e., is cannot
be computed until is−1 is finished. Additionally, the prefix and postfix operations of
the dependency chain (initializations, ...) are dependent on the instructions. Listing
3.1 gives an example of a dependency chain constructed of the imul instruction. In line
5, register r11 is zeroed, then it is multiplied three times. Note that the second imul
instruction depends on the first one and the third one depends on the second. In the
end, the dependency chain’s result is added to the index x and stored in a variable res

to establish a data dependency here as well. In our tests, we investigate the influence
of n and i on the performance of the attack. However, what is crucial in these tests is
that there is a strict data dependency between instructions because then the CPU is
forced to execute all instructions before the branch instruction. This is time-consuming,
and therefore the speculative memory access has a higher chance to succeed. If this
dependency did not exist, the CPU would start to reorder them, and the speculation
window would not be extended.
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1 #define test_id 5

2 #define repetitions 1000

3 #define cache_miss 170

4

5 char* data "data|H";

6 char* oracle;

7

8 char access_array(int x)

9 {

10 size_t len = 5;

11 #if test_id == 0

12 if(x < len) {

13 #elif test_id == 1

14 ...

15 #endif

16 maccess(oracle + data[x] * 4096);

17 }

18 }

19

20 int main()

21 {

22 //Cache miss threshold for the cache covert channel

23 if(chache_miss == 0)

24 cache_miss = auto_detect_cache_miss_threshold();

25

26 unsigned int TP = 0;

27 unsigned int FN = 0;

28

29 // Allocate memory for oracle

30 //...

31

32 while(cnt < repetitions)

33 {

34 //Start throughput measurement

35 t1 = rdtsc();

36

37 //Flush page

38 flush(oracle + ’H’ * 4096);

39

40 // Mistrain

41 for(int i = 0; i < 20; i++)

42 access_array(0);

43

44 // Out-of-bounds access

45 access_array(5);

46

47 // Leak via cache covert channel if access was out-of-bounds

48 if(is_cache_hit(oracle + ’H’ * 4096))

49 TP++;

50 else

51 FN++;

52

53 //End throughput measurement

54 t2 = rdtsc();

55 print("Throughput:", t2-t1);

56 }

57 print("TPR:" TP / (TP+FN));

58 }

Listing 3.2: General structure of an experiment testing the performance of Spectre-PHT with
different conditions
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3.1.3 The process repetitions and repetitions Parameters

In general, Spectre attacks do not always perform the same because of the race condition
which allows transient execution. Various other factors can influence the performance,
including the overall system load and the behavior of other processes on the same ma-
chine. Therefore, we must ensure that our test results are statistically relevant.

We define the term experiment as trying to leak a byte, each experiment is repeated
repetitions times in one process. To minimize the impact of noise coming from dif-
ferent sources, e.g., ASLR, we repeat this test process repetitions times in different
processes. The user can optionally choose both parameters, but we provide meaningful
values for each platform by conducting a preliminary study. In this preliminary study,
we investigate the TPR, averaged over process repetitions, which is reached for a
specific number repetitions. The TPR will converge and stabilize after sufficiently
many tries and will fix repetitions and process repetitions.

3.1.4 The data Parameter

We use the same data in all our tests to make the test results comparable. As shown
in line 5 of Listing 3.2, this data consists of two parts, an accessible part, data| and a
secret part, H. The first part is used to train the branch predictor whereas the second
part is used to demonstrate how secret data can be leaked using an out-of-bounds access.
In a real attack environment, the attacker can, of course, choose the address from which
location he wants to leak the data.

3.1.5 The cache miss Parameter

This parameter differs from CPU to CPU and defines the cache miss threshold. Although
this parameter is chosen automatically by default, the user has the option to set it
manually.

3.1.6 Size of the Speculation Window

Another indicator of good or bad attack performance is the size of the speculation
window. Our framework provides an automated way to find the optimal size of the
speculation window for each of the conditions.

The size of the speculation window is measured using add instructions, as it is sketched by
Listing 3.3. First, the respective register is zeroed, and then we execute add -instruction
pairs, adding 1 and -1 alternately. We store the result into a register which is finally
used in the memory access. Theoretically, any instruction can be used for measurement,
but since add is available on all platforms tested, it was the most convenient to use.

The measurement instructions must be data-dependent. If there is no data dependency
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1 char access_array(int x)

2 {

3 //...

4 if(/*condition to test*/)

5 {

6 int res2;

7 asm volatile(

8 "mov $0, %%rdx\n"

9 "add $1, %%rdx\n" "add $-1, %%rdx\n"

10 "add $1, %%rdx\n" "add $-1, %%rdx\n"

11 "add $1, %%rdx\n" "add $-1, %%rdx\n"

12 //...

13 "mov %%rdx, %0" : "=r"(res2) : : "rdx");

14 );

15 maccess(mem + data[x+res2] * 4096);

16 }

17 }

Listing 3.3: Example of how the size of the speculation window can be measured on an Intel
CPU

between them, the CPU could reorder the instructions and the memory access is executed
at the very beginning, before the add instructions. When the rollback happens, the
memory access might already be executed, but not all the add instructions, and we
cannot measure the size of the speculation window. In our implementation, the CPU
must execute the add -pairs before the memory access can happen and by the number of
add -pairs, we can measure the size of the speculation window.

We apply a binary-search-like algorithm in order to find the size of the speculation
window for each condition. We define the lower bound for the search as 0 and the upper
bound at half of the size of the reorder buffer. During this process, we test a specific
number of add -pairs. If the average TPR is higher than a pre-defined threshold, we
continue trying an increased number of add -pairs. Otherwise, we try a lower number of
add -pairs until the average TPR is sufficiently large and we found our window size.

3.1.7 Framework Structure

Figure 3.1 shows the four most essential parts of the framework. The outermost script,
start experiment multiple.sh, defines a list of tests to be executed. For each of these
tests, start experiment.sh is invoked, taking the test number as an input parameter.
Actually the test number (test id) is the only thing the user has to give to the
framework but there are three other optional configuration parameters, repetitions,
process repetitions and cache miss. Next, prepare main.py is called which creates
main.c, the main file, taking over the user configurations. Coming back to start experiment.sh,
we distinguish between tests which involve chains and tests which do not. The difference
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start experiment multiple.sh

for each i in test list

call start experiment.sh i

start experiment.sh

test id

repetitions

process repetitions

cache miss

prepare main.py test id repetitions cache miss

log mode

<test id>

<repetitions>

if test id is dependency chain test

for chain length in 1...150

experiment.py chain length test id

make

for m in 1...process repetitions

execute test

else

make

for m in 1...process repetitions

execute test

binary search windowsize()

prepare main.py

test id

repetitions

cache miss

num windowsize instructions

create main.c

experiment.py

chain length

test id

create mode <test id>.h

Statistics

1 2

3

4

Figure 3.1: The automated test framework used in this work. In start experiment multiple.sh
one specifies which scenarios to test. The actual test is executed by start experiment.sh, which
calls prepare main.py to create main.c. In the next step, the test is started. The results are
saved in a log file which statistically analyzed in the last step.

between them is that normal tests are executed process repetitions× repetitions

times and chain tests are executed process repetitions× repetitions times for each
chain length. Chain tests also call experiment.py which takes the length of the depen-
dency chain and test id. In start experiment.sh, we invoke make to build our binary
and execute it. The result of a test run is a log file, which is finally handed over to a
script extracting statistical measurements including TPR and throughput as well as the
speculation window size.

3.2 Test Scenarios

We define a general naming scheme for these tests to avoid confusion. The name of a
test is composed of three parts: <datatype> <mode> <operation> <operand modes

(optional)>. datatype can either be INT, FLOAT or AVX and defines if the test uses
integer, floating point or AVX operation. mode can either be C or S and defines if we
are testing the instruction in a dependency chain (C) or only one single time (S) in the
condition. operation indicates which specific operation was used in the condition. It
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Port contention

Make operation slow

Cache miss

TLB miss

AVX instructions

Instruction dependency chains

Use slow
opera

tion

Figure 3.2: The tests we execute can be classified into either instructions which are slow
by themselves or fast instructions which are made slow. Slow instructions include loads from
addresses which are not in the cache or which TLB entry is missing and AVX instructions.

can either be the name of an instruction (e.g. shl), or the sign of an arithmetic operation
(e.g. ”+”). Some tests chain up n blocks, each block consisting of m instructions. This
is denoted by the instructions which comprise a block, wrapped in round brackets. For
example, (not-not) means one block consists of two subsequent not instructions. In
case blocks are used, n refers to the number of blocks, not the number of instructions.
The last part, operand modes, is optional and only present for tests involving memory
interaction (loads and stores). operand modes consists of three letters, d o1 o2, telling
what the destination of the operation is (d) and where the operands come from (o1 and
o2). For example, rrm means that the result of the operation is stored into a register, the
first operand is loaded from a register and the second operand is loaded from memory.

For each processor, we create test scenarios which can be divided into different categories:

1. Basic: The basic condition, if(x < len), is used as a reference value in all our
tests. Its abbreviation is simply BASIC.

2. Single floating point operations: This category comprises all test scenarios
using exactly one floating point operation in the condition, for example if((x +

(f y/f z)) < len). The name prefix is FLOAT S.

3. Integer instruction chains: This category comprises all test scenarios using
integer dependency chains. The name prefix is INT C. We test all values for n
between 1 and 150.

4. Floating point instruction chains: This category comprises all test scenarios
using floating point dependency chains. The name prefix is FLOAT C. Just like in
integer instruction chains, we test all values for n from 1 to 150.

5. Memory interaction: All the experiments described in the categories before
solely operate on registers, but in this category, tests involve loads and stores
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from and to memory. These experiments are organized in chain tests. The name
postfixes of those are rrm, mmr or mmi. rrm means that the chain instruction writes
to a register and reads from a register and memory. mmr means that the chain
instruction writes to memory and reads from a register and memory. mmi means
that the chain instruction writes to memory and reads from a register and memory.

6. Missing TLB entry: The Translation Lookaside Buffer (TLB) caches page
table entries. Whenever a DRAM access happens, the TLB is searched for the
respective page table entry. If the entry is present, the physical address can directly
be retrieved from it. If the entry is missing, a page table walk happens, which is
quite costly. Pointer chasing means that an application dereferences a pointer to
a pointer to a pointer and so on [87]. We assume that the attack success rate can
be increased by chasing pointers which do not have a present TLB entry. These
tests have the postfix TLBFLUSH.

7. Missing cache entry: Similar to missing TLB entries, missing cache entries
also introduce latency. These tests have the postfix FLUSH.

8. AVX spin up: SIMD (single instruction multiple data) instructions perform an
instruction on multiple data values in parallel and are offered by various modern
CPUs. Intel and AMD provide AVX (Advanced Vector Extensions) instructions
as one implementation of SIMD. AVX insructions are executed by a saparate unit
and for power saving purposes, parts of this unit are powered down when it is
not used [59, 19]. We assume that the attack success rate can be increased if the
condition uses AVX instructions in a powered down AVX unit. We execute tests
on Intel and AMD CPUs. The name prefix is AVX.

9. Port contention: Since for now, port contention attacks were only proven fully
working on Intel CPUs and AMD CPUs [4, 63]. Theoretically, all SMT CPUs are
vulnerable but there is no public proof-of-concept for IBM Power9. We execute
our tests only on Intel CPUs and leave the test on AMD CPUs and IBM Power9 as
future work. The general idea is that if an instruction is executed on a contended
port, the overall latency of the instruction is increased, which increases the attack
success rate.



Chapter 4

Real-world Analysis Results

In this chapter, we present the results of the analysis which we conduct according to
Chapter 3. As already mentioned, tests are executed on four different processors, Intel,
AMD, ARM, and IBM Power. In total, around 84 test scenarios are constructed for
the Intel and AMD CPUs and around 64 for IBM Power and ARM. The reason for the
difference is that AMD and Intel are CISC architectures whereas IBM Power and ARM
are RISC and therefore do not have such a rich instruction set.

The following sections discuss the results of our analysis in detail in terms of TPR and
throughput as well as the size of the speculation window. At the end of this chapter, we
compare the four different platforms based on their test results.

4.1 Intel

In this section, we present our analysis results for the Intel i7-6700K (Skylake). We work
on an isolated CPU core and pin the execution of our test processes to this core.

4.1.1 Preliminary Study

In order to find out an appropriate number of repetitions (values for repetitions and
process repetitions) for our experiments, we conduct a preliminary study.

Figure 4.1 shows the average TPR for process repetitions = 20 achieved for a specific
number of repetitions. As we can see, the average TPR stabilizes at around 200000
repetitions. Therefore, we set process repetitions = 20 and repetitions = 200000
for all the tests executed on the Intel CPUs.

38
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Figure 4.1: Average TPR achieved on Intel for a specific repetitions for
process repetitions = 10. Convergence was achieved at around repetitions = 200000.

4.1.2 Results

Basic As shown in Table 4.1, the basic condition achieves a TPR of 25%. The through-
put of about 567000 bytes per second is also quite high, and the speculation window is
large at about 146 instructions.

Single floating point operations We construct 13 different scenarios for testing
single floating point operations in the condition. As shown by Table 4.1, single floating
point operations improve the TPR compared to BASIC , and the throughput is not sig-
nificantly lower, in some cases even higher. Also, the window size is equally large. Tests
combining two different floating point operations in the condition partially give worse
results. The reason for that lies in the structure of the execution units (Figure 2.1). For
example, consider the condition of FLOAT S (+,-), which is
if ((x < len) & ((ftest1 + ftest2) >= 0.0f) & ((ftest3 - ftest4) >= 0.0f)).
Port 0 is occupied by the floating point addition and port 1 by the floating point subtrac-
tion because there are no other execution ports for floating point operations. The logical
ANDs can be sent to port 5 and port 6. Now we still need three ports for comparison,
and one port to execute the branch, but we do not have them. The pipeline stalls and
speculative execution is aborted very early.
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Integer instruction dependency chains We construct 24 different scenarios testing
integer dependency chains. The results are listed in Table 4.2. INT C imul, a multiplica-
tion chain, seems to work best with a maximum average TPR of 96% at a chain length
of 25, which is also rather short. The throughput is high, and the window size of 150
instructions is large. The INT C imul (imm.) test uses multiplications with immediate
values. As we can see, the TPR is also higher in this case compared to other imme-
diate tests, like INT C add(imm.). This might be because there is only one execution
port handling multiplications, as shown in Figure 2.1. If the instruction stream, i.e., the
multiplication instructions, reaches the scheduler, the instructions can only be scheduled
to one single port. Therefore, the evaluation of the condition lasts much longer, giving
the CPU more time to speculate. Additionally, Figure 4.2 shows that INT C imul can
achieve a higher TPR if the chain length is larger than 60. The improvement is about
15%.

Other tests involving immediates, like INT C sub(imm.), INT C and(imm.),
INT C (xor,xor)(imm.), or INT C or(imm.) do in most cases not perform as good as
chains involving two register operands. A possible explanation is that the CPU has one
less dependency check to make because one of the operands is a constant and therefore
they execute faster. Although Fog [21] proposed that the latency of addition, subtraction,
and logical ANDs does not differ between situations where the second operand is a
register and situations where the second operand is an immediate, we can clearly see
that there must be a difference which is why we get varying values for the TPR.

As shown by the test results of tests INT C (add-not-not) and INT C (add-imul),
mixing operations does not significantly increase the TPR. However, we can see in Figure
4.2 that both tests show a quite stable TPR for increasing numbers of the chain length
which is above 70%. In both cases, the speculation window size is smaller than in other
tests.

As shown by Figure 4.2, some tests show that the TPR drops for a chain length which
is larger than 100. This happens in tests like INT C add or INT C or , and we explain
this by the limited size of the reorder buffer. If it is too full by the dependency chain’s
instructions, it redues the remaining window size for the attacker too much. Exceptions
are INT C crc32, INT C popcnt and INT C bsf.

Floating point instruction dependency chains We test multiplication, division,
addition, and subtraction of floating point operations in chains. AVX C mulss gave the
highest score at the shortest dependency chain length. The TPR graphs of these tests
show that there are three phases. In the first phase, the TPR is low, before reaching
a peak in the second phase and dropping again in the third phase. All four tests show
this behavior, even though in AVX C divss it is less visible. Also the size of the specu-
lation window is quite high in all those tests. However, this comes at the cost of lower
throughput, as shown in Table 4.1.
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Memory interaction We build 18 scenarios testing dependency chains with writes
to memory or loads from memory. In Table 4.2 we list all of the tests.

Tests where we only load from memory (rrm tests) show a high slope of the TPR in
the diagram at the beginning for chain lengths below 50. Then, a peak can be seen
before the TPR drops slightly again. The reason for this might be that there are not
enough loads to increase the evaluation time of the condition for low chain lengths and,
therefore, the TPR is low in the beginning. However, after the peak there might be
too many loads which can be handled by the CPU and the TPR drops again slightly.
FLOAT C mulss rrm has a similar graph as FLOAT C mulss, however, the peak is more
extreme. The speculation window sizes are large (around 150 instructions) in these tests,
and also the maximum reached TPR is high (around 76%). The throughput is lower
than for normal integer dependency chain tests because loads from memory or the cache
are significantly slower than loads from registers.

Tests where we also store to memory (mmr and mm tests) show a strict decline of the TPR
in some test cases, for example, INT sub mmr and INT C xor mmr. We can explain this
by the limited size of the store buffer. On Skylake, the store buffer has 56 entries [52].
Once the store buffer is full, the CPU has to wait for free slots in the buffer before it
can continue issuing stores. The TPR curve starts to decline strictly at a chain length of
about 60 and reaches zero at about 100. The average TPR for such tests is around 70%,
and the throughput is also rather low due to the loads and stores from and to memory.

Tests where we do loads and stores but do not involve registers (mmi tests) show a rather
constant TPR curve. The average TPR is rather low in these tests (around 40%), except
in the INT C or mmi test where it reaches 77%. The values throughput and speculation
window size are similar to other tests.

Missing TLB entry PTR CHASING1 TLBFLUSH and PTR CHASING2 TLBFLUSH achieve
the highest TPR among all tests which do not involve dependency chains. However,
the throughput of both is low. We used the invlpg instruction to flush the TLB. This
instruction is a privileged instruction which means we need a kernel module in order to
execute it. The communication with this kernel module takes a very long time. The
values we provide for the throughput do not include the time it takes to call the kernel
module. Of course, an attacker can also flush the TLB without a kernel module, but this
requires knowledge about the indexing function of the TLB on the respective platform.
We leave this open for future work. Additionally, the sizes of the speculation windows
are only 72 and 80 in these scenarios.

Missing cache entry PTR CHASING1 FLUSH shows that a high TPR of 94% at a chain
length of 94. Additionally, we see that the graph of the TPR increases with the length
of the chain. The average throughput which is at about 335313 byte per second which
is about 20000 byte per second lower than throughput other chain tests give.
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AVX spin up We test 8 instructions involving AVX operations. These instructions
operate on integer vectors. Table 4.1 shows that the TPR is at around 45% and the
throughput is at around 500000 bytes per second. The window size is between 138 and
150.

Port contention In this experiment, we show whether port contention can be used
to extend the size of the speculation window. In the following, we first sketch the main
idea and then present a short practical evaluation.

We assume that if an instruction is executed on a contended port, the overall latency
of the instruction is increased. We want to construct a scenario involving two hard-
ware threads, HT1 and HT2, running on the same physical core. HT1 is executing
the access array function as sketched in Listing 3.2, using an integer instruction de-
pendency chain of instruction i. In our proof of concept implementation, HT1 is also
establishing the cache covert channel to leak data. The goal of HT2 is to cause con-
tention on port 1. To do that, HT2 issues m instructions i to port 1. Note that the
choice of m is extremely important since the size of the reorder buffer and scheduler is
limited. On Skylake, the reorder buffer has 224 entries; the scheduler has 97 entries [52].
If we choose m too large, the scheduler and reorder buffer become full and HT1 cannot
execute anything until HT2’s instructions are worked through. If m is too small, there
is no contention.

Synchronization between HT1 and HT2 is essential for our proof of concept implemen-
tation, as already argued by Bhattacharyya et al. [11]. We want HT1, and HT2 start
at two points in time which are closest as possible. Ideally, HT2 starts sending the in-
structions to the scheduler first and then HT1 starts to evaluate the condition, for which
it needs to execute instructions as well. We make use of shared variables and a plain
busy wait mechanism in order to steer both processes to stick to our proposed timing
schedule.

For n, the instruction chain length of HT1, we test three different values, 16, 32 and
64. For m, the number of instructions of HT2, we test five different values, 2, 4, 8, 16
and 32. This yields 15 different test scenarios. We want to compare these results to test
scenarios without contention. In total, there are three non-contention scenarios, one for
each n. In order to make sure that we genuinely keep execution ports free in these tests,
we let HT2 execute nop instructions.

Since the port contention scenario serves only as a very basic proof of concept, we test
it on a limited number of instructions and leave a detailed analysis for future work.
Considering the test cases for integer instruction dependency chains as listed in Table
4.2, we can group the instructions used there into four groups by the execution ports
they use [21]:

• Port 1: bsf, crc32, popcnt, imul

• Ports 0, 1, 5, 6: inc, dec, neg, xor, not, and, or, sub, add
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• Ports 1, 5: andn

• Ports 0, 6: ror, shr

We will select popcnt, inc, andn and shr from this list for our experiments. We assume
that instructions scheduled to the same ports give the same results, for example, popcnt
can be exchanged by bsf , and we will still get the same results.

The results of our tests are summarized in Table 4.3. In the popcnt scenario for n = 16,
we see clearly that the TPR is higher in the contention tests than in the tests without
contention. For n = 32 we do not see a big difference, except for the test where m = 16.
The TPR is even lower in the contention scenario for m = 32. This might already be
due to too many instructions in the reorder buffer. The window size is between 70 and
90 instructions for all the tests. The contended tests do not show a higher window size.

In the inc scenario, we do not see an improvement. The reason for this might be that
the inc instruction can be scheduled to one out of four ports. This means that the
load is distributed to four ports and is therefore only one-fourth of the load we have on
the execution unit, for example, in the popcnt test. Therefore, we also experimented
with 64 instructions and could see a slight improvement. 64 instructions would mean 16
instructions per port. The window size for all the tests is equal.

In the ror scenario for n = 16 we can see a a difference of 2% in the TPR for all
contention tests except m = 32. In this situation, we have a TPR which is equal to the
no contention test. For n = 32 we only see a slight improvement (1%) in the m = 32
test. In the tests without contention, we reach a window size of 60 and 64 instructions.
The tests with contention show a window size between 74 and 90.

The andn scenario shows a higher TPR for contention tests with n = 16. In the test
without contention, we get a TPR of 16%, in the test with contention we get values
between 18% and 19%. The tests where n = 32 do not show a higher TPR. The window
size is almost the same for all scenarios.

In summary, we can see that although the exact correlation between m and n is not
entirely clear, we see that port contention has a positive influence on the performance
of Spectre attacks.
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Table 4.1: Test for single operations (Intel Skylake). The table gives the average TPR and
throughput including standard deviation (SD) and standard error of the mean (SEM) as well as
the window size (number of instructions).

Mode TPR
TPR
SD

TPR
SEM

Throughput
Throughput

SD
Throughput

SEM
Window

size

BASIC 25% 0.39 0.12 566817.08 66501.02 9312.01 146

PTR CHASING0 FLUSH 43% 0.16 0.05 462566.71 69558.43 15553.74 148

PTR CHASING1 TLBFLUSH 89% 0.29 0.06 20409.48 19.57 4.38 72

PTR CHASING2 TLBFLUSH 91% 0.20 0.04 11058.27 31.98 7.15 80

FLOAT S * 48% 0.48 0.15 558550.20 61368.02 6167.72 80

FLOAT S + 66% 0.42 0.13 561788.11 63446.96 6376.66 150

FLOAT S - 56% 0.45 0.14 565366.79 63736.95 6405.80 150

FLOAT S / 34v 0.44 0.14 561635.76 63950.30 6427.25 148

FLOAT S (+,+) 43% 0.43 0.14 562207.94 65262.09 6559.09 126

FLOAT S (+,-) 32% 0.42 0.13 562853.40 63169.88 6348.81 140

FLOAT S (+,*) 43% 0.42 0.13 566365.20 62179.16 6249.24 144

FLOAT S (+,/) 10% 0.30 0.09 565696.95 61380.97 6169.02 146

FLOAT S (-,-) 19% 0.37 0.12 572774.10 58892.21 5918.89 126

FLOAT S (-,*) 34% 0.42 0.13 568111.45 59312.84 5961.16 50

FLOAT S (-,/) 21% 0.34 0.11 549572.17 65907.42 6623.94 142

FLOAT S (*,*) 32% 0.42 0.13 559229.32 65085.35 6541.32 140

FLOAT S (*,/) 43% 0.43 0.14 557378.42 62918.64 6323.56 120

FLOAT S (/,/) 32% 0.42 0.13 557170.10 63708.56 6402.95 60

AVX S vaddsd 43% 0.43 0.14 474254.02 188741.95 59685.45 148

AVX S vmulsd 38% 0.40 0.13 451306.66 172940.41 54688.56 150

AVX S vsubsd 27% 0.37 0.12 506704.32 148574.47 46983.37 130

AVX S vsqrtsd 46% 0.39 0.12 502394.87 122510.76 38741.30 146

AVX S vandpd 55% 0.45 0.14 575855.29 62807.02 19861.32 138

AVX S vorpd 42% 0.43 0.14 561279.12 74951.32 23701.69 134

AVX S vandnpd 55% 0.36 0.11 546638.92 156192.27 49392.33 150

AVX S vxorpd 44% 0.44 0.14 617937.62 79591.46 25169.03 150
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Table 4.2: Test for instruction chains (Intel Skylake). First, the chain length for which the max-
imum TPR was achieved is shown. Second, the chain length for which the maximum throughput
(bytes/second) was achieved is given and third the chain length for the maximum window size
is stated.

Mode n
Max
TPR

n
Max

Throughp.
TPR
SD

TPR
SEM

Through-
put SD

Through-
put SEM

n
Win.
size

INT C imul 25 96% 58 592455.11 0.36 0.01 50384.67 4127.67 95 150

INT C imul (imm.) 128 91% 17 488407.59 0.20 0.01 23596.48 1933.10 53 150

INT C add 76 75% 141 573281.46 0.33 0.01 23148.63 1896.41 103 150

INT C add (imm.) 70 78% 147 573117.60 0.30 0.01 29758.46 2437.91 49 136

INT C inc 130 94% 119 567484.01 0.33 0.01 24078.24 1972.57 84 138

INT C sub 33 76% 134 571968.19 0.33 0.01 23648.45 1937.36 10 128

INT C sub (imm.) 16 47% 77 586112.05 0.27 0.01 21705.06 1778.15 39 150

INT C and 134 92% 120 565631.22 0.32 0.01 22959.34 1880.90 70 150

INT C and (imm.) 134 84% 147 567140.04 0.31 0.01 27290.74 2235.74 38 150

INT C or 53 73% 142 567811.98 0.34 0.01 22878.04 1874.24 75 136

INT C or (imm.) 100 77% 148 580193.59 0.35 0.01 24410.31 1999.77 28 136

INT C (not,not) 37 84% 141 492135.76 0.22 0.01 19018.40 1558.05 71 142

INT C neg 33 77% 119 562087.28 0.33 0.01 22481.73 1841.78 15 136

INT C xor 125 83% 139 574174.97 0.35 0.01 23919.93 1959.60 100 136

INT C (xor,xor) (imm.) 44 80% 141 469067.77 0.22 0.01 18342.14 1502.65 27 138

INT C shr 26 80% 141 572103.19 0.32 0.01 30784.53 2521.97 60 124

INT C ror 140 87% 146 579498.45 0.31 0.01 31625.62 2590.87 31 136

INT C crc32 94 89% 126 457346.55 0.18 0.00 19777.89 1620.27 23 150

INT C andn 33 75% 149 582252.48 0.24 0.01 30752.76 2519.36 85 150

INT C dec 129 83% 149 579665.40 0.33 0.01 24771.71 2029.38 45 136

INT C popcnt 133 94% 13 480389.38 0.21 0.01 22595.83 1851.12 76 152

INT C bsf 128 92% 26 491092.11 0.20 0.01 22363.21 1832.07 47 150

INT C (add,not,not) 53 81% 141 398920.89 0.19 0.01 11595.68 949.96 135 136

INT C (add,imul) 21 85% 18 426806.88 0.18 0.00 26380.97 2161.21 98 128

FLOAT C mulss 59 88% 12 482746.79 0.40 0.01 57855.46 4739.70 45 148

FLOAT C divss 21 80% 20 485786.72 0.21 0.01 95985.78 7863.46 76 152

FLOAT C addss 81 84% 39 507553.82 0.40 0.01 50764.34 4158.78 53 152

FLOAT C subss 61 76% 46 504643.91 0.39 0.01 50216.77 4113.92 41 152

INT C imul rrm 12 76% 10 438914.57 0.35 0.01 25864.65 2118.91 32 138

INT C add rrm 102 75% 60 500962.26 0.26 0.01 20090.10 1645.84 4 132

INT C add mmi 2 39% 5 475310.36 0.25 0.01 58681.76 4807.40 89 150

INT C add mmr 99 74% 6 470694.29 0.13 0.00 63179.54 5175.87 23 150

INT C incl mm 143 54% 3 509505.59 0.31 0.01 56285.45 4611.08 99 150

INT C sub rrm 21 73% 65 513094.35 0.25 0.01 20805.15 1704.42 18 122

INT C sub mmi 97 41% 3 472171.37 0.26 0.01 57782.86 4733.76 150 122

INT C sub mmr 43 77% 11 462597.91 0.32 0.01 62350.39 5107.94 1 154

INT C and rrm 39 72% 72 500553.90 0.26 0.01 19794.81 1621.65 6 122

INT C and mmi 1 42% 11 571601.86 0.29 0.01 75287.33 6167.78 53 138

INT C or rrm 25 79% 61 508055.31 0.26 0.01 18718.57 1533.48 10 122

INT C or mmi 3 77% 3 483637.96 0.13 0.00 65595.73 5373.81 38 150

INT C notl mm 118 43% 0 508232.40 0.30 0.01 81184.63 6650.90 17 136

INT C (neg,neg) mm 81 52% 3 419692.44 0.31 0.01 67705.07 5546.62 51 150

INT C xor rrm 26 74% 50 521710.18 0.26 0.01 22275.81 1824.91 9 128

INT C xor mmi 117 40% 4 448320.30 0.29 0.01 80368.27 6584.03 21 128

INT C xor mmr 6 61% 4 475758.46 0.27 0.01 63981.99 5241.61 35 138

FLOAT C mulss rrm 53 99% 27 447892.26 0.46 0.01 80035.96 6556.80 27 150

INT C PTR CHASING 54 97% 39 592993.24 0.33 0.01 75640.05 6196.67 1 150

INT C PTR CHASING FLUSH 94 94% 1 335313.14 0.15 0.00 63137.94 5172.46 17 153
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Table 4.3: Results of tests investigating the influence of port contention on the size of the spec-
ulation window - HT1 executes n instructions while HT2 executes m instructions simultaneously.

n (HT1) m (HT2) TPR
TPR
SD

TPR
SEM

Throughput
Throughput

SD
Throughput

SEM
Window

size

popcnt (p1)

16 - 40% 0.22 0.00 2612040.19 10206140.66 32297.91 88

16 2 45% 0.19 0.00 2669514.15 9435763.34 29860.01 86

16 4 42% 0.19 0.00 2620854.14 9676752.87 30622.64 70

16 8 43% 0.19 0.00 2613388.39 10163167.58 32161.92 76

16 16 43% 0.20 0.00 2590891.72 10182289.88 32222.44 70

16 32 44% 0.20 0.00 2614379.08 9782716.05 30957.96 70

32 - 26% 0.37 0.01 2614994.38 9339949.45 29556.80 86

32 2 26% 0.37 0.01 2632982.05 9779741.70 30948.55 86

32 4 25% 0.36 0.01 2646342.75 9364532.88 29634.60 82

32 8 26% 0.37 0.01 2634803.11 9452916.32 29914.29 88

32 16 27% 0.37 0.01 2599715.33 9454189.22 29918.32 78

32 32 24% 0.36 0.01 2620613.75 9745971.81 30841.68 82

inc (p0156)

16 - 18% 0.27 0.00 2649690.98 9321546.20 29498.56 88

16 2 17% 0.27 0.00 2636974.33 9687350.41 30656.17 78

16 4 17% 0.27 0.00 2614652.51 9265981.63 29322.73 64

16 8 17% 0.27 0.00 2617030.32 10212847.62 32319.14 86

16 16 18% 0.27 0.00 2597318.27 9444385.87 29887.30 64

16 32 17% 0.27 0.00 2587372.33 9773578.60 30929.05 88

32 - 25% 0.37 0.01 2606933.14 9489377.98 30029.68 86

32 2 25% 0.36 0.01 2606899.16 9891806.05 31303.18 84

32 4 26% 0.37 0.01 2631440.45 9681269.67 30636.93 86

32 8 26% 0.37 0.01 2634803.11 9452916.32 29914.29 88

32 16 26% 0.37 0.01 2620047.29 10513431.22 33270.35 86

32 32 25% 0.36 0.01 2604488.84 9690287.14 30665.47 88

64 - 10% 0.23 0.00 2505700.47 8854601.99 28020.89 84

64 16 11% 0.24 0.00 2507978.51 9132576.09 28900.56 84

64 32 10% 0.24 0.00 2528045.50 8888111.09 28126.93 84

64 64 11% 0.24 0.00 2534645.43 8793627.85 27827.94 84

andn (p15)

16 - 16% 0.26 0.00 2628103.62 9071974.53 28708.78 60

16 2 18% 0.28 0.00 2582244.48 9924381.19 31406.27 90

16 4 18% 0.27 0.00 2591210.61 10156377.98 32140.44 88

16 8 19% 0.26 0.00 2596728.12 11772716.36 37255.43 88

16 16 19% 0.24 0.00 2590237.40 29201737.18 92410.56 88

16 32 17% 0.27 0.00 2587372.33 9773578.60 30929.05 86

32 - 25% 0.30 0.00 2595616.00 11809896.18 37373.09 64

32 2 25% 0.30 0.00 2584380.01 26629904.03 84271.85 82

32 4 25% 0.30 0.00 2580611.86 37644231.44 119127.31 78

32 8 25% 0.30 0.00 2569835.27 37510362.53 118703.68 74

32 16 24% 0.30 0.00 2576506.13 37526335.71 118754.23 84

32 32 25% 0.30 0.00 2585281.99 26563646.29 84062.17 52

ror (p06)

16 - 16% 0.27 0.00 2566553.95 9905336.10 31346.00 76

16 2 18% 0.28 0.00 2616311.39 9756128.96 30873.83 58

16 4 18% 0.28 0.00 2550532.42 9646291.54 30526.24 64

16 8 18% 0.28 0.00 2594033.72 9507941.07 30088.42 90

16 16 17% 0.27 0.00 2599580.17 9966377.90 31539.17 66

16 32 16% 0.26 0.00 2628639.02 10007070.01 31667.94 90

32 - 12% 0.24 0.00 2561524.62 9828842.12 31103.93 90

32 2 12% 0.24 0.00 2589734.29 9161837.29 28993.16 86

32 4 12% 0.24 0.00 2615233.74 9337829.27 29550.09 88

32 8 13% 0.25 0.00 2567987.47 9643125.64 30516.22 78

32 16 12% 0.24 0.00 2574797.88 9802237.89 31019.74 74

32 32 13% 0.24 0.00 2577236.56 9325393.52 29510.74 78
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Figure 4.2: Test results for different test scenarios (Intel Skylake). The x-axis illustrates the
chain length n, the y-axis illustrates the average TPR. The blue graph (�) shows the TPR
achieved for each chain length. The pink graph (�) shows the moving average.
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Figure 4.3: Average TPR achieved on AMD for a specific repetitions for
process repetitions = 50. Convergence was achieved at around repetitions = 200000.

4.2 AMD

In this section, we present our analysis results for the AMD Ryzen Threadripper 1920X.
Since both Intel and AMD CPUs implement the x86 instruction set architecture, we
execute exactly the same tests for AMD.

4.2.1 Preliminary Study

In order to find out an appropriate number of repetitions (values for repetitions and
process repetitions) for our experiments, we conduct a preliminary study.

Figure 4.3 shows the average TPR for process repetitions = 50 achieved for a specific
number of repetitions. As we can see, the average TPR is converging very fast.
Therefore, we set process repetitions = 50 and repetitions = 20000 for all the
tests executed on the AMD CPU.

4.2.2 Results

Basic The performance of the attack in the basic version is not very good. A TPR of
0.03 is achieved on average, as one can see in Table 4.4. The throughput is 173000 bytes
per second, and the speculation window is 98 instructions.
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Integer instruction dependency chains Table 4.5 gives an overview of the tests
which are executed. INT C imul achieves a good maximum TPR (0.46). This is the
highest score which was reached by any integer instruction dependency chain test. The
throughput, 153000 bytes per second, is lower than the one measured in BASIC, which was
173000 bytes per second. The TPR graph in Figure 4.4 shows that the curve stabilizes
around 0.35 TPR. INT C imul(imm.) shows a similar graph. The window size is 132
and 118 instructions.

The test cases in which we test blocks of instructions (INT C (not,not), INT C (xor,xor),
INT C (and,not,not) and INT C (add,imul)) we see that the TPR stabilizes at about
0.35. The throughput of those tests is lower than of the other tests. The window size is
between 112 and 118 for those tests.

INT C bsf shows a very interesting TPR graph. The TPR first stabilizes at 0.1 and
then suddenly rises to 0.3. We cannot see any other abnormalities regarding this mode,
except that the throughput is rather low. The window size is 112 instructions.

All the other test cases follow the same pattern in terms of their TPR graph, as shown
in Figure 4.4. For very low chain lengths (≤10) the TPR is increasing. Then it stabilizes
until a chain length of about 120 before it drops and forms a trough. We can see this
trough in every graph, sometimes clearly visible as in INT C add or INT C dec, sometimes
more flat as in INT C popcnt.

Single floating point operations Table 4.4 shows that single floating point oper-
ations increase the TPR of the attack. Single floating point operations have a higher
throughput than the BASIC test case. This can be explained by the structure of the AMD
Zen Microarchitecture, as shown in 2.2. An AMD CPU has a separated floating point
unit which operates more independent from the integer unit than it is the case in, for
example, Intel CPUs. Therefore, if we do a standard integer test, all the µops are sched-
uled to the integer execution units. If we do floating point tests, part of the execution
load is taken over by the floating point unit, yielding higher overall throughput.

Especially when divisions are involved, the TPR is high. For example, regarding FLOAT S *,
FLOAT S +, FLOAT S - and FLOAT S /, the division reaches a TPR of 0.18 while the others
reach less than 0.12. Surprisingly, the division also has the highest throughput rate.

Floating point instruction dependency chains We test four different floating
point instruction dependency chains. All of them achieve lower TPRs than integer tests
do, except for AVX C divss. The throughput is similar to that of integer dependency
chains; it is about 158000 bytes per second.

The TPR graph in Figure 4.4 shows that AVX C mulss has an overall slightly increasing
TPR and AVX C divss has a jump in the TPR at a chain length of 50. AVX C addss and
AVX C subss do not show a good TPR at all. It stabilizes at around 0.1.
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Memory interaction Tests where we only load from memory (rrm tests) all have a
maximum average TPR of about 0.15-0.30 and a maximum throughput of 165000 bytes
per second. We would assume that loads from memory have a negative impact on the
maximum throughput of the test case. In fact, the average throughput is the same as for
integer dependency chains, but the standard deviation of the throughput shows higher
values than for integer dependency chains. We assume that this might have something
to do with the cache. Sometimes the value is loaded from the cache which gives similar
throughput rates than for the standard integer dependency chains but sometimes the
value is loaded from DRAM which explains the low throughput and the high standard
deviation. The TPR graphs in Figure 4.4 all show similar behavior. For example, the
graph for INT C xor rrm shows a stabilized TPR for low and high chain lengths but a
trough for middle chain lengths between 75 and 100.

Tests where we also store to memory (mmr and mm tests) show an almost linear TPR
graph which slightly increases. The TPR is at 38% at a maximum, and we see the same
standard deviation of the throughput as for rrm tests.

Tests where we do loads and stores but do not involve registers (mmi tests) have a lower
maximum TPR than all the other memory interaction tests, except for INT C or mmi,
which has a maximum TPR of 40%. The TPR graphs look similar to those we saw for
the mmr tests.

Missing TLB entry The TLB flush tests achieve the highest size of the speculation
window, 132 instructions and a high TPR of 35% and 41%. The throughput of
PTR CHASING1 TLBFLUSH and PTR CHASING2 TLBFLUSH is lower than for other tests, which
is 75000 and 56000 bytes per second. This is significantly lower than in other tests. For
example, BASIC a chieved a twice a throughput which was twice as high. We achieve a
window size of 130 to 132 instructions which is the highest among all single tests.

Missing cache entry PTR CHASING FLUSH also shows an almost linear TPR graph,
as shown in Figure 4.4. The maximum TPR is at 49% which is the highest among all
chain tests. However, the throughput is similar to that of other tests. It is slightly lower
which is due to the use of the clflush instruction. The achieved window size is 132.

AVX spin up On the AMD CPU, we test 8 different AVX instructions operating on
integer vectors. They do not give better values for the TPR than other single tests, but
the throughput is lower than in, for example, single floating point tests. However, the
window sizes are quite high for these tests (130 instructions).
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Table 4.4: Test for single operations (AMD Ryzen Threadripper 1920X). The table gives the
average TPR and throughput including standard deviation (SD) and standard error of the mean
(SEM) as well as the window size (number of instructions).

Mode TPR
TPR
SD

TPR
SEM

Throughput
Throughput

SD
Throughput

SEM
Window

size

BASIC 3% 0.10 0.01 172988.61 12005.93 1732.91 98

PTR CHASING0 FLUSH 5% 0.11 0.02 174272.28 14033.75 2004.82 0

PTR CHASING1 TLBFLUSH 35% 0.22 0.03 75333.32 12851.10 1835.87 132

PTR CHASING2 TLBFLUSH 41% 0.19 0.03 56538.53 7813.07 1116.15 130

FLOAT S * 12% 0.21 0.03 180544.97 14687.30 2098.19 66

FLOAT S + 7% 0.16 0.02 175996.25 11599.76 1657.11 60

FLOAT S - 9% 0.18 0.03 177105.31 13447.70 1921.10 102

FLOAT S / 18% 0.23 0.03 183058.22 15529.42 2218.49 128

FLOAT S (+,+) 10% 0.19 0.03 179431.20 13753.63 1964.80 118

FLOAT S (+,-) 16% 0.23 0.03 180483.89 14743.56 2106.22 128

FLOAT S (+,*) 10% 0.19 0.03 178698.97 12906.38 1843.77 124

FLOAT S (+,/) 14% 0.21 0.03 181162.63 14968.18 2138.31 128

FLOAT S (-,-) 10% 0.19 0.03 178939.40 13540.22 1934.32 76

FLOAT S (-,*) 11% 0.20 0.03 179564.89 13832.03 1976.00 58

FLOAT S (-,/) 15% 0.21 0.03 181324.70 14141.05 2020.15 80

FLOAT S (*,*) 8% 0.18 0.03 176640.95 12032.80 1718.97 122

FLOAT S (*,/) 12% 0.21 0.03 179652.10 13774.80 1967.83 128

FLOAT S (/,/) 15% 0.22 0.03 181665.72 14838.46 2119.78 124

AVX S vaddsd 9% 0.19 0.06 178947.11 16480.27 5211.52 12

AVX S vmulsd 7% 0.15 0.05 177293.75 15084.33 4770.08 118

AVX S vsubsd 7% 0.16 0.05 181309.08 15897.23 5027.15 124

AVX S vsqrtsd 7% 0.15 0.05 169555.62 6206.19 1962.57 80

AVX S vandpd 1% 0.01 0.00 175457.02 14816.48 4685.38 130

AVX S vorpd 3% 0.08 0.02 175523.91 13426.42 4245.81 22

AVX S vandnpd 26% 0.17 0.05 171869.34 11338.11 3585.43 122

AVX S vxorpd 12% 0.19 0.06 182320.47 15499.92 4901.51 54



54 CHAPTER 4. REAL-WORLD ANALYSIS RESULTS

Table 4.5: Test for instruction chains (AMD Ryzen Threadripper 1920X). First, the chain
length for which the maximum TPR was achieved is shown. Second, the chain length for which
the maximum throughput (bytes/second) was achieved is given and third the chain length for
the maximum window size is stated.

Mode n
Max
TPR

n
Max

Throughp.
TPR
SD

TPR
SEM

Through-
put SD

Throug-
put SEM

n
Win.
size

INT C imul 113 46% 144 152598.46 0.09 0.00 17577.17 5.59 116 132

INT C

imul (imm.)
4 36% 102 135876.58 0.07 0.00 14963.31 5.48 22 118

INT C add 81 35% 136 166170.42 0.11 0.00 13634.57 5.00 64 106

INT C add (imm.) 90 32% 134 158029.53 0.09 0.00 14204.34 5.20 19 118

INT C inc 14 32% 146 158544.12 0.10 0.00 13822.31 5.06 119 130

INT C sub 54 44% 68 160655.67 0.10 0.00 13997.43 5.13 35 118

INT C sub (imm.) 138 37% 138 160668.61 0.09 0.00 14189.19 5.20 32 106

INT C and 40 31% 132 158327.47 0.10 0.00 14035.22 5.14 12 106

INT C and (imm.) 33 32% 142 157860.39 0.08 0.00 14271.66 5.23 115 118

INT C or 61 31% 137 158594.04 0.10 0.00 14040.47 5.14 96 118

INT C or (imm.) 99 31% 127 158867.48 0.09 0.00 14036.17 5.14 57 108

INT C (not,not) 67 33% 139 149080.32 0.06 0.00 14760.57 5.41 29 112

INT C (xor,xor) 42 13% 133 158382.01 0.13 0.00 14463.23 5.30 105 110

INT C (xor,

xor) (imm.)
27 42% 139 147898.56 0.06 0.00 14766.68 5.41 106 50

INT C shr 80 31% 134 158115.05 0.08 0.00 14245.40 5.22 102 130

INT C ror 83 31% 135 157647.27 0.08 0.00 14249.51 5.22 51 118

INT C andn 35 32% 137 158274.64 0.07 0.00 14511.62 5.32 73 130

INT C crc32 114 33% 6 146314.79 0.07 0.00 15453.64 5.66 131 130

INT C dec 55 32% 137 158246.01 0.09 0.00 14007.44 5.13 46 130

INT C popcnt 98 39% 136 157215.29 0.07 0.00 14502.27 5.31 93 118

INT C bsf 138 33% 4 23558.39 0.16 0.00 3232.17 1.18 134 112

INT C

(add,not,not)
128 34% 3 139459.66 0.05 0.00 15331.45 5.62 84 118

INT C (add,imul) 42 39% 42 143466.60 0.04 0.00 15695.86 5.75 61 118

FLOAT C mulss 109 27% 59 159997.57 0.13 0.00 21197.22 7.77 82 130

FLOAT C divss 146 38% 36 158440.49 0.14 0.00 26331.73 9.65 38 130

FLOAT C addss 40 11% 87 162667.60 0.11 0.00 18164.50 6.65 86 130

FLOAT C subss 93 11% 93 162800.62 0.11 0.00 18290.62 6.70 55 118

INT C add rrm 68 38% 118 165255.32 0.11 0.00 19126.57 7.01 1 106

INT C add mmi 93 13% 7 153255.37 0.13 0.00 21270.38 7.79 60 130

INT C add mmr 120 38% 2 155483.52 0.06 0.00 22194.03 8.13 18 132

INT C imul rrm 121 15% 3 152754.10 0.15 0.00 16341.83 5.99 89 130

INT C incl mm 28 30% 2 159139.91 0.15 0.00 22107.44 8.10 8 106

INT C sub rrm 34 36% 112 164216.01 0.11 0.00 17772.55 6.51 67 46

INT C sub mmi 115 14% 0 153443.17 0.13 0.00 19817.64 7.26 141 130

INT C sub mmr 127 38% 0 151735.21 0.05 0.00 21269.80 7.79 1 132

INT C and rrm 32 30% 119 164437.68 0.11 0.00 18943.96 6.94 30 106

INT C and mmi 100 12% 6 169799.54 0.13 0.00 24189.82 8.86 73 114

INT C and mmr 73 2% 2 156685.86 0.04 0.00 22712.19 8.32 1 0

INT C or rrm 31 36% 106 165065.77 0.10 0.00 19262.31 7.06 3 106

INT C or mmi 116 40% 0 155334.00 0.05 0.00 22290.79 8.17 21 130

INT C notl mm 93 16% 0 157652.15 0.15 0.00 26431.08 9.68 4 130

INT C (neg,

neg) mm
139 18% 1 148900.14 0.16 0.00 24536.14 8.99 106 112

INT C xor rrm 4 31% 126 164605.03 0.11 0.00 18859.85 6.91 9 112

INT C xor mmr 149 38% 0 155964.54 0.05 0.00 22132.53 8.11 92 132

INT C xor mmi 129 14% 4 153387.14 0.15 0.00 25000.47 9.16 27 106

AVX C mulss rrm 108 25% 48 158264.87 0.12 0.00 21365.20 7.83 22 130

INT C PTR CHASING 149 36% 4 169053.14 0.16 0.00 17839.72 7.81 99 130

INT C PTR

CHASING FLUSH
143 49% 0 134977.01 0.03 0.00 22911.95 10.03 5 132
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Figure 4.4: Test results for different test scenarios (AMD Ryzen Threadripper 1920X). The
x-axis illustrates the chain length n, the y-axis illustrates the average TPR. The blue graph (�)
shows the TPR achieved for each chain length. The pink graph (�) shows the moving average.
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Figure 4.5: Average TPR achieved on ARM Cortex-A57 for a specific repetitions for
process repetitions = 10. Convergence was achieved at around repetitions = 1 50000.

4.3 ARM

In the following, we present the test results for the ARM Cortex-A57 CPU.

4.3.1 Preliminary Study

In order to find out an appropriate number of repetitions (values for repetitions and
process repetitions) for our experiments, we conduct a preliminary study.

Figure 4.5 shows the average TPR for process repetitions = 20 achieved for a specific
number of repetitions. As we can see, if we execute the same test cases as we did in
the Intel tests, the results are inconclusive since the variation is very small. Therefore,
we execute two more tests (PTR CHASING2 a nd PTR CHASING1 ) and see that we can set
repetitions = 75000 for all the tests executed on the ARM CPUs.

4.3.2 Results

Basic As shown in Table 4.6, BASIC leaks such a low number of TP values that the
TPR becomes zero. As the result, also the window size becomes zero.
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Single floating point operations We observed that using single floating point op-
erations in the condition do not increase the TPR of the attack and just as the BASIC

test showed, it is effectively zero.

Integer instruction dependency chains The ARM instruction set is RISC and
is, therefore, less rich than the x86 instruction set. In particular, instructions like inc
or dec are missing. Our test suite comprises 17 test scenarios for integer instruction
chains. Table 4.7 gives an overview of the results. We observe that all the tests achieve a
reasonable TPR and the size of the speculation window is between 42 and 58 instructions.

INT C mul gives a TPR rate of 100%. Also, INT C (add,mul), which also involves the
mul instruction, gives a score of 100%. Both achieve a maximum speculation window
size of 24. As it is the case in the Intel Skylake CPU, there is only one execution port
for multiplication, which means that a chain of multiplications needs more execution
time. The TPR graph as shown in Figure 4.6 shows that the performance of the attack
increases with the chain length before reaching a peak at about 50.

The other test cases show similar results compared to INT C mul. In the beginning, the
TPR is low and then increases steadily before reaching a constant TPR. This can be seen
for example in INT C add, where the TPR stabilizes around 30% or in INT C ror. What
all the test cases have in common is that they all stabilize around 30% and never reach
a higher TPR. The window sizes are around 50 instructions. The maximum throughput
which is reached by all chain tests is around 100000 bytes per second.

Floating point instruction dependency chains FLOAT C fmul, FLOAT C fdiv , and
FLOAT C fabs test the usage of floating point instruction chains. fabs computes the ab-
solute value of a floating point value in a register. It is apparent from Table 4.7 that
these tests achieve a very high TPR, namely 100%. They maximize the speculation
window of 58 instructions. The maximal throughput is similar to those of integer in-
struction dependency chains. The graphs in Figure 4.6 show a similar behavior to that
of INT C mul. For a chain length smaller than 50, we see a steep descent in the TPR.
Then it stabilizes at a TPR of about 95%-100%.

Memory interaction As already mentioned, the ARM Cortex-A57 is a RISC pro-
cessor. All instructions have the same size: 4 bytes. The ARM instruction set does
not provide instructions to add and store at the same time, as it is done by the x86
instruction set. However, we want to test to which extend memory stores and memory
loads have an influence on the size of the speculation window.

Tests where we only load from memory (rrm tests) either work very good or very bad.
INT C add rrm, INT C and rrm, INT C or rrm and INT C eor rrm show a slight peak in
the beginning for chain lengths smaller than 25 but completely stagnate afterwards. The
speculation window size is at about 52 instructions. By contrast, INT C sub rrm and
INT C mul rrm show a constant TPR rate of above 0.9. The speculation window size is



60 CHAPTER 4. REAL-WORLD ANALYSIS RESULTS

at about 58 instructions. We also see in Table 4.7 that the throughput is lower than it
is in tests without memory interaction.

Tests where we also store to memory (mmr tests) also show an entirely different behavior.
Either the rate is between 30% and 50%, as we can see in INT C add mmr or the rate is
almost constant zero, for example in INT C sub mmr or the rate is almost constant one,
for example in INT C neg mmr. In most cases, the average throughput is higher than for
rrm tests.

Tests where we do loads and stores but do not involve registers (mmi tests) show a low
value for the TPR in the beginning for short chain lengths but a higher TPR in the end.

Missing TLB entry PTR CHASING1 TLBFLUSH and PTR CHASING2 TLBFLUSH achieve
the highest TPR among all tests which do not involve dependency chains. However, the
throughput is again lower than in other test cases. The speculation window size is 58
instructions.

Missing cache entry PTR CHASING FLUSH shows a very high TPR of 100%. The
speculation window size is at 58 instructions, and also the throughput about half of the
throughput achieved by other chain tests (56000 bytes per second).
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Table 4.6: Test for single operations (ARM Cortex-A57). The table gives the average TPR and
throughput including standard deviation (SD) and standard error of the mean (SEM) as well as
the window size (number of instructions).

Mode TPR
TPR
SD

TPR
SEM

Throughput
Throughput

SD
Throughput

SEM
Window

size

BASIC 0% 0.00 0.00 104278.89 5672.10 1793.67 0

PTR CHASING0 FLUSH 60% 0.42 0.13 96801.84 3274.93 1035.62 24

PTR CHASING1 TLBFLUSH 98% 0.03 0.01 36883.97 1804.53 570.64 58

PTR CHASING2 TLBFLUSH 97% 0.02 0.01 36635.32 2065.55 653.18 58

FLOAT S * 0% 0.00 0.00 101831.66 4507.20 1425.30 0

FLOAT S + 0% 0.00 0.00 102733.87 5532.64 1749.57 0

FLOAT S - 0% 0.00 0.00 105521.83 3413.66 1079.50 0

FLOAT S / 0% 0.00 0.00 103150.17 5259.97 1663.35 0

FLOAT S (+,+) 0% 0.00 0.00 9919.59 40085.35 12676.10 0

FLOAT S (+,-) 0% 0.00 0.00 102323.40 5066.64 1602.21 0

FLOAT S (+,*) 0% 0.01 0.00 102797.45 3995.64 1263.53 0

FLOAT S (+,/) 0% 0.00 0.00 102679.81 4502.69 1423.88 0

FLOAT S (-,-) 0% 0.00 0.00 103848.87 3824.94 1209.55 0

FLOAT S (-,*) 0% 0.01 0.00 102898.74 4732.54 1496.56 0

FLOAT S (-,/) 0% 0.01 0.00 101571.75 6008.49 1900.05 0

FLOAT S (*,*) 0% 0.00 0.00 102956.93 4756.55 1504.15 0

FLOAT S (*,/) 0% 0.00 0.00 103238.33 4814.90 1522.60 0

FLOAT S (/,/) 0% 0.00 0.00 103284.31 5295.83 1674.69 0
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Table 4.7: Test for instruction chains (ARM Cortex-A57). First, the chain length for which
the maximum TPR was achieved is shown. Second, the chain length for which the maximum
throughput (bytes/second) was achieved is given and third the chain length for the maximum
window size is stated.

Mode n
Max
TPR

n
Max

throughput
TPR
SD

TPR
SEM

Throughput
SD

Throughput
SEM

n
Window

size

INT C mul 81 100% 17 105050.81 0.44 0.01 10898.97 2.10 22 58

INT C add 116 77% 39 104745.76 0.35 0.01 7400.85 1.28 75 58

INT C add (imm.) 146 77% 45 105898.54 0.37 0.01 7615.88 1.47 124 52

INT C sub 84 60% 58 105092.13 0.36 0.01 7404.48 1.43 61 58

INT C sub (imm.) 77 66% 29 105060.74 0.36 0.01 6624.33 1.57 71 58

INT C and 108 57% 5 105094.45 0.34 0.01 7249.98 1.25 77 58

INT C and (imm.) 93 58% 65 104525.08 0.36 0.01 7467.48 1.44 119 42

INT C orr 117 67% 24 105780.46 0.35 0.01 6585.19 1.56 101 50

INT C (mvn,mvn) 62 76% 7 104661.19 0.41 0.01 8502.29 1.64 150 58

INT C neg 101 57% 35 104272.43 0.35 0.01 7280.26 1.41 107 44

INT C eor 108 66% 3 106213.87 0.36 0.01 7419.24 1.43 134 58

INT C (eor,eor) (imm.) 78 67% 30 103930.58 0.40 0.01 8758.05 1.69 82 58

INT C lsl 88 56% 33 104316.08 0.35 0.01 6777.26 1.61 117 50

INT C ror 130 66% 4 105010.40 0.36 0.01 7427.46 1.43 119 58

INT C (eon,eon) 140 78% 0 104395.98 0.41 0.01 8847.54 1.71 106 42

INT C (add,mvn,mvn) 136 67% 2 104534.65 0.41 0.01 9652.51 1.86 138 50

INT C (add,mul) 48 100% 33 104604.67 0.39 0.01 12339.71 2.38 20 58

FLOAT C fmul 104 100% 4 105093.13 0.41 0.01 12103.92 2.34 44 58

FLOAT C fdiv 118 100% 15 103405.42 0.27 0.01 14467.71 2.79 13 58

FLOAT C fabs 146 100% 0 105371.13 0.47 0.01 7734.89 1.49 95 58

INT C add rrm 19 55% 2 102607.50 0.13 0.00 6580.48 1.27 2 42

INT C add mmi 19 100% 0 100236.05 0.12 0.00 13086.30 2.53 67 58

INT C add mmr 45 78% 9 102244.38 0.39 0.01 4833.93 0.93 1 58

INT C mul rrm 6 99% 50 80319.60 0.02 0.00 3054.85 0.59 1 58

INT C sub rrm 115 99% 24 77127.89 0.02 0.00 2992.40 0.58 1 58

INT C sub mmi 32 100% 3 101212.74 0.15 0.00 13026.42 2.52 1 56

INT C sub mmr 1 19% 2 107374.02 0.02 0.00 14233.49 2.75 1 54

INT C and rrm 19 66% 3 101451.11 0.12 0.00 6033.15 1.43 3 42

INT C and mmi 131 0% 0 9107166.82 0.00 0.00 14259.89 2.75 1 0

INT C and mmr 145 0% 3 106259.89 0.00 0.00 40360.46 7.79 1 0

INT C orr rrm 19 65% 0 101578.91 0.13 0.00 11681.89 2.77 11 42

INT C orr mmi 29 100% 0 100101.81 0.15 0.00 13073.98 2.52 26 58

INT C (mvn,mvn) mmr 51 100% 0 101625.48 0.14 0.00 13256.46 2.56 2 54

INT C neg mmr 63 100% 2 96126.49 0.10 0.00 288379.47 7.53 1 58

INT C eor rrm 12 51% 2 104512.22 0.12 0.00 6617.09 1.28 2 52

INT C eor mmi 120 100% 4 101333.17 0.15 0.00 13468.50 2.60 1 54

INT C eor mmr 1 20% 3 105428.89 0.02 0.00 14307.12 2.76 1 54

INT C PTR CHASING 34 100% 14 100709.52 0.09 0.00 9074.80 3.79 1 58

INT C PTR CHASING FLUSH 9 100% 0 55669.88 0.02 0.00 10663.34 4.46 1 58
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Figure 4.6: Test results for different test scenarios (ARM Cortex-A57). The x-axis illustrates
the chain length n, the y-axis illustrates the average TPR. The blue graph (�) shows the TPR
achieved for each chain length. The pink graph (�) shows the moving average.
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Figure 4.7: Average TPR achieved on IBM Power9 for a specific repetitions for
process repetitions = 15. Convergence was achieved at around repetitions = 75000.

4.4 IBM Power

This section discusses results for the IBM Power9 CPU. A high-precision timing source
can be retrieved by the mfspr instruction, which moves data from a special purpose
register, the TSC, to a general purpose register.

4.4.1 Preliminary Study

In order to find out an appropriate number of repetitions (values for repetitions and
process repetitions) for our experiments, we conduct a preliminary study.

Figure 4.7 shows the average TPR for process repetitions = 20 achieved for a specific
number of repetitions. As we can see, if we execute the same test cases as we did in
the Intel tests and although the results are already very stable, we see that over 75000
the peaks in the graph of PTR CHASING0 FLUSH vanish.

4.4.2 Results

Basic Our experiments demonstrate that the basic condition does not achieve good
scores on IBM Power9, as it can be seen in Table 4.8.
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Integer instruction dependency chains Like the ARM Cortex-A57, the IBM Power9
is a RISC processor, and therefore we do not test as many instructions in dependency
chains as we do for x86 architectures. In total, 17 instruction chain experiments are
evaluated, as presented in Table 4.9.

The highest TPR of 50% is achieved by INT C (not,not), INT C (xori,xori),
INT C (add,not,not) and INT C (add, mulld). All those tests have in common that
they use blocks of instructions, not instructions alone. The throughput is higher than in
the basic test case, and a speculation window size of around 170 instructions is reached.
Figure 4.8 shows that the TPR graph can be divided into three stages for these test
cases. In the first stage shows that the TPR is slightly decreasing. For chain lengths
bigger than 60, the TPR stabilizes around 10%. For chain lengths bigger than 120, the
TPR increases steadily again.

The other integer dependency chain tests achieve a TPR above 40% and a throughput
of roughly 70000 bytes per second. The window size is between 94 and 96 instructions.
Figure 4.8 shows that the TPR graphs for most tests are high in the beginning but slowly
decline in the end. We assume that the reason for this is the limited size of the buffer
in the dispatch unit, as shown in Figure 2.4. This buffer might be full with instructions
belonging to the dependency chain, and therefore the instructions used for leaking the
data might not fit into the buffer anymore. The condition is then evaluated before the
speculative memory access can be made.

Single floating point operations We tested the influence of a single floating point
operation and, as it is represented in Table 4.8, they increase the TPR of the at-
tack. Especially the conditions which involve a division, FLOAT S /, FLOAT S (+,/),
FLOAT S (-,/) and FLOAT S (/,/) achieve a very good TPR of 40% at a very high
throughput. The window sizes of those tests lie between 28 and 60.

Floating point instruction dependency chains Floating point chains give very
good values for TPR in general (see Table 4.9). However, they achieve this TPR of 50%
at large values for the chain length. The throughput is at about 70000 bytes per second,
and the window size is 150 instructions.

FLOAT C fmul and FLOAT C fadd show a similar TPR graph. This graph has a peak at
a chain length of 25 and a TPR of about 40%. Then, at a chain length of 50, it drops to
a TPR of 30% and increases again to a TPR of 50% before it drops to 10% at a chain
length of 90. Then it increases again and finally stays constant with an increasing trend
at a chain length greater than 120.

FLOAT C fdiv behaves differently. The TPR graph converges earlier to a TPR of about
50. The reason for this might be that floating point divisions are treated specially by
the CPU as it can be seen in Figure 2.4.
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Memory interaction Just like the ARM Cortex-A57, the IBM Power9 ISA does not
provide instructions which do both arithmetic operations and memory operations.

Tests where we only load from memory (rrm tests) achieve a maximum TPR of 50%,
except for INT C add rrm which only achieves a TPR of 18%. The speculation window
size is between 172 and 220 for all these tests. The TPR graph follows the same pattern
for all these tests. It has a through at a chain length of 40 and then converges to a TPR
of 50%. The throughput of these tests is higher than of normal chain tests because of
the involved memory operations, as shown by Table 4.9.

Tests where we also store to memory (mmr tests) work rather good, they achieve a stable
TPR rate of roughly 50%. As shown by Figure 4.8, we do not see the through which we
see in rrm tests. The throughput is the same as it is in rrm tests, about 70000 bytes per
second. The window size is around 210 instructions.

Tests where we do loads and stores but do not involve registers (mmi tests) behave almost
identical as mmr tests, as it can be seen in Figure 4.8. The TPR rate stabilizes very early
at 50%.

Missing TLB entry PTR CHASING1 TLBFLUSH and PTR CHASING2 TLBFLUSH achieve
an average TPR rate of 27% and 29%. This is worse than, for example, single floating
point tests but better than the BASIC case. However, as it is in tests where we have to
flush the TLB, the throughput is very low. It is about eight times lower than in any
other test which does not involve flushing the TLB. However, the speculation window
size is higher than in any other single test case, namely 82 and 90 instructions.

Missing cache entry PTR CHASING TLBFLUSH achieves a TPR of 50% and a through-
put which is similar to that achieved by any other dependency chain test. We reach a
window size of 216 instructions which is very good.
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Table 4.8: Test for single operations (IBM Power 9). The table gives the average TPR and
throughput including standard deviation (SD) and standard error of the mean (SEM) as well as
the window size (number of instructions).

Mode TPR
TPR
SD

TPR
SEM

Throughput
Throughput

SD
Throughput

SEM
Window

size

BASIC 1% 0.00 0.00 69097.68 1853.91 586.26 32

PTR CHASING0 FLUSH 7% 0.02 0.01 70030.23 2082.96 658.69 94

PTR CHASING1 TLBFLUSH 27% 0.03 0.01 11099.49 124.49 39.37 82

PTR CHASING2 TLBFLUSH 29% 0.01 0.00 5735.26 43.90 13.88 90

FLOAT S * 4% 0.07 0.02 71613.29 2763.41 873.87 62

FLOAT S + 4% 0.07 0.02 71754.96 2756.77 871.77 66

FLOAT S - 6% 0.09 0.03 70841.88 2586.57 817.95 36

FLOAT S / 26% 0.03 0.01 68650.35 1851.02 585.34 60

FLOAT S (+,+) 8% 0.03 0.01 71421.79 2970.78 939.44 20

FLOAT S (+,-) 14% 0.11 0.04 70923.40 3162.01 999.92 52

FLOAT S (+,*) 10% 0.09 0.03 71534.57 2681.40 847.93 70

FLOAT S (+,/) 40% 0.03 0.01 68972.21 1775.18 561.36 28

FLOAT S (-,-) 9% 0.05 0.02 68445.27 1926.42 609.19 44

FLOAT S (-,*) 9% 0.09 0.03 71807.38 1962.28 620.53 32

FLOAT S (-,/) 39% 0.02 0.01 69442.12 1585.05 501.24 36

FLOAT S (*,*) 7% 0.01 0.00 69002.02 1494.11 472.48 66

FLOAT S (*,/) 37% 0.04 0.01 71163.68 3626.50 1146.80 36

FLOAT S (/,/) 39% 0.02 0.01 68766.97 1639.92 518.59 36
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Table 4.9: Test for instruction chains (IBM Power 9). First, the chain length for which the max-
imum TPR was achieved is shown. Second, the chain length for which the maximum throughput
(bytes/second) was achieved is given and third the chain length for the maximum window size
is stated.

Mode n
Max
TPR

n
Max

Throughput
TPR
SD

TPR
SEM

Through-
put SD

Throug-
put SEM

n
Window

size

INT C mulld 100 48% 145 70087.16 0.06 0.00 1718.91 0.33 139 96

INT C add 27 41% 64 70317.59 0.12 0.00 1710.57 0.33 107 94

INT C addi 43 41% 3 70098.86 0.12 0.00 1764.21 0.34 106 94

INT C sub 40 41% 137 70323.53 0.12 0.00 1792.48 0.35 88 94

INT C subi 40 42% 76 70491.01 0.12 0.00 1738.77 0.34 103 94

INT C and 32 40% 130 70544.94 0.12 0.00 1724.91 0.33 100 94

INT C andi. 149 49% 81 70230.55 0.15 0.00 1907.28 0.37 112 150

INT C or 32 40% 124 70306.53 0.12 0.00 1712.02 0.33 90 94

INT C ori 1 30% 136 70432.64 0.14 0.00 1660.63 0.32 102 94

INT C (not,not) 146 50% 78 70414.14 0.18 0.00 1998.11 0.39 109 178

INT C neg 27 41% 107 70612.24 0.12 0.00 1743.02 0.34 115 94

INT C xor 40 42% 143 70300.93 0.12 0.00 1798.45 0.35 92 94

INT C (xori,xori) 147 50% 52 70209.02 0.19 0.00 1927.01 0.37 134 164

INT C srdi 31 40% 98 70456.56 0.12 0.00 1766.17 0.34 97 94

INT C rotrdi 27 41% 123 70477.58 0.12 0.00 1759.59 0.34 105 94

INT C (add,not,not) 100 50% 45 70100.20 0.20 0.00 2758.53 0.53 77 212

INT C (add,mulld) 134 50% 63 70289.31 0.18 0.00 2066.92 0.40 137 156

FLOAT C fmul 146 50% 91 70024.60 0.13 0.00 2325.93 0.45 128 150

FLOAT C fdiv 122 50% 2 69556.90 0.07 0.00 9085.35 1.75 36 216

FLOAT C fadd 147 50% 72 69929.48 0.14 0.00 2324.71 0.45 105 150

INT C add rrm 146 18% 24 70045.56 0.14 0.00 2156.86 0.42 53 178

INT C addi mmi 7 50% 10 69867.25 0.02 0.00 7169.06 1.38 3 216

INT C add mmr 5 50% 6 69747.62 0.02 0.00 7201.38 1.39 3 216

INT C mulld rrm 7 50% 23 70093.49 0.14 0.00 3130.55 0.60 27 220

INT C sub rrm 100 50% 23 70009.14 0.16 0.00 2234.36 0.43 1 212

INT C subi mmi 7 50% 8 69677.29 0.02 0.00 7165.81 1.38 3 216

INT C sub mmr 6 50% 2 70128.82 0.02 0.00 7201.31 1.39 3 216

INT C and rrm 114 50% 19 70163.44 0.16 0.00 2251.53 0.43 2 208

INT C andi. mmi 3 50% 0 69875.77 0.02 0.00 7219.30 1.39 3 216

INT C and mmr 5 50% 8 69710.92 0.02 0.00 7240.11 1.40 5 216

INT C or rrm 110 50% 24 70231.07 0.16 0.00 2206.01 0.43 1 212

INT C or mmi 5 50% 0 69659.58 0.02 0.00 7197.95 1.39 7 216

INT C (not,not) mmr 142 50% 4 69930.43 0.02 0.00 7765.99 1.50 2 214

INT C xor rrm 104 50% 19 70091.91 0.16 0.00 2266.84 0.44 1 210

INT C (xori,xori) mmi 141 50% 0 69083.90 0.03 0.00 7754.94 1.50 3 214

INT C xor mmr 5 50% 12 69857.25 0.02 0.00 7245.67 1.40 135 220

INT C PTR CHASING 106 50% 17 70870.29 0.10 0.00 3183.94 0.61 107 206

INT C PTR CHASING FLUSH 46 50% 0 68773.81 0.02 0.00 11277.05 2.18 6 216
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Figure 4.8: Test results for different test scenarios (IBM Power9). The x-axis illustrates the
chain length n, the y-axis illustrates the average TPR. The blue graph (�) shows the TPR
achieved for each chain length. The pink graph (�) shows the moving average.

4.5 Comparison

This section analyzes the differences and commonalities of our findings on the different
platforms. We point out which test scenarios seem to work best or worse on which
platforms and highlight possible similarities. The BASIC test case gives a TPR of 0.25
on Intel, 0.03 on AMD, 0.00 on ARM and 0.01 on IBM Power 9. Single floating point
operations show a higher TPR than BASIC on Intel, AMD, and IBM Power9. On AMD
and IBM Power9 we see that the TPR is especially high when a floating point division
is involved.

On Intel and AMD we also test conditions depending on the result of single AVX instruc-
tions. They show a higher TPR than the BASIC test case does. Especially AVX S vandnpd
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gives a high TPR on both platforms. The sizes of the speculation windows are between
100 and 150 instructions on both platforms.

Generally, integer instruction dependency chains increase the TPR on all platforms. We
observe that INT C imul gives the best results among all integer instruction dependency
chains on all platforms. Instruction chains which do not use one instruction but mix
two or more also work very good on all platforms. Examples are INT C (add,not,not).
Floating point instruction dependency chains result in almost the same TPR as integer
instruction dependency chain tests do on Intel and AMD but result in a higher TPR on
ARM and IBM Power9. However, on all platforms, they reach a large window size.

The most effective way to increase performance on all four platforms is to implement
pointer chasing in a chain and flush the involved pointers. On all platforms, this test
maximized the speculation window. On Intel, a TPR of 0.94 is reached, on AMD 0.49,
on ARM 1.00 and on IBM Power9 we get 0.50. The reached window sizes are very large.
We also see that pointer chasing without flushing the pointers works well.

Dereferencing variables which have a flushed TLB entry also works very good on all
platforms. However, the throughput is lower than for other tests.

Chained tests involving loads and stores (mmr tests) showed a drop in the TPR for chain
lengths above 100 on Intel platform. On IBM, ARM, and AMD the TPR curve develops
linearly. Tests involving only loads from memory rrm show a very stable TPR after a
specific chain length on all platforms.



Chapter 5

Enhancing Real-World Attacks

In this chapter, we apply our findings from Chapter 4. The research we did so far tends
to focus on a broad range of analytical tests, rather than how these results could be
used in practical settings. In the following we first highlight the most obvious gain an
attacker has from a larger speculation window, that is, leaking more data. The last part
investigates Foreshadow and emphasizes the role an extended speculation window might
play. We show that the reason why Foreshadow attacks do not work with speculation
as an exception suppression mechanism is not that the speculation window is too small.

5.1 Leaking more data

An attacker’s primary goal is to leak data - the more, the better. Especially when it
comes to microarchitectural attacks, the leakage rate is often low. Using an extended
speculation window, we show how one can leak twice as much data as with the basic
version of the window. The idea is that if the CPU has more time to speculate, it will
be able to do more memory accesses.

In order to demonstrate this, we need to modify the body of the condition. We focus
on Spectre-PHT attacks based on loads in this experiment. Our goal is to leak up
to two bytes per try, i.e., make two memory accesses instead of one. Therefore, we
copy the existing resources we use to leak data, i.e., oracle and data, and establish a
second cover channel to leak the second byte in each round. We need to enforce that
the instructions in the condition body are not executed out-of-order by making them
dependent on each other. Out-of-order execution would distort our results because one
could never know how often the second memory access is executed before the first one.
The updated condition body is shown in Listing 5.1. When there is a data dependency
between them, the CPU is forced to execute always the first memory access before the
second. In the last step of the attack, the attacker leaks the data of data with a separate
cache covert channel, which looks the same as in the basic version (see Listing 3.2).
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1 char access_array(int x)

2 {

3 int res;

4 if(/* some condition */)

5 {

6 asm volatile("movq (%1), %0\n" : "=r"(res): "c"(mem+data[x]*4096));

7 asm volatile("movq (%0), %%r10\n" : : "b"(mem2+data2[x+res]*4096) : "r10");

8 }

9 }

Listing 5.1: Test code to leak two byte in one try. There is a data dependency between the
first and second memory access established by res, which is written in line 6 and read in line 7.
This forces the CPU to in-order execution.

Table 5.1: Test results achieved on different platforms for the scenario where two bytes should
be leaked.

Platform TPR
TPR
SD

TPR
SEM

TPR
TPR
SD

TPR
SEM

Intel 0.66 0.34 0.03 0.34 0.34 0.03

AMD 0.67 0.06 0.01 0.66 0.43 0.01

ARM 1.00 0.00 0.00 0.99 0.00 0.00

IBM 1.00 0.00 0.00 0.99 0.00 0.00

We execute concrete tests using the condition INT C PTR CHASING FLUSH with the chain
length which gave the maximum TPR according to Tables 4.2, 4.5, 4.7, 4.9 and report
the average TPR for each platform. The results are shown in Table 5.1.

This test only demonstrates one very obvious way of how our results can be used. In an
attack scenario, where the attacker controls the victim’s code or parts of it, this can be
very powerful.

5.2 Foreshadow using Speculative Execution

Foreshadow attacks involve an attacker accessing memory in transient execution which
should not be accessible due to a zeroed present bit in the page table entry. This invalid
access raises a page fault which leads to the termination of the userspace program. How-
ever, the attacker still wants to establish the cache side channel to leak the secret bytes.
There are two ways to achieve this [50], exception handling and exception suppression.
Exception handling uses a userspace exception handler, which is called in case a page
fault is raised and hands over control to the attacker, who will start the cache side-
channel there. Exception suppression means that instead of handling a raised exception,
exceptions are prevented from being raised at all. Currently, there are two methods
known for exception suppression, Intel TSX and speculative execution.
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1 _xbegin();

2 maccess(array1[array2[x]* 4096]);

3 _xend();

4 //Start cache covert channel

5 //...

Listing 5.2: Exception surpression
unsing TSX

1 //1. Mistrain

2 for(int i = 0; i < 20; i++)

3 access_array(0);

4 //2. Possible out-of-bounds access

5 access_array(secret_idx);

6 //3. Start cache covert channel

7 //...

Listing 5.3: Exception surpression unsing
speculative execution

Transactional Synchronization Extensions (TSX) is implemented as an instruction set
extension to the x86 instruction set [71]. Similar to database transactions, which guar-
antee atomic and consistent operations on databases, TSX offers to mark specific regions
of code to be executed transactionally. This means that the instructions in those regions
are executed in an all-or-nothing fashion: errors cause the transaction to be rolled back
(all operations are undone) and successful execution causes the transactions to be com-
mitted architecturally.
In the case of Foreshadow, the attacker executes the invalid memory access in a TSX
transaction. No fault is raised, the transaction is rolled back silently, and the attacker
can start the cache side channel. Listing 5.2 gives an example.

Speculative execution can be used for exception suppression mechanisms as well, as
shown in Listing 5.3. Whenever a branch misprediction happens, the CPU has to discard
all operations which were executed speculatively, which can be seen equal to a rollback
in TSX. In this case, exceptions are also not raised because the actual execution will
continue somewhere else and the CPU wants to act as if the page fault never occurred.
As is well known, Meltdown-US works with all both TSX and speculative execution [50].
However, research has failed to explicitly show that exceptions can be suppressed using
speculative execution for Foreshadow as well. We suspect that this might be due to the
insufficient size of the speculation window. Therefore, we want to evaluate this situation
and have a closer look at it. Note that all our experiments are done on an Intel Skylake
CPU, supporting TSX.

5.2.1 Experiment design and results

The basis of our experiments is a proof-of-concept Foreshadow-OS attack which supports
exception suppression using TSX and speculative execution.

In the first experiment, we investigate if our assumption about the too short speculation
window preventing a successful Foreshadow-OS attack using speculative execution is cor-
rect. We refer to our results of Chapter 4 in order to test different conditions. According
to Table 4.2, INT C PTR CHASING FLUSH maximizes the speculation window for n = 94,
which is 153 instructions. We also test a second dependency chain, FLOAT C divss
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(n = 21). Our results show that none of the modified conditions in the scenarios we
tested managed to leak a single byte. The initial hypothesis that the reason for this is
a too short speculation window is therefore wrong.

We conclude that this shows us that the size of the window in our first experiment
is large enough and there must be some other mechanism preventing the Foreshadow
attack with speculative execution from being successful.



Chapter 6

Conclusion

In this thesis, we presented a fully-automated framework for the analysis of the success
rate of Spectre-PHT attacks. The success rate of these attacks primarily depends on
the size of the speculation window because a larger speculation window implies a higher
likelihood for the attack to succeed. The window size can be influenced by choice of the
condition in Spectre-PHT attacks. The framework tests different conditions and detects
the size of the speculation window automatically. We developed methods for robust
measurements and evaluated the success rate in terms of the true positive rate (TPR)
and the throughput of the attack. The framework was ported to Intel, AMD, ARM, and
IBM Power9 CPUs.

We introduced a categorization of conditions in Spectre-PHT attacks which can be used
by an attacker to increase the TPR of the attack. The attacker can either use slow
instructions in the condition or fast instructions and make them slow. Slow instructions
include simple integer or floating point instructions arranged in a dependency chain and
accesses to DRAM, which are slow when the data is uncached, or the corresponding TLB
entry is missing. Intel and AMD platforms offer the usage of AVX instructions which
are slow whenever the AVX unit is not enabled prior to their use. Our analysis shows
that dependency chains give the best results on almost all platforms. Dereferencing a
chain of pointers which do not have a valid cache or TLB entry also yields high TPRs.
Fast instructions made slow mainly include port contention scenarios. The attacker can
execute a co-located process on the victim’s machine which contends execution ports and
makes the execution of instructions slower. We demonstrated that this has a positive
effect on the success rate of the attack.

We addressed the practical relevance of our analysis in two different scenarios. First, we
demonstrated that an attacker could leak twice as much data using an extended specula-
tion window. Second, we investigated Foreshadow-OS attacks with speculative execution
as an exception suppression mechanism. It was an open research question whether this
could be possible with sufficiently large speculation windows. Our experiments showed
that the size of the speculation window is large enough in this attack and that some
other mechanism causes the failure of the attack.
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