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Abstract

More and more people use social networks like Twitter, Instagram, and Facebook to-
day. Understanding their behavior when interacting with social media becomes very
important. One aspect is the analysis of influential users in social networks and the
construction of influence networks. Influence networks are weighted, directed networks
with social media users as nodes. A link between user A and user B means that A influ-
ences B. The link weight indicates how strong the influence is. One possibility to extract
such influence networks is transfer entropy, an information-theoretic measure. Transfer
entropy indicates for two stochastic processes X and Y , how much the uncertainty of Y
is reduced by knowing X. If the reduction is high, the behavior of Y can be predicted
easily by the knowledge of X, and X strongly influences Y .

This thesis investigates the problems and advantages of using transfer entropy to extract
influence networks. Researchers have shown that transfer entropy can be used to ana-
lyze social media structures. Nevertheless, their research has been limited to empirical
datasets and failed to address synthetic data in detail. We conduct a large-scale analy-
sis of the utilization of transfer entropy based on synthetic data, generated by Poisson
point processes. The data generation process supports several tunable parameters that
allow constructing datasets modeling specific situations. For example, the frequency or
the fraction of the independent actions of an actor can be adjusted. This allows us to
understand the behavior of transfer entropy in detail. The most important finding is
that when comparing actors, the activeness of actors must be considered. The width of
bins are parameters that specify how much of the history of an actor is considered. The
analysis shows that the bin widths are data-dependent and should be aligned with the
average inter-event time of the actors’ events.

We investigate three different real-world datasets and apply the insights gained from
the synthetic analysis to the empirical analysis. The River dataset contains information
about the water level of four different European rivers. We show that the flow direction
of rivers can be inferred using transfer entropy. The LFM-1b dataset contains listening
events on Last.fm. Our analysis results show that users of different countries and genres
influence each other when listening to music. The Twitter dataset comprises of Tweets
posted by Russian trolls in 2016. In our analysis, we show that the most influential
hashtags are political. Additionally, we examine the importance of bin widths in empirical
analysis and conclude that it depends on the aim of the study, whether the choice of bin
widths affects the outcome.
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Kurzfassung
Immer mehr Menschen verwenden heutzutage soziale Netzwerke wie Twitter, Instagram
und Facebook. Daher wird es auch immer wichtiger, ihr Verhalten zu verstehen, wenn
sie mit dem sozialen Medium interagieren. Ein Aspekt davon ist die Analyse einflussre-
icher User und die Konstruktion von Influence-Netzwerken . Ein Influence-Netzwerk
ist ein gewichtetes, gerichtetes Netzwerk mit Social Media Usern als Knoten. Wenn
ein Link zwischen User A und User B existiert, heißt das, dass A Einfluss auf B hat.
Das Gewicht des Links gibt an, wie stark der Einfluss ist. Eine Möglichkeit solche
Influence-Netzwerke zu extrahieren ist Transfer Entropy . Transfer Entropy gibt für zwei
stochastische Prozesse X und Y an, wie stark die Unsicherheit in Y durch das Wissen
über X reduziert wird. Wenn die Reduktion hoch ist, kann das Verhalten von Y gut
vorhergesagt werden und X beeinflusst Y .

Diese Arbeit untersucht die Probleme und Vorteile von Transfer Entropy um Influence
Networks zu extrahieren. Forscher haben gezeigt, dass Transfer Entropy verwendet
werden kann, um Strukturen von Social Media zu analysieren. Allerdings waren em-
pirische Datensätze der Schwerpunkt ihrer Analyse. Synthetische Datensätze wurden
kaum behandelt. Wir untersuchen detailliert, wie man Transfer Entropy verwenden
kann, um Wissen aus synthetischen Daten zu extrahieren. Synthetische Daten werden
durch Poisson-Prozesse generiert. Die Datengenerierung unterstützt einige einstellbare
Parameter, die es erlauben, auf bestimmte Situationen zugeschneiderte Datensätze zu
generieren. Zum Beispiel kann die Frequenz und der Anteil unabhängiger User Events
eingestellt werden. Diese Methode erlaubt es uns, das Verhalten von Transfer Entropy
im Detail zu untersuchen. Das wichtigste Resultat der Analyse ist, dass das Aktivität-
slevel der Actors eine große Rolle spielt. Die Breite der Bins sind Parameter, welche
angeben, wie viel der Geschichte eines Users Einfluss auf das aktuelle Resultat haben
soll. Die Analyse zeigt, dass die Breite er Bins von den Daten abhängt und man die
durchschnittliche Inter-Event Zeit der User als Anhaltspunkt nehmen sollte.

Wir untersuchen drei verschiedene, empirische Datensätze und wenden die Erkenntnisse
der synthetischen Analyse an. Der Fluss-Datensatz enthält Informationen über den
Wasserstand von vier verschiedenen europäischen Flüssen. Wir zeigen, dass die Fließrich-
tung der Flüsse mittels Transfer Entropy bestimmt werden kann. Der LFM-1b-Datensatz
enthält Listening Events des Online-Musikarchivs Last.fm. Unsere Analyse zeigt, dass
User verschiedener Länder und Genres sich gegenseitig beeinflussen, wenn sie Musik
hören. Der Twitter-Datensatz besteht aus Tweets welche von russischen Internet-Trollen
gepostet wurden. In unserer Analyse zeigen wir, dass die einflussreichsten Hashtags ein
politisches Thema haben. Wir untersuchen, wie wichtig die Breite der Bins in einem
empirischen Experiment ist und kommen zu der Erkenntnis, dass es vom Ziel der Studie
abhängt, ob die Wahl der Breiten das Endergebnis beeinflusst.
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Chapter 1

Introduction

There is no doubt that social networks are a central component of our everyday lives.
A social network consists of nodes and links between nodes. Nodes are actors, and links
describe interactions between them. Twitter is a very famous example of social networks,
with about 321 million monthly users [46]. Users can follow each other, post tweets, or
retweet tweets from other users. Nodes are, for example, users, and two users are linked
if one user follows another user. Recently, there has been a considerable amount of
literature on the topic of social network analysis. A huge variety of different methods
and approaches have been proposed and evaluated.

One important research topic is to identify influential users in social networks. For
example, on Twitter, users often do not make the decision of following or tweeting in-
dependently from others but are influenced by other users. Influential users are a small
user group influencing another, larger user group [80, 81]. Many different methods to
detect influential users have been published [14,22,49,60,64,67,68,74,83,87].

One possibility to analyze social networks and identify influencers is information theory, a
mathematical field related to probability theory. It provides important concepts including
entropy, joint entropy, conditional entropy and mutual information [25]. Entropy refers to
the amount of uncertainty in one random variable. Joint entropy refers to the amount of
uncertainty in two random variables using their joint probability mass function. Mutual
information describes the amount of uncertainty which is taken away from one random
variable by knowing another random variable while conditional entropy represents how
much uncertainty remains.

Transfer entropy interchangeably referred to as information transfer is an information-
theoretic concept that allows analyzing two stochastic processes utilizing entropy [71,80].
It describes how much uncertainty of a stochastic process is reduced by the knowledge of
another stochastic process. In social networks, users can be seen as stochastic processes
represented by a list of timestamps. For example, on Twitter, each timestamp in the list
might be the time where a user posted a tweet. Transfer entropy can be used to analyze
how good the behavior of one user, Alice, can be predicted by the action of another
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2 CHAPTER 1. INTRODUCTION

user, Bob. The prediction is good if the uncertainty about Alice can be reduced because
the behavior of Bob is known. It is an asymmetric measure, i.e., Bob might add more
knowledge to Alice’s process than vice versa.

In social networks, influencers can be identified using transfer entropy [80]. Influencers
are those nodes that transfer the most information, i.e., make other nodes predictable.
The main advantage of the approach is that it is model-free. Most other methods for
influencer detection require causal knowledge, for example, whether Alice retweets a tweet
of Bob. However, very often, this information is not available. The main disadvantage
of the approach is that it requires more data than other methods to be able to provide
meaningful insights.

Another well-studied research topic in the area of social networks is the generation of
user data to model user behavior in social networks. The central question about these
studies is how users behave when they generate content [89]. Researchers identified a
few central characteristics of user behavior. First, users show a strong daily and weekly
pattern of activity [41]. Second, users tend to act not only once but several times in
a short time frame [15, 35]. For example, when a user is in the process of writing and
answering emails, he or she does not only answer one email but tends to answer all
unread emails. A synthetic model can simplify the analysis of user behavior. The model
reflects true circumstances and provides tuneable parameters, for example, how often a
user answers emails per day. Numerous methods how to solve this problem have been
published [28,35,54,79,89]. The simplest method to generate user data is a Poisson point
process, which will result in a list of timestamps. The number of timestamps is Poisson
distributed and depends on the frequency λ. Homogeneous Poisson point processes use
a constant λ, while in non-homogeneous Poisson point processes λ depends on the time
t, i.e., is a function λptq.
In this thesis, we use Poisson point processes to generate synthetic data using two different
models. We evaluate transfer entropy based on this data in situations where two users
exist. Furthermore, it is applied to situations where multiple users interact in a network,
which results in an influence network. The insights gained from the synthetic analysis
are then applied to three real-world scenarios.

1.1 Motivation

Influence networks are weighted, directed networks representing the influence between
two nodes. In many areas, it is crucial to know who influential users are. For example, in
marketing, it is important to create efficient advertising concepts. These concepts often
involve the use of influential persons in social media, and therefore, it is very important
to identify influentials. Innovation science is another research area where it is essential
to know influential persons. Whenever a company publishes a new product, it enters
the so-called innovation adoption life cycle [67]. This life cycle comprises five stages
and describes customers using the product in each stage. In the beginning, there are
innovators and early adopters, the ones who use the product first. It is very useful for a
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company to know how much influence these users have on other potential users.

In various fields, it is crucial not only to identify influentials but also to have a bigger
picture of how influence flows in a network of multiple actors. For example, during
elections, a party wants to know about influential persons and how the influence of these
persons can reach potential voters. Advertisement companies want to know how influence
spreads in their customer network such that they can create tailored advertisements.

In this thesis, we want to test and evaluate the concept of transfer entropy to identify
influentials and extract influencer networks. Transfer entropy is a concept that has
mainly been used in neuroscience to investigate the interaction between neurons in the
human brain. There have also been several studies of transfer entropy in social networks
[17,18,80]. These studies focus on real-world data only. Only Ver Steeg et al. [80] provide
a small analysis of the concept using synthetic data. One of the goals of this thesis is
to explore in detail how transfer entropy behaves in different situations, including very
active or very inactive actors or actors with a very strong or very weak influence. This
is only possible in a lab environment that allows tuning the most important parameters
to create data which accurately represents a specific situation.

To evaluate the insights we gain from the synthetic analysis, we also execute a study
based on real-world data. The first dataset includes water level measurements of rivers
in Austria and Germany. We show that it is possible to find out in which direction rivers
flow using transfer entropy. While this is only to be seen as a proof-of-concept, the second
analysis provides insights into the influence among users on Last.fm. Finally, we work
with a dataset consisting of tweets from Russian trolls. This analysis aims to gain more
insights into the troll’s behaviors according to the hashtags they use.

1.2 Outline

This thesis is structured as follows: Chapter 2 provides detailed background information
on networks and graphs and discusses the most fundamental quantities of information
theory and the concept of transfer entropy. Additionally, we give an overview of solutions
existing in literature which deal with the problem of identifying influencers and modeling
user activity. In Chapter 3, we examine the usage of transfer entropy to infer causal
relations in synthetic data. In Chapter 4, we conduct experiments to study three real-
world datasets. Finally, Chapter 5 concludes and summarizes our work.



Chapter 2

Background

In this chapter, we give an overview of background information and essential findings in
recent literature related to the topic of the thesis. First, we present important network-
and graph-related definitions. Second, we quickly introduce the topic of information
theory. In the third section, we present the concept of transfer entropy in detail. The
final sections suggest how to identify influential users and how to model user activity in
social networks.

2.1 Network Basics

A network is a set of objects which are connected by links [32, 57]. What exactly is
presented by an object or a link depends entirely on the application and is very flexible.
For example, every person is part of a huge social network. The objects could be friends
and family, and the links could be interactions with them. In the World Wide Web, nodes
are web sites that are connected by hyperlinks [43]. Networks are very similar to the
concept of a graph, and in scientific literature, both terms are used interchangeably [15],
as it is also done in this thesis. In a network, nodes are connected by links, while in
a graph, vertices are connected by edges. However, there is no difference except that
the term network is used to describe real systems like the World Wide Web. The term
graph is used in mathematical literature, for example, when talking about a metabolic
graph [15,57].

A graph G “ pV,Eq consists of a set of vertices (nodes) V which are connected by a
set of edges (links) E where E Ă rV s2 [31]. |V | denotes the number of vertices in the
graph. |E| denotes the number of edges in the graph. There are several possibilities
to present graphs mathematically. Link lists or edge lists enumerate every single link
in the network [43]. A link between nodes v and w can be written as pv, wq. A link
list is a set of single links L “ tpv, wq|v, w P V u. Link lists are a very simple form of
representing networks, but the disadvantage is that it is not beneficial for mathematical
computations. It is costly to check whether a link exists because the whole link list
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CHAPTER 2. BACKGROUND 5

has to be searched, which might contain up to |V |2 elements. Another possibility are
adjacency lists [38]. For each vertex v, the adjacency list enumerates all neighbors of
v: LApvq “ tw|w P V u. In the worst case, |V | elements have to be searched in order
to find out if there is a link between two nodes. It is also not suited for mathematical
applications. The representation of the network through an adjacency matrix is often
the most convenient way, especially in mathematical settings. The adjacency matrix A
of a graph is a |V |ˆ |V | matrix. The matrix elements Aij P A are such that:

Aij “
#

1 if pi, jq P E (there exists a link between i and j)
0 otherwise

(2.1)

The advantage of adjacency matrices is that it is possible to check in constant time
whether a link exists or not. Adjacency matrices can also represent multigraphs, but
hypergraphs cannot be represented easily. A multigraph is a graph where two nodes are
connected by an arbitrary number of edges [31]. In such graphs, the number of connec-
tions often adds additional information. For example, consider a network of employees
in a company where each link represents an email communication. The number of links
tells how many emails were sent from one employee to another. Aij would then be the
number of emails sent. A hypergraph is a graph where an edge connects two or more
vertices [31]. In the employee network, an edge could represent a project team. Self-
edges are also possible in networks and can be easily represented by adjacency matrices.
A self-edge or loop is an edge between a vertex and itself. In the employee example, this
means that an employee is a monologizing via email.

2.1.1 Types of networks

The simplest type of a network is a set of nodes connected by links. Sometimes it might
be necessary to add more semantics to networks. One way to do this is to add direction
to the edges of a graph. A network in which each link has a direction is called directed
network [31, 43, 57]. Every edge is assigned a source vertex and a destination vertex.
An undirected network is a network in which an edge is just a connection between two
vertices, without any direction. In the network connecting employees of a company, a
directed edge that originates at employee Alice and goes to employee Bob means that
Alice sent an email to Bob. In the World Wide Web, a directed link from one web page
to another means that the web page has a hyperlink to the other. Another example is
a network where the nodes are airports, and the links are flights between those airports.
An edge from John F. Kennedy International Airport to London Heathrow means that
there is a flight from New York to London, but not the other direction.

The adjacency matrices of directed and undirected networks are different. Adjacency
matrices of undirected networks without self-links are symmetric. If there is a link
between i and j, there is also a link between j and i. However, adjacency matrices of
directed networks are not necessarily symmetric. If there is a link from i to j, Aij “ 1
but Aji is not automatically 1 [43, 58]. Directed networks can be viewed as undirected
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networks in which each undirected edge between two vertices has been replaced by two
directed ones.

Link weights or strengths allow to make further annotations to the network. Without
weights, links can either be there or not (0 or 1). By adding weights as real numbers to
edges, links can be weak or strong according to the assigned weight (weight: EpGq Ñ R)
[43, 58]. Networks with weighted edges are called weighted networks. In the employee
network, weights are, for example, the number of emails sent per communication. In the
airport network, it is the number of passengers transported per year on this flight route.
Weighted networks can also be represented by the adjacency matrix.

Aij “
#

wij if pi, jq P E (there exists a link between i and j)
0 otherwise

(2.2)

The entries of a weighted adjacency matrix now represent the link weight between two
nodes i and j. The weights are usually positive numbers, and zero means that the
strength is zero, i.e., there is no link [58]. However, theoretically, there is no reason why
edge weights cannot be negative. For example, in social networks, positive edge weights
can represent friendship, and negative edge weights can represent antipathy and dislike.

Of course, directed, undirected, weighted, and unweighted networks can be mixed ar-
bitrarily. There exist directed-weighted, directed-unweighted, undirected-weighted, and
undirected-unweighted networks.

2.1.2 Examples of real-world network

In recent years, networks have been subject to extensive study for many researchers. Very
often, real-world networks are studied. Watts and Strogatz [82], as well as Newman [57],
suggest four different categories of real-world networks: social networks, information
networks, technological networks, and biological networks.

The study of social networks has been part of sociologic science for decades. Social
networks are networks in which nodes are people or groups of people. The edges between
the nodes are social contacts or interactions between them [57,58]. Sociologists often call
nodes actors and edges ties. Social interactions can be friendship, meetings, or messages
being sent. Researchers have conducted numerous studies about social networks, for
example, to investigate friendship patterns between individuals. A very famous example
is Zachary’s karate club [88], a study that has been conducted about social interactions
in a university karate club. The study shows that social networks often contain a form of
community structure. A community is a subset of vertices of the graph which are densely
connected with each other, but connections between communities are less dense [37].
Communities in social networks can represent social groups according to some common
criteria. In Zachary’s karate club, there is a link between two members in case the two
members were friends outside the karate club. One day, a karate teacher and the club
president had an argument that spread out to all the other members of the club. The
club split into two communities. One formed around the karate teacher and one around
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the president. However, the study about the Karate club was partially subjective because
members had to estimate individually if there is friendship between them or not. Many
studies suffer from the problem of subjectivity [57]. Today, the usage of the Internet
offers new methods to overcome this problem. For example, the microblogging service
Twitter allows users to interact and share thoughts in small messages, so-called tweets.
Twitter offers a public API that allows researchers to access massive amounts of data.
One can define an interaction between two users as a retweet, for example. This is strictly
recorded by Twitter, and therefore, the problem of subjectivity is eliminated. Influence
networks are a special case of social networks. They are represented as directed and
very often weighted networks. The directed links between objects show that one node
influences another. The weight indicates how strong the influence is.

The second category is information networks or knowledge networks. Information net-
works consist of nodes, which are pieces of data or knowledge that are linked to-
gether [57,58]. Very famous examples are citation networks. In citation networks, nodes
are academic papers. Two nodes are linked if one paper cites another paper [33, 58].
Another notable example is the World Wide Web. In general, information networks are
man-made, but they are thought to have social structures, too [84].

Technological networks are very similar to information networks, but their primary goal
is to distribute a certain resource [58]. The Internet is the most important example of
technological networks. It consists of routers, computers, and many other devices that
represent nodes. The connections are established wireless or via cable. The goal of the
Internet is to distribute information to the nodes. Another example is the electric power
grid in a particular country. Nodes would be households, electric power distribution
stations, and power plants in general. They are connected by power supply lines.

The last category is biological networks. Their primary goal is to represent biological
systems and interactions in these systems in a convenient way [58]. What exactly is
represented by nodes and links depends entirely on the biological system which is rep-
resented. Protein-protein interaction networks can be used to construct mathematical
models of the physical contacts between proteins in a cell. Nodes represent proteins, and
edges represent interactions between those proteins. Edges are usually undirected and
weighted [65]. Food webs are another example of biological networks that represent the
interconnection of food chains. Nodes can be animals and plants. A directed edge be-
tween two nodes means that the source node preys on the destination node. For example,
given the nodes pelican and fish, there exists an edge from pelican to fish because pelicans
eat fish. Furthermore, the human brain is a biological system that researchers have been
trying to model for the last decades using neural networks. In a neural network, neurons,
cells that take an input and generate a specific output, are wired together [58].

2.2 Fundamental quantities of information theory

Information theory is a mathematical field that deals with communication and the stor-
age and transmission of information [25]. The central quantities of information theory are
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entropy, relative entropy, and mutual information. Their definitions are based on proba-
bility theory. Information theory is widely applied in many different areas nowadays, for
example, economics or physics.

2.2.1 Entropy

In computer science, measuring information is very important. Entropy is a quantity that
is very often used to describe the amount of information a random variable contains. In
other words, entropy measures the uncertainty of a random variable [25]. Let X be a
discrete random variable with respective probability mass function P pX “ xq “ ppxq, x P
X where X denotes the alphabet. The entropy HpXq is defined by [73]

HpXq “ ´
ÿ

xPX
ppxq log2 ppxq (2.3)

The unit for entropy is bits. Intuitively, entropy describes the expected surprise of a
random variable. The less probability is assigned to an event, the more surprising its
occurrence, and the higher entropy (uncertainty) is. From another point of view, entropy
is the amount of missing information and the number of questions which are necessary
to identify the information.

For example, assume that Alice thinks about a number between 0 and 3, and Bob has
to guess the number. All numbers between 0 and 3 can be represented by 2 bits. Bob
first asks about the first bit and then about the second bit. He needs two questions to
get the correct number. Therefore, entropy is computed by:

HpXq “ ´
ˆ

1

4
log2

1

4
` 1

4
log2

1

4
` 1

4
log2

1

4
` 1

4
log2

1

4

˙

“ 2 bits

Entropy has several important properties [25]:

1. HpXq ě 0: Entropy is always positive.

2. maxHpXq for ppxq “ p 1
N , ...

1
N q: Entropy of a random variable X with N possible

outcomes reaches its maximum if X is uniformly distributed.

3. minHpXq for ppxq “ p1, 0, 0, ...q: Entropy of a random variable X reaches its mini-
mum if P pX “ kq “ 1 for some k P X .

2.2.2 Joint entropy

Joint entropy HpX,Y q of two discrete random variables X and Y is defined using the
joint probability mass function P pX “ x, Y “ yq “ ppx, yq, x P X , y P Y for alphabetes
X and Y [25]:

HpX,Y q “ ´
ÿ

xPX

ÿ

yPY
ppx, yq log2 ppx, yq (2.4)



CHAPTER 2. BACKGROUND 9

Intuitively, it is the uncertainty associated with two random variables X and Y and
means the amount of questions which must be asked to find out about both X and Y .
If X and Y are independent random variables, then HpX,Y q “ HpXq `HpY q.
For example, if Alice thinks about two numbers between 0 and 3, Bob needs two questions
for the first number and two questions for the second number, in total four questions, to
guess the correct one.

2.2.3 Conditional entropy

Conditional entropy HpY |Xq of two discrete random variables X and Y is defined using
the conditional probability P pY “ y|X “ xq “ ppy|xq, x P X , y P Y for alphabets X and
Y [25]:

HpY |Xq “ ´
ÿ

xPX

ÿ

yPY
ppy|xq log2 ppy|xq (2.5)

Conditional entropy describes the amount of uncertainty still associated with Y after
subtracting the uncertainty removed by X.

For example, assume Bob wants to know whether Alice likes computer games [42]. In
general, the probability that Math and Computer Science students like computer games
is 0.9, but the probability that History (H) students like computer games is only 0.25.
Let X be a discrete random variable representing the study of Alice. Let Y be a discrete
random variable telling about whether Alice likes computer games. If Bob knows what
field of study Alice chose, the uncertainty about whether she likes computer games is
lower. If Bob does not know the field of study, the overall uncertainty about the question
is higher.

Conditional entropy HpY |Xq is zero if and only if the value of Y is known by knowing
X [25]. In case X and Y are independent random variables, X cannot reduce the uncer-
tainty about Y , and therefore, the knowledge about X is useless, i.e., HpY |Xq “ HpY q.
Furthermore, HpY |Xq ď HpXq because knowing X can only reduce the uncertainty
about Y . In the worst case, the reduction is 0.

There is one important relation between conditional entropy and joint entropy which is
called the chain rule:

HpX,Y q “ HpXq `HpY |Xq ô
HpY |Xq “ HpX,Y q ´HpXq (2.6)

It allows expressing conditional entropy in terms of joint entropy and vice versa.

2.2.4 Relative entropy

Relative entropy, also known as Kullback-Leibler divergence or Kullback-Leibler distance,
is defined for discrete probability distributions ppxq, qpxq by [25,52]:
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Dpp||qq “
ÿ

xPX
ppxq log2

ppxq
qpxq

“ E
ˆ

log2
ppxq
qpxq

˙

(2.7)

Relative entropy is the expected value of the logarithmic difference between two proba-
bility distributions. Therefore, it can be seen as a measure of how different probability
distributions are. Computing the divergence is especially useful when approximating one
distribution with another and wanting to know how much information is lost because of
the approximation. However, the term distance is misleading since it is not symmetric.

2.2.5 Mutual information

The definition of mutual information is based on the definition of relative entropy. For
two discrete random variables X and Y with probability distributions ppxq, ppyq, x P X
and y P Y as well as the joint probability mass function ppx, yq, mutual information
IpX;Y q is [25]:

IpX;Y q “ Dpppx, yq||ppxqppyqq
“

ÿ

xPX

ÿ

yPY
ppx, yq log2

ppx, yq
ppxqppyq

(2.8)

While mutual information shows how much uncertainty is taken away from Y by knowing
X, conditional entropy describes how much uncertainty remains. Therefore, it can also
be computed as the difference between entropy and conditional entropy.

IpX;Y q “ HpXq ´HpX|Y q
“ HpY q ´HpY |Xq (2.9)

Mutual information is symmetric. If X and Y are independent random variables,
IpX;Y q “ 0 because then HpX|Y q “ HpXq and HpY |Xq “ HpY q. It can also be
used to measure how independent two random variables are [86]. Figure 2.1 shows the
relationship between all fundamental quantities of information theory, entropy, mutual
information, conditional entropy, joint entropy.

2.3 Transfer entropy

Transfer entropy, also referred to as information transfer, is used to analyze two stochastic
processes, X and Y , and is written as TEXÑY or respectively, TEYÑX . Transfer entropy
describes how much uncertainty of the stochastic process Y is reduced by the knowledge
of stochastic process X [44, 71,80].
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HpX|Y q HpY |XqIpX;Y q

HpXq HpY q

HpX,Y q

Figure 2.1: Relationship between mutual information IpX;Y q, conditonal entropies
HpX|Y q, HpY |Xq, entropies HpXq, HpY q and joint entropy HpX,Y q

2.3.1 Granger causality

Transfer entropy is "a nonlinear generalization of Granger causality" [16, 80]. Granger
causality is used to test if two random variables are connected by a causal link. Usually,
these two random variables are part of a time series. According to the definition, a
random variable X Granger-causes a random variable Y if, given the history of X and
Y , the history of X helps to predict the future of Y . Assume the future of Y , yt should
be predicted by a linear prediction model:

yt “ a1yt´1 ` a2yt´2 ` ...` anyt´n ` ...` ey (2.10)

ey is the error of prediction. If X should also be considered for the prediction, one could
write:

yt “ a1yt´1 ` a2yt´2 ` ...` anyt´n ` ...`
b1xt´1 ` b2xt´2 ` ...` bnxt´n ` ...` ey|x

(2.11)

ey|x is the error of the second prediction. X is Granger-causal to Y if the variance of the
error of the second model is smaller than the variance of the error of the first model, i.e.

varpey|xq ă varpeyq (2.12)

A smaller error variance means that X helps to predict Y and therefore there is a causal
relationship between them [29].

2.3.2 Definition of transfer entropy

Similar to Granger causality, transfer entropy works with lists of timestamps. More
specifically, for the stochastic process X, the list of timestamps (the history of X), is
denoted by

SX “ ttj : 0 ă t1 ă t2u (2.13)
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However, transfer entropy is a probabilistic measure and the list of timestamps is not.
Timestamps can be converted into probability distributions via the transformation into
binned random variables [80]. A binned random variable is assigned to a specific time
frame. If an event happens in that time frame, the binned random variable is 1. Other-
wise, it is 0.

BXpa, bq “
#

1 if Dtj P SX X pa, bs
0 otherwise

(2.14)

We refer to the binned random variable at time t for the history of a stochastic process
X as Xt. The distance between a and b is called a bin width, δ “ b´a. Usually, one does
not only want to compute one bin but k bins with bin widths δ0, δ1, δ2, ...δk P R. This
results in the joint probability distribution describing a sequence of adjacent bins [80]:

P pBXpt, t´ δ0q “ Xt, BXpt´ δ0, t´ δ0 ´ δ1q “ Xt´1, ...q (2.15)

For reasons of simplicity, let Xt´k
t “ tXt, ...Xt´ku and Y t´k

t “ tYt, ...Yt´ku. We obtain
a shorter notation for the joint probability function P pXt´k

t , Y t´k
t q.

Transfer entropy works with these probability distributions. One can rewrite the formula
using the chain rule introduced in Equation 2.6.

TXÑY “ HpYt|Y t´k
t´1 q ´HpYt|Y t´k

t´1 , X
t´k
t´1 q

Chain rule (2.6)“ HpYt, Y t´k
t´1 q ´HpYtq ´HpYt, Y t´k

t´1 , X
t´k
t´1 q `HpYtq

“ HpYt, Y t´k
t´1 q ´HpYt, Y t´k

t´1 , X
t´k
t´1 q

(2.16)

Intuitively, it can be described as the reduction of uncertainty of random variable Yt given
the history of X. The first term describes the uncertainty about Yt given the history of
Y . The second term describes the uncertainty about Yt given the history of Y and the
history of X. The difference between those two describes the reduction of uncertainty.

For example, consider the case where X and Y represent Twitter users and their histories
SX and SY describe when they posted a tweet. X can only reduce the certainty of Y if
there is information flow from X to Y . For example, if X tweets about climate change
and Y tweets about climate change minutes later because Y read the post of X, there is
information that flows from X to Y . Instead of information flow, the term information
transfer is also used interchangeably for transfer entropy. Another possibility is to view
transfer entropy as the amount of information about Y that can be explained by the
history of X but cannot be explained by the history of Y alone [80].

Transfer entropy is asymmetric, i.e., TEXÑY ‰ TEYÑX . Intuitively, there might be
information flow from user X to user Y but not vice versa.

Figure 2.2 shows an example of the computation of transfer entropy for two stochastic
processes X and Y and their respective list of timestamps. The right shows the list of
timestamps SX and SY , the values of the binned random variables for each step in time,
and the probabilities which are computed from the binning process. Marginalizing these
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0 1 2 3 4 5 6 7

tX0 tX1 tX2

tY 0 tY 1 tY 2 tY 3

δ1 δ0t “ 0

δ1 δ0t “ 1

δ1 δ0t “ 2

δ1 δ0t “ 3

δ1 δ0t “ 4

δ1 δ0t “ 5

SY “ t2, 3, 5, 6u, SX “ t1, 3, 4u, k “ 1

t Yt Yt´1 Xt Xt´1

0 1 0 0 1

1 1 1 1 1

2 0 1 1 1

3 1 1 0 1

4 1 1 0 1

5 0 1 0 0

P pYt “ 1, Yt´1 “ 0, Xt “ 0, Xt´1 “ 1q “ 1{6
P pYt “ 1, Yt´1 “ 1, Xt “ 1, Xt´1 “ 1q “ 1{6
P pYt “ 0, Yt´1 “ 1, Xt “ 1, Xt´1 “ 1q “ 1{6
P pYt “ 1, Yt´1 “ 1, Xt “ 0, Xt´1 “ 1q “ 2{6
P pYt “ 0, Yt´1 “ 1, Xt “ 0, Xt´1 “ 0q “ 1{6

HpYt|Yt´1q “ 0.8091, HpYt|Yt´1, Xt´1q “ 0.5408
Ñ TEXÑY “ 0.2683

HpXt|Xt´1q “ 0.8091, HpXt|Xt´1, Yt´1q “ 0.6666
TEYÑX “ 0.1425

Figure 2.2: Example computation of transfer entropy for two stochastic processes X and Y

probabilities gives the respective distributions to compute the entropies which are needed
to compute transfer entropy.

2.3.3 Normalized transfer entropy

The total value of transfer entropy can be difficult to interpret sometimes. Especially
when comparing different scenarios and situations which use different parameters or
configurations, it is hard to do evaluations based on absolute values for transfer entropy.
Therefore, we define normalized transfer entropy [40] by

ˆTEXÑY “ TEXÑY
HpYt|Y t´k

t´1 q

“ HpYt|Y t´k
t´1 q ´HpYt|Y t´k

t´1 , X
t´k
t´1 q

HpYt|Y t´k
t´1 q

(2.17)

The normalized transfer entropy will map the value of transfer entropy to the range [0,1],
and therefore, ˆTEXÑY can be seen as the amount of information flow in percent. If X is
a perfect predictor for Y then Y is completely determined byX, i.e., Y strictly followsX.
HpYt|Y t´k

t´1 , X
t´k
t´1 q becomes zero and we obtain 1 as the total normalized transfer entropy

(Case 1 in Equation 2.18). If X and Y are completely independet from each other,
knowing X does not change the entropy of Y and HpYt|Y t´k

t´1 , X
t´k
t´1 q “ HpYt|Y t´k

t´1 q. The
total normalized transfer entropy is then 0 (Case 2 in Equation 2.19).
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Case 1: Y fully depends on X

HpYt|Y t´k
t´1 , X

t´k
t´1 q “ 0

ñ ˆTEXÑY “ HpYt|Y t´k
t´1 q ´ 0

HpYt|Y t´k
t´1 q

“ 1

(2.18)

Case 2: Y fully independent from X

HpYt|Y t´k
t´1 , X

t´k
t´1 q “ HpYt|Y t´k

t´1 q

ñ ˆTEXÑY “ HpYt|Y t´k
t´1 q ´HpYt|Y t´k

t´1 q
HpYt|Y t´k

t´1 q
“ 0

(2.19)

However, this solution has some issues. For example, if HpYt|Y t´k
t´1 q is very small and at

the same time Y fully depends on X, so HpYt|Y t´k
t´1 , X

t´k
t´1 q “ 0, ˆTEXÑY will be 1. The

smaller HpYt|Y t´k
t´1 q is, the less information is actually transferred but still the normalized

transfer entropy is 1. This problem actually occurs whenever HpYt|Y t´k
t´1 q is very small

and HpYt|Y t´k
t´1 , X

t´k
t´1 q is comparably big.

Another possibility is to choose log k as the normalization factor.

ˆTEXÑY “ TEXÑY
log k

(2.20)

This is based on the observation that 0 ď TEXÑY ď log k because entropy reaches the
maximum value in case the probability distribution is uniform.

0 ď TEXÑY
“ HpYt|Y t´k

t´1 q ´HpYt|Y t´k
t´1 , X

t´k
t´1 q

ď HpYt|Y t´k
t´1 q

ď HpYtq
log k

(2.21)

This solution manages to overcome the problem described above because ˆTEXÑY is big
in case HpYt|Y t´k

t´1 q is big and small otherwise because the scale factor is constant.

2.4 Identification of Influencers in Social Networks

In social networks, actors interact with each other. For example, on Twitter, users can
follow each other, retweet tweets, or react to tweets. In many cases, users do not make
the decision of following or tweeting independently from others but are influenced by
other users. One important research topic is to find and identify influentials. Influentials
are a small user group that influences the behavior of another larger user group [80]. In
many research areas, it is essential to identify influentials because they have a big effect
on the public opinion [81].
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In 1955, Katz and Lazarsfeld introduced the theory of the two-step flow of communica-
tion [47]. The theory says that people do not form their opinion directly based on mass
media, but rather based on influential personalities who interpret mass media and put
the information into context. The theory is called a two-step flow because, in the first
step, information flows from the mass media to the influentials, and in the second step,
information flows from the influentials to the people. Back in 1955, a good example of
the theory would be the weather forecast. Meteorologists publish the weather forecast,
but people do not read the forecast directly but listen to the weatherman on the radio.
Examples where the theory applies can still be found today in social networks like Insta-
gram. For example, on Instagram, brands are selling and advertising face care products.
Those brands contact influential persons on Instagram to advertise their products and
show them to their followers because it turns out that this way of advertising is much
more effective. Regular users react more positive on influencer advertisements than on
brands’ advertisements.

In the decades after Katz and Lazarsfeld published the theory, the idea of influentials be-
came a central element of research in various areas, including marketing, communication
science, and innovation science [81]. For example, if a company creates innovation and
invents a new product, influential users need to be identified because the whole mass of
other potential new users will follow them [56].

In the area of computer science, researchers have identified several effective methods to
detect influential actors in a social network. In 2010, Weng et al. [83] showed how to
use PageRank to identify influential twitter users. Based on that, many other influencer
detection methods using PageRank have been published [49,51,87]. Influentials can also
be identified based on the number of retweets, followers, and mentions [22], as well as the
number of new followers over a specific time frame in the past [64]. Other ideas include
the construction of follower trees and information cascades [14]. A similar approach was
published by Silva et al. [74], combining information diffusion and PageRank. Romero
et al. [68] show how to detect the amount of passive information consumed by users and
find out about influencers using the influence-passivity score. In this thesis, we identify
influencers using a method published based on the concept of transfer entropy [80]. Most
of the studies in this area use Twitter as the main resource for their dataset because
Twitter offers an easy-to-use API, which allows to construct a large dataset comfortably.
However, most of the insights gained apply to any social network.

2.4.1 PageRank

PageRank is used by Google to determine the relevance of their search engine results and
was invented by Page et al. [60]. The basic idea of the algorithm is that web pages that
have a lot of ingoing links from important web sites are very important themselves. The
algorithm starts with each page having the same rank. Then, iterating over a predefined
number of steps, each web page updates its rank by summing over the rank of ingoing
links. A web page A has an ingoing link if another web page B links to A.
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TwitterRank modifies the PageRank algorithm [83]. Instead of pages, the algorithm
works with twitter users. The following relationship between users represents links. This
means that user A links to user B if A is followed by B. The influence of a twitter user
is strong if the user is followed by influential users. The influence of a user on a follower
depends on the amount of content that the followers receive from the user. However,
TwitterRank focuses on certain topics, i.e., identifies topic-specific influencers.

Kwak et al. [49] compare the ranking created by PageRank to a ranking created by
the number of followers and the number of retweets. The set of tweets which they use
focuses on trending topics of a specific time frame. They conclude that the rankings by
PageRank and the number of followers are similar, but the ranking by the number of
retweets differs. The reason for this is that Twitter users more often retweet news pages,
for example, CNN or The New York Times, than tweets of regular users.

TURank, a method published in 2010 [87], is based on ObjectRank, which is an extension
of PageRank. ObjectRank additionally distinguishes different kinds of edges and nodes
by applying weights to them. TURank applies ObjectRank to the so-called user-tweet
graph. The user-tweet graph comprises users and tweets as objects which are linked by
edges of a specific type. In case a user tweets a tweet, there is a post edge from the user
to tweet. If a user follows another user, there is a follow edge. A retweet edge is created
from a tweet t to the retweet tweet of t. They introduce reverse edges for all of the three
types mentioned above, calling them posted, followed and retweeted. The edge weights
depend on several different parameters, including the number of outgoing edges and an
assignment made by the authors by hand. ObjectRank is applied to this user-tweet graph
to obtain the respective ranks. Their experiments show that, for example, the algorithm
assigns users with a low number of followers, but a high number of retweeted tweets,
a higher rank than users with many followers and a low number of retweeted tweets.
TURank was also shown to filter out long conversation tweets between users because
they should not affect influence.

2.4.2 Retweets, Indegree and Mentions

Cha et al. [22] shows how to measure influence using retweets, indegree and mentions.
Indegree is equivalent to the number of followers a user has. Mentions can be made in a
tweet to link to another user. For example, this tweet mentions Barack Obama: Thinking
about the elections. @BarackObama should run for president again. The au-
thors provide a novel categorization of influence: Indegree influence provides information
about the audience size of a specific user by counting followers. A high Retweet influence
of a user means that he or she creates tweets that motivate other users to share these
contents. Mention influence describes the number of conversations created which want
to engage a specific user. The authors of the paper construct the dataset by collecting
tweets for the time range of a month and filtering out unsuitable users, for example,
private or inactive users. Then, they compute the influence measured of all those users,
as described above.
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The most influence, according to indegree influence, comes from news sources and celebri-
ties, for example, actors and models. News sources have a high Retweet influence,
together with content creation pages, e.g., Tweetmeme. Celebrities have the biggest
mention influence because regular users often started conversations with celebrities, for
example, in the form of gossip. The authors provide a toplist for users according to in-
fluence of all three categories. There are only a few users which appear on all three lists.
Combining all three influence measures, they show that users who are often retweeted
are also often mentioned in Tweets and vice versa. However, the correlation between the
number of followers and the other measures is very weak. The authors examine other
measures, for example, the overall number of tweets or the number of users who are
followed by a specific user. They do not include them in the analysis because they very
often rated bots and spammers as very influential.

Another approach was published by Qasem et al. in 2015 [64]. They examine the usage
of the number of new users a potential influencer has interacted with as a measure of
influence. The method is based on the thought that the more new users are attracted by
a particular user u in a specific time frame, the more influential u must be. The authors
do not only apply this analysis to data gathered from Twitter, but also to data from
Asterisk. Asterisk is an open-source software project, and they considered the mailing
list, which serves an easy communication method among Asterisk developers. If two
developers appear in the same mailing thread, they are considered to be connected. In
the Twitter dataset, they focus on the retweet-connection.

2.4.3 Information diffusion

The spread of information in social network has recently been a heavily studied research
topic. Information diffusion is determined by parameters like the spreading rate and the
topology of the social network [50]. The two most widely-used approaches for modeling
information diffusion are the Linear Threshold model and the Independent Cascade model
[50]. Both models work with a directed graph representing the social network. Nodes
in the graph are either active or inactive. Information starts at an initial set of active
nodes and spreads in discrete time steps. In each time step, a node can become active
or inactive. The information diffusion stops in case no more nodes can be activated.

In the Linear Threshold model, each node in the network is assigned a random threshold.
When information reaches a particular node, the node is only activated in case the
total amount of incoming information exceeds the previously assigned threshold [21].
In the Independent Cascade model, each node w has a single chance to activate each
of its neighbors vi. A neighbor vi becomes active in the next time step with a certain
probability. Independently of whether w managed to activate vi, w will never activate
vi later. Information diffusion processes can be used to analyze and identify influential
nodes in a network, as it was shown by Bakshy in 2011 [14] and by Silva et al. in 2013 [74].

The study which was done by Bakshy [14] is also based on a Twitter dataset. They track
the diffusion of URL posts, which are tweets containing a URL. Tracking starts at a
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specific seed node, the user who posted the URL, and follows the path of followers and
followers’ followers until the information diffusion process terminates. They say that a
twitter user A influences his follower B if first A posts the URL and then B. If A is not
the only person followed by B who posted the URL, there are several possibilities to deal
with the situation. The authors suggest to either choose the user who posted the URL
first, the one who posted the URL most recently or to split the influence credit among
all users. In the next step, influence trees are constructed for every initial posting of a
URL. The final influence score for every seed node is given by the number of users in the
influence tree. It is shown that the end result, i.e., which users are the most influential
ones, is not determined by the choice of influence assignment in case more users posted
the URL. The drawbacks of this approach are that it might also happen that a user
posts an URL without being influenced by one of the users he follows. Additionally, the
notion of influence might be defined too strict here because they assume it is necessary to
retweet an URL such that influence actually exists. In real world, it might often suffice
that a user opens the URL in his browser to talk about influence.

ProfileRank was published by Silva et al. [74] in 2013. The algorithm tries to identify
influential users by applying ideas of both information diffusion and PageRank. Profil-
eRank is based on the assumption that "relevant content is created and propagated by
influential users and influential users create relevant content" [74]. The authors used
Twitter as the example platform for their experiments. In the first step, a random surfer
is started to navigate through twitter randomly. The random surfer clicks on random
tweets, which leads to a user profile. On the user profile, the surfer again clicks on a tweet
and so on. User influence is computed by counting the number of visits of a specific user
profile. It is mentioned that the significant advantage of PageRank is its independence
from the meaning of the tweet. It is easy to identify the meaning of a tweet containing
only text, but it is harder to deal with image or video content. Since PageRank does not
rely on such information, it is applicable in those situations.

2.4.4 Influence-passivity score

A different approach focuses on the passivity of users in social networks [68]. The main
assumption is that the majority of users does not actively publish information but is
more of a passive information consumer. For example, on Twitter, most users do not
actively tweet and retweet information but rather only read through their feed without
acting. They define influential users as users who act more actively than passively and
additionally have a broad audience, i.e., a large number of followers. How passive a user
is depends on how easy it is for other users to influence him. In order to determine how
influential a specific user is, the method considers the collective passivity of all followers.

In detail, the algorithm operates on a weighted directed graph with the users as nodes.
There is an edge between two users if user A follows user B. The weights are determined
by the amount of influence A effectively has on B in relation to the amount of influence A
tried to have on B, the so-called relative influence. Relative passivity can be defined ac-
cordingly and by normalizing both measures using the total incoming influence/passivity,
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the so-called acceptance and rejection rates can be computed.

Their findings show that the Influence-passivity score method can be used to successfully
identify the most influential users, mainly news sites and bloggers but also the most
passive users, which were exclusively bots. A significant advantage of the algorithm is
that it applies to other platforms than Twitter easily.

2.4.5 Transfer Entropy

In 2007, researchers showed that transfer entropy can be used to investigate the relation-
ship between neurons in the human brain [40]. In 2012, Ver Steeg et al. [80] showed that
the concept could also be used in social networks to find out about influential nodes. The
big advantage is that the approach does not rely on information about causal relations.
Almost all methods which were discussed so far required to know whether user A follows
user B or user A retweeted tweets posted by user B. Transfer entropy does not require
this information to characterize influential nodes, but solely needs to know when certain
events happened, e.g., when users A and B tweet something about a particular topic.
Therefore, the approach is called model-free by the authors.

They use a Twitter dataset to evaluate their methods and test if transfer entropy can be
used in order to infer information transfer from the timestamps of 3.5 million tweets of
800.000 users. They exclude users who did not reach a certain activity level, i.e., users
who did not at least make 10 tweets in the observation period. The results show that
the majority of accounts, which were the source of the most information transfer, are
promotional accounts and bots. In general, the authors state that the advantage of the
method is that it is model-free, but the disadvantage is that it requires more data than
other approaches. They also suggest to pick the bin resolution based on a user’s activity
to avoid coarse-grained information for very active users.

2.5 Modeling User Activity in Social Media

Social media platforms are very complex systems. Understanding those systems is some-
times not easy. Very often it helps to narrow down the complexity by building a simple
model from the complex system. Since social networks rely on user-generated content,
the central question of such models is how users behave [89]. For example, researchers
analyzed the behavior of users writing emails. They found that the times when users
write emails are clustered [89]. This means that through a day, a user has long, inactive
periods where no emails are written. When an active period occurs, the user often writes
not only one email but several emails at once. However, several other characteristics of
user behavior have already been identified.

Over the last years, researchers have suggested numerous stochastic models to cope with
these characteristics. In the following, we want to discuss some of them. The simplest
way to model user behavior is to use a Poisson point process [15,79], which we also use in
this thesis. Malmgren et al. [54] propose the Cascading Non-homogeneous Poisson point
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Figure 2.3: User posting behavior in a social network over a week and day by L. Guo, E. Tan,
S. Chen, X. Zhang, and Y. E. Zhao in Analyzing patterns of user content generation in online
social networks, 2009 [41]

Figure 2.4: Inter-arrival times of postings on Reddit and Twitter follows the power law. Image
by A. Ferraz Costa, Y. Yamaguchi, A. Juci Machado Traina, C. Traina Jr, and C. Faloutsos in
Mining and modeling temporal activity in social media, 2015 [35]

process (CNPP) model, which uses a special form of Poisson point processes. Zhang
et al. [89] describe a new class of point process models, Interpretable Point Processes.
Furthermore, in 2013, Vaz de Melo et al. [28] proposed the Self-Feeding Process (SFP),
combining non-homogeneous Poisson point processes and power laws. The Rest-Sleep-
Comment (RSC) model [35] focuses on the inter-event times of postings on social media
and tries to cover all identified characteristics.

2.5.1 Characteristics of user behavior

User activity in social networks is characterized by timestamps in most cases [77]. Those
timestamps describe when and how often a user executes a certain action. An action
can be leaving a comment, sending an e-mail, retweeting, or following another user. The
list of timestamps of user X is denoted as SX “ ttj : 0 ă t1 ă t2...u. The number of
timestamps in a certain time interval is described as the frequency [77].

A study by Guo et al. [41] observes and analyzes users of various social networks. They
found out that there is a strong daily and weekly pattern of user posting behavior to
social media. For example, users of the social media platform Instagram might check
new posts twice a day, in the morning before work and in the evening. Additionally,
on Saturdays and Sundays, they might change their pattern and check it at lunchtime,
too. Another example using an answer social network, such as Stack Overflow, is given
in the study. The pattern of user behavior can be seen in Figure 2.3. It shows that
users generate more posts on weekends than on weekdays. The peak time for posting
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during a day is 11 pm, the least posts are generated around 6 am. Another approach was
introduced by Ferraz et al. [35], which focuses on inter-event times (inter-arrival times)
between postings. The inter-event time is the time between two consecutive postings of
the same user. They found out that these inter-event times have periodic spikes every
24 hours. This was also shown by the study we discussed above.

The inter-event times follow a heavy-tail distribution, i.e., the power law [15, 35]. This
means that most postings are done in small intervals while the minority of postings is
done in long intervals, which creates a bursty pattern of events over time. Periods of
high activity are followed by periods of resting. An example is shown in Figure 2.4 for
the online services Reddit and Twitter. There are various reasons for this behavior, for
example, the natural circadian cycle of humans.

2.5.2 Poisson point process models

Although it was shown that the inter-event times of posts in social networks follow the
power law, the simplest way to model human activity is a Poisson point process.

Point processes, in general, are used to describe the random scattering of points in
any dimension. In most cases, one-dimensional data is generated in the notion of time
points [66]. At every step in time, the point process can only take one of two possible
values: 1 in case an event occurs at that point in time or 0 otherwise. Point processes
can be specified by the distribution of inter-event times. Famous examples of point
processes are Poisson point processes and Hawkes processes. Hawkes processes are models
describing situations in which the occurrence of an event increases the chance of other
events happening immediately after.

Poisson point processes are characterized by the Poisson distribution, a discrete proba-
bility distribution. If X is a Poisson random variable and equal to k, the probability is
given by:

P pX “ kq “ λke´λ

k!
(2.22)

λ is the single Poisson parameter and defines the distribution. For example, X can
represent the number of events happening in a specific time frame. The probability that
the event occurs k times is given by the equation above. λ describes the frequency in
which events happen on average.

Poisson point processes are characterized by the following properties [13,48]:

1. Number of points is Poisson distributed: A Poisson point process is simulated in
time. For any bounded time frame in this time, the number of points is Poisson
distributed. For example, the number of events happening in the time frame is
Poisson distributed.

2. Independence: Now, considering two non-overlapping timeframes, the number of
points in both time frames are independent random variables.

We distinguish homogeneous or stationary Poisson point processes and non-homogeneous
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or inhomogeneous Poisson point processes.

Homogeneous Poisson point processes are Poisson point processes having a constant
parameter λ. Homogeneous Poisson point processes have a third, additional property [48]:

3. Memoryless: The distances of two points in the Poisson point process follow an
exponential distribution with parameter λ. This means that the inter-event times are
exponentially distributed. Memoryless means that the fact that an event occurred
at any time t1 does not affect the probability that another event occurs at any other
time t2.

An example of such a process would be the customers arriving at a fast-food restaurant,
the number of earthquakes in a certain area [19], or visitors of a web site. Examples of
points generated with a Poisson point process are given in Figure 2.5.

Non-homogeneous Poisson point processes do not use a constant parameter λ, but a
function λptq describing the intensity at a certain point in time t. This can be useful
to describe processes where the amount of events depends on the time. For example,
customers arriving at a fast-food restaurant would probably arrive more often around
lunch- or dinner-time. A web site of the Austrian government will have more visitors
in the morning or in the evening, but almost none during night time. An example of a
non-homogeneous Poisson point process is given in Figure 2.6. It shows the model of a
restaurant simulated over one day. λptq gives the average number of customers arriving
at different times of the day.

In this thesis, we generate synthetic data for user activity on social media using homo-
geneous and non-homogeneous Poisson point processes.
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2.5.3 Cascading Non-homogeneous Poisson point process (CNPP)
model

Malmgren et al. show in [53,54] that Cascading Non-homogeneous Poisson point processes
can be used to model email communication. They found out that email communication is
periodic and cascading. Periodic refers to the recurring peaks in user activity. Cascading
refers to cascades of activity, which are active periods of varying length in which the user
sends emails. They propose the CNPP approach, which combines a homogeneous Poisson
point process and a non-homogeneous Poisson point process to model user activity when
writing emails. The non-homogeneous process is used to represent periodicity in user
behavior using a frequency rate of λpptq. In order to define λpptq, they analyze the
level of user activeness over a week such that the week can be separated into intervals
where each interval has a certain level of activeness associated. Depending on in which
period t falls, λpptq gives different intensity values. The result of this process is a list of
times where an active period occurs. The homogeneous Poisson point process is used to
model these active periods (cascades) in which λa is chosen constant and represents the
average number of emails written in the period. It delivers the actual list of timestamps
where emails are written. The authors show that the model can be applied to email
communication and suggest that it might also be applicable in the situation of telephone
calls or running errands.

2.5.4 Bivariate Point Process models

In 2018, researchers conducted a study which analyzes tweets from Donald Trump, and
posts of users on Sina Weibo are analyzed [89]. They find that the interaction of the
user with social media happens in episodes. On Twitter, users tend to alternate tweeting
and retweeting during active periods, and that tweets and retweets are generated by
different mechanisms. This results in two different classes of events, tweets, and retweets.
Moreover, this motivates the usage of a bivariate point process. The suggested point
process uses several parameters, including the probability that the user starts an episode
with a tweet an not a retweet, the varying time between two episodes, the number of
tweets and retweets in an episode, and the inter-event time between tweets and retweets
in an episode.

2.5.5 Self-Feeding Process (SFP)

For a long time, a major drawback of modeling user activity using Poisson point processes
was the assumption that inter-event times are independent and identically distributed.
However, this is not the case because when users write emails, for example, the probability
that they write an email at a certain time depends on previously written ones. The Self-
Feeding Process (SEP) model tries to overcome this using a Markovian approach. It is
assumed, that the time of the next event happening depends on exactly the previous one.
In order to achieve this, every inter-event time is defined as an exponentially distributed
random variable. Exponential probability distributions are characterized by the rate
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parameter, which depends on the previous inter-event time in the SEP model. Thus,
SEP generates events such that inter-event times follow the power law, and the process
behaves like a Poisson point process within a short time frame. An additional advantage
of the SEP model is that it usually requires only a single parameter, the desired median
of inter-event times.

2.5.6 Rest-Sleep-and-Comment (RSC) Model

As already stated above, inter-event times show periodic spikes, and the inter-event time
ti depends on the previous, ti´1. Inter-event times follow a bimodal distribution. The
CCDF is a long tail. The purpose of the RSC model, as described in [35], is to match
those characteristics as best as possible. There are three phases the algorithm can be
in, Rest, Sleep, and Comment (Active). Using the variable tclock, the algorithm keeps
track of the current time of the day. tclock advances whenever an event happens. In the
Comment phase, events are generated using a self-correlated process, which ensures that
inter-event times are not independent. In this phase, users actually post something on
social media. In the Rest phase, no events are generated. These are the passive phases
during the day where users do not post anything on social media. In the Sleep phase, a
single event is generated, which is only used to advance tclock to the next Comment phase.
In other words, this phase is the time of the day where the user sleeps, and the event
is used to move the clock time to the morning. RSC has some interesting applications.
Besides the simulation of user behavior, it can be used for the detection of bots on the
Internet.



Chapter 3

Synthetic Analysis

This chapter presents an analysis of the behavior of transfer entropy based on synthetic
test data. The test data generation process can be easily configured by a set of param-
eters. The test data presents a specific scenario, for example, a highly active actor, and
therefore the behavior of transfer entropy in such cases can be studied. First, we outline
how test data is created in general using two different models, the Influencer-Follower
model and the Coupled model, and describe the set of tunable parameters. Next, we
discuss the influence of these parameters in a scenario of two actors and in a scenario of
a network of multiple actors. Additionally, we discuss different approaches to normalize
transfer entropy.

3.1 Test data generation

Transfer entropy between agents in a social network depends on many different parame-
ters, including the activity of agents and their strength of influence [80]. In order to better
understand the influence of those parameters, we construct a way to generate meaningful
test data such that aspects of real-life networks are covered as good as possible. The
parameters which are covered by our test data generation framework are the strength of
influence an actor has on another and the level of activity with which an actor operates.
The strength of influence γ is the amount of influence an actor has on another actor. It
describes how likely it is that actor B executes an action because actor A executed one
recently. Some actors act more frequently than others, some actions are independent,
and some are influenced by other actors. µ describes the number of independent actions
executed by an actor. In some cases, actors act entirely on their own. The frequency of
those events is described by parameter λ.

As shown by Ver Steeg et al. [80], a method to cover all these aspects is the usage
of a Poisson point process. We distinguish between two major cases: the Influencer-
Follower model and the Coupled model. Actors in the Influencer-Follower model can
either influence other actors, i.e., be an influencer, or be influenced by other actors,

25
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i.e., be a follower but not both at the same time. Actors in the Coupled model can do
both, and it is possible to be influencer and follower at the same time. The outcome
of the test data generation process is a list of timestamps SX for each actor X in the
network which describes when a certain event occurs. In order to control the amount
of generated timestamps we use parameter T . It describes the time boundary when the
data generation process ends, i.e., @ti P SX : ti ă T .

3.1.1 Influencer-Follower model

Using the Influencer-Follower model, we simulate networks which are strictly separated
into two groups of users: influencers and followers. Influencers have their own indepen-
dent pattern of activity, which is not aligned to the pattern of other actors in any way.
They operate in a completely isolated, time-independent way. In order to characterize
the activity generated by influencer X, we use a homogeneous Poisson point process with
a constant frequency rate for the influencer’s activity λ. The activity pattern of followers
is partially influenced by the activity pattern of their influencers. They operate in a
time-dependent way because if the influencer X causes an event, the probability that the
follower Y also causes an event is higher. In order to characterize the activity generated
by follower Y , we use a non-homogeneous Poisson point process with a time-dependent
rate for the follower’s activity λY ptq [80].

λY ptq “ µ` γ
ÿ

tiPSt
x

min

˜

1,

ˆ

1 hour
t´ ti

˙3
¸

(3.1)

µ represents the rate of constant background activity, i.e., the number of events generated
by Y independently without being influenced. γ denotes how strong the influence of X is.
SX denotes the set of timestamps of events executed by X. StX includes all timestamps
between 0 and t. The usage of StX adds time-dependency to the Poisson point process
of Y . In case a follower has more than one influencer, the equation changes to the
following [80].

λY ptq “ µ`
ÿ

XPIpY q
γX

ÿ

tiPSt
x

min

˜

1,

ˆ

1 hour
t´ ti

˙3
¸

(3.2)

Compared to Equation 3.1, all actors which influence Y , denoted by IpY q, are now
considered.

In real life, there exist several examples of these networks. For instance, some users on
the popular photo-sharing platform Instagram act literally as influencers having a certain
amount of followers. Influencers create photos independently from each other. Influencer
Alice might post a photo of colorful autumn leaves in the street. Follower Bob, who
follows Alice, might then, as an event, either repost this photo or feel inspired by Alice
and post his own photo of colorful autumn leaves in the street. One might argue that
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Figure 3.1: Example network constructed from adjacency matrix A consisting of four nodes.
On the right side, the influencer set I of each node is shown.

this is not a strict Influencer-Follower model because influencers might also affect each
other. However, these cases can be viewed as corner-cases and are often undesired when
analyzing data.

3.1.2 Coupled model

The Coupled model represents situations that are more similar to real-world scenarios
than situations shown by the Influencer-Follower model. There is no strict separation into
two groups, as the Influencer-Follower model suggested. Every actor can be influencer
and follower at the same time. They act both independently and inspired by others. In
order to characterize the activity generated by an actor X, a non-homogeneous Poisson
point process is used similar to the one used for followers in the Influencer-Follower
model. The activity rate for the point process is time-dependent. The model can be
characterized by Equations 3.1 and 3.2. Note that in a network of interacting actors,
IpY q is given by the adjacency matrix for each actor Y . An example of this can be seen
in Figure 3.1.

In real life, almost every social network can be better represented by the Coupled model
than by the Influencer-Follower model. A good example is Spotify, a popular music
streaming platform. Users can listen to music there, and other users can see which music
they listen to. If Alice listens to a song by the Beatles, Bob might have a look at her song
history and also feel like listening to the Beatles. However, the same might happen vice
versa. Alice could also be inspired by Bob’s song history. Compared to the Instagram
case, on Spotify, the Influencer-Follower structure is less present than it is on Instagram,
and therefore, the Coupled model would be the better decision to model the network
synthetically.

The Influencer-Follower model is a special case of the coupled model. Influencers simply
have an empty influencer set IpXq “ H. Using the background activity rate µ, which is
different for each actor, the role of λ can be modeled.
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Figure 3.2: Computation of transfer entropy over a longer time frame (6 days). We simulate
200 pairs of users and take the average transfer entropy which is evaluated every hour. The left
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3.2 Computing transfer entropy over time

The first experiment studies transfer entropy as a function of time over a longer time
frame. We expect that transfer entropy is higher in the beginning because there is only
limited knowledge about X and Y available. With each time step, more and more is
known about X and Y , and uncertainty decreases. However, at some point in time,
knowing more about the respective stochastic process does not help anymore. The curve
converges to a particular value, as it was already shown in literature [24, 27, 63]. In
the Influencer-Follower experiment, we expect that TEYÑX converges to a value that is
almost zero because there is no influence. In the Coupled experiment, we expect that
TEYÑX is higher than TEXÑY since we chose parameters such that the influence from
Y to X is higher.

We set T “ 1 week “ 168 hours which means that we simulate actor behavior over a
time span of one week. We compute transfer entropy for the last six weeks every 60
minutes. The past three hours of history are considered by choosing the bin widths to
δ0 “ 1 second, δ1 “ 1 hour, δ2 “ 2 hours. We set the rate of independent actions to a
very low value (µ “ 0.01) because we do not want this parameter to influence the results
much. In the Influencer-Follower model, the influencer activity rate λ is set to 0.9, and
the influence strength is set to 2. In the Coupled model, the influence strengths are set
to γX “ 0.01 and γY “ 0.05.

As described by Figure 3.2, transfer entropy is high in the beginning because uncertainty
in both processes is high due to insufficient knowledge. We reach convergence in both
cases after around 100 hours. The Influencer-Follower example shows clearly that influ-
encer X influences follower Y , but not vice versa since TEYÑX is almost zero in the end.
In the Coupled model Y influences X stronger than X influences Y by setting γX ă γY .
This can be observed in the Figure since TEYÑX is almost always above TEXÑY .
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Interestingly, when comparing the Influencer-Follower model and the Coupled model,
the curve is much less smooth in the Coupled model than it is in the Influencer-Follower
model. This might be because in the Coupled model, there are two processes influenced
by each other. In the Influencer-Follower model, the information flow is unidirectional.

3.3 Comparison of parameters

The first part of our experiments examines transfer entropy observed between two users
in the Influencer-Follower model. We omit the Coupled model, but provide a detailed
analysis of it in the next section. The reason why we conduct the study with only two
actors is that it helps to break down the complexity of processes in the whole system
and form a better understanding of how different parameters influence transfer entropy.
Unless otherwise stated, we use the following standard configurations in the experiments:

• Influencer activity rate λ “ 0.9

• Influence strength γ “ 2

• Background activity rate µ “ 0.01

• Bins: δ0 “ 1 second, δ1 “ 1 hour, δ2 “ 2 hours

• Observation time T “ 7 days

The notation of the bins is organized as follows: δ0 refers to the bin used for the most
recent events. δi refers to bins used for events further in the past. The higher i, the more
time passed since the occurrence of the event.

3.3.1 Comparing background activity rate (µ) and influence strength (γ)

Expectations. In this experiment, we investigate the influence of background activity
rate (µ) and the influence strength (γ) on transfer entropy between two users in the
Influencer-Follower model. First, we expect that transfer entropy decreases as the back-
ground activity rate µ increases. The follower then does more things on his own and
independent from the influencer. Second, we anticipate that transfer entropy increases
as the influence strength γ increases. The more the influencer inspires the follower’s
actions, the more transfer entropy will be there. Therefore, we expect to see the highest
transfer entropy in the case where γ is high, and µ is low. The lowest transfer entropy is
expected to be in the opposite case, with a low γ and a high µ.

Results. In the test, we observe 200 users for 7 days and report the average transfer
entropy at the end of the period. According to the standard configurations, λ is set to
0.9 in the experiment. Fourteen different values for µ and γ are tested in the range from
0 to 3.

Figure 3.3 shows the results of the experiment. The number of timestamps generated for
the influencer X is 130 on average. It does not depend on the configuration since the
influencer behaves independently from µ and γ. The number of timestamps generated
for the follower Y for each configuration can be seen in Table 3.1. The more the follower
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Figure 3.3: Influence of background activity rate µ and influencer strength γ on transfer entropy
in the Influencer-Follower model. The first heat map shows TEXÑY , the transfer entropy we
computed from X (influencer) to Y (follower). The higher the influence strength and the lower
the background activity rate, the higher transfer entropy. On the right, there are two heat maps
showing the conditional entropies HpYt|Y t´k

t´1 qand HpYt|Y t´k
t´1 , X

t´k
t´1 q which are highest when the

amount of timestamps is the largest because then, uncertainty is the highest.

does independently (higher µ), the more independent events are generated. The higher
the influence strength (higher γ), the more events are generated, which are inspired by
the influencer.

Considering TEXÑY , four different cases can be distinguished. First, if both values are
low, the transfer entropy is low, too. This means that there are not many timestamps in
SY . HpYt|Y t´k

t´1 q is low because there is not much activity, and therefore, Y seems to be
very certain.

In the case where µ is high, and γ is low, transfer entropy is low, even though it is higher
than in the previous case. The uncertainty in Yt given the history of Y increases because
more about Y is known. At the same time, since the influence strength is low, the history
of the influencer does not reduce the uncertainty of Y much.
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Figure 3.4: Influence of background activity rate µ and influencer strength γ on transfer
entropy in the Influencer-Follower model. The heat map shows TEYÑX , the transfer entropy we
computed from Y (follower) to X (influencer).

The most information flow happens if γ is high, and µ is low, i.e., the influence strength
is high, and the background activity rate is low. The follower’s history is very similar to
the influencer’s history because it follows everything the influencer does. The uncertainty
in Y , given the history of Y , is reduced a lot by the knowledge of the history of X. At
the same time, the uncertainty in both processes is rather low.

In the last case, where both γ and µ are high, transfer entropy is lower. The reason for
this is that now there is high uncertainty in the process of the follower. The follower acts
very often, around ten times more often than the influencer, and does a lot independently.

Figure 3.4 shows the amount of transfer entropy from the follower to the influencer. In
general, the absolute value of transfer entropy is more than 20 times lower than the values
for TEXÑY , meaning that the influence is much lower in general. Transfer entropy is low
for small values of µ and γ, then increases in the range µ P r0.2, 1.25s, γ P r0.5, 2s before
it decreases again. One might think of it as Y is not useful in explaining the history of
X when there are not enough events or too many events. The uncertainty in X remains
constant for all configurations, but the uncertainty in X given the history of X and Y
changes.
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Summary. The higher the background activity rate µ, the lower the transfer entropy
is. The higher the influence rate γ, the higher the transfer entropy is.

Length of SY

γ

µ

0.0 0.01 05 0.1 0.2 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3

0 0 1 9 18 39 96 146 190 242 291 333 382 479 577

0.01 1 3 11 20 40 98 146 194 243 289 344 389 485 580

0.05 7 9 17 26 46 102 152 198 250 299 350 396 488 589

0.1 14 16 24 32 52 110 159 206 255 301 353 399 497 588

0.2 28 30 38 48 67 124 173 222 269 318 370 418 512 608

0.5 72 73 81 91 112 168 214 265 313 361 409 457 555 648

0.75 107 109 117 128 147 204 251 299 351 397 448 489 590 685

1 145 145 153 164 182 238 287 335 382 436 477 530 629 725

1.25 180 182 189 199 218 275 320 373 420 470 514 565 655 755

1.5 214 218 226 236 252 313 362 410 458 507 548 594 697 800

1.75 251 252 261 271 291 348 396 448 495 544 590 638 740 836

2 289 289 299 305 326 384 435 481 527 577 622 674 771 875

2.5 359 360 370 377 398 456 503 553 600 648 694 739 841 938

3 431 433 444 451 471 529 576 624 671 720 766 819 915 1004

Table 3.1: Number of timestamps generated for Y , the follower for each configuration of back-
ground noise rate µ and influencer strength γ. As µ increases,the number of timestamps in-
creases because the follower does more independently. As γ increases, the number of timestamps
increases because the follower’s dependence from the influencer is higher.
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3.3.2 Comparing influencer activity rate (λ) and influence strength (γ)

Expectations. In this experiment, we investigate the influence of influencer activity
rate (λ) and the influence strength (γ) on transfer entropy between two users in the
Influencer-Follower model. First, we expect that transfer entropy increases as the in-
fluencer activity rate λ increases. This was already shown by several experiments in
literature [80]. They found that users with a high activity level (bots, spammers) auto-
matically cause a higher transfer entropy. Second, we anticipate that transfer entropy
increases as the influence strength γ increases. The more the follower’s actions are in-
spired by the influencer, the more transfer entropy will be there. Therefore, we expect
to see the highest transfer entropy in the case where λ is high, and γ is high. The lowest
transfer entropy is expected to be in the opposite case, with a low λ and a low γ.

Results. In the test, we observe 200 users for 7 days and report the average transfer
entropy at the end of the period. According to the standard configurations, µ is set to
0.01 in the experiment. Fourteen different values for λ and γ are tested in the range from
0 to 3.

Table 3.2 shows the number of timestamps generated for the influencer X for each con-
figuration. Since λ is the only parameter that can be configured for X, the number of

Length of SX

λ

0.0 0.01 0.05 0.1 0.2 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0
0 1 7 14 28 71 108 144 179 216 251 287 359 431

Table 3.2: Average number of timestamps generated for X, the influencer for each configuration
of influencer activity rate λ. The influencer strength γ does not affect the number of timestamps
of the influencer.

Length of SY

γ

λ

0.0 0.01 0.05 0.1 0.2 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.01 1 1 1 1 1 2 3 3 4 4 5 5 6 7
0.05 1 1 1 2 3 6 9 11 14 17 20 23 29 34
0.1 1 1 2 3 5 12 16 22 28 32 39 43 54 62
0.2 1 1 3 5 10 22 32 45 55 66 75 87 108 133
0.5 1 2 6 12 23 55 81 107 134 161 185 215 271 322
0.75 1 3 9 18 34 82 121 160 202 244 285 328 398 484
1 1 3 12 22 44 110 162 219 269 326 378 430 538 643
1.25 1 4 14 28 55 134 202 265 336 402 469 545 665 808
1.5 1 4 17 33 66 165 243 321 405 477 561 640 805 974
1.75 1 5 20 39 76 186 281 378 463 565 661 756 934 1130
2 1 5 23 43 86 215 322 429 539 643 753 849 1071 1289
2.5 1 6 28 54 108 267 403 537 672 800 934 1072 1341 1609
3 1 7 33 66 129 321 479 643 803 963 1129 1282 1604 1944

Table 3.3: Number of timestamps generated for Y , the follower, for each configuration of
influencer activity rate λ and influencer strength γ. As λ and γ increase,the number of timestamps
increases because the follower rarely acts independently due to the low background noise rate.
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.08 0.13 0.26 0.33 0.77 1.31 1.39 1.63 1.99 1.99 2.06 2.39 2.54

0.16 0.19 0.38 0.70 1.23 2.77 3.85 4.64 5.63 6.19 6.63 7.28 8.27 8.82

0.20 0.32 0.62 0.99 1.99 4.23 5.75 7.09 8.36 9.05 10.34 10.79 12.30 13.37

0.28 0.42 0.86 1.50 2.72 5.70 7.76 9.91 11.25 12.92 13.66 15.09 17.29 19.51

0.38 0.53 1.10 1.99 3.36 6.57 8.88 10.98 12.96 14.91 16.91 18.75 22.07 25.66

0.33 0.47 1.12 2.16 3.26 6.28 8.38 10.38 12.78 14.46 16.28 18.45 22.04 26.36

0.29 0.46 1.15 1.80 3.03 5.73 7.89 9.74 11.26 13.32 15.46 17.12 20.85 26.08

0.20 0.42 1.01 1.72 2.79 5.38 7.03 8.67 10.53 12.15 13.85 15.21 20.15 22.98

0.20 0.33 0.96 1.51 2.59 4.70 5.97 7.92 9.35 10.97 12.14 13.93 17.76 20.94

0.18 0.29 0.89 1.44 2.24 3.99 5.48 6.64 8.16 9.49 10.58 12.05 15.27 18.01

0.11 0.29 0.73 1.28 2.02 3.62 4.68 5.77 6.79 8.11 9.36 11.07 13.43 16.61

0.10 0.21 0.63 1.03 1.52 2.59 3.43 4.43 4.97 6.01 7.16 8.14 9.87 12.69

0.05 0.14 0.46 0.77 1.10 1.79 2.38 3.07 3.91 4.43 5.12 5.56 7.10 8.71

0.000 ¨10´5

13.178 ¨10´5

26.356 ¨10´5
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Figure 3.5: Influence of influencer activity rate λ and influencer strength γ on transfer entropy in
the Influencer-Follower model. The heat map shows TEXÑY , the transfer entropy we computed
from X (influencer) to Y (follower). If the influencer is too active or too inactive, transfer entropy
does not provide a meaningful measure of influence for these cases. For a fixed λ (for each row),
transfer entropy increases with the influence strength γ. On the right, there are two heat maps
showing the conditional entropies HpYt|Y t´k

t´1 qand HpYt|Y t´k
t´1 , X

t´k
t´1 q which are highest when the

amount of timestamps is the largest because then, uncertainty is the highest.

timestamps does not change for different values of γ. The higher λ, the more active
is the user, and the more timestamps are generated. Table 3.3 shows the number of
timestamps generated for the follower Y for each configuration. Both λ and γ influence
the follower, and the higher both parameters, the more timestamps are generated. γ can
be seen as the fraction of following events, while µ is the fraction of independent events.
The more events the influencer generates, the more often the follower follows and the
absolute number of following events increases.

The first part of our analysis focuses on TEXÑY . The results are shown in in Figure
3.5. A very interesting pattern can be identified in the heat map. The most information
is transferred for configurations around pλ “ 0.75, γ “ 3q. The increase is neither linear
nor diagonal but slightly round.
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Figure 3.6: Influence of influencer activity rate λ and influencer strength γ on transfer entropy in
the Influencer-Follower model. The heat map shows TEYÑX , the transfer entropy we computed
from Y (follower) to X (influencer).

In the left lower part of the heat map, transfer entropy is very low. The influencer does
not do much. There are less than 100 events generated. Since also the influence strength
is low and µ is very low, transfer entropy is low because there is simply not enough data
to obtain a meaningful analysis of timestamps. Both HpYt|Y t´k

t´1 q and HpYt|Y t´k
t´1 , X

t´k
t´1 q

are small because there are so few events that it seems that both processes are very
predictable.

In the left upper part of the heat map, similar observations can be made. However,
now the influencer does more, and between 100 and 500 events are generated. Entropy
HpYt|Y t´k

t´1 q increases when the influence strength is higher.

Considering the right half of the heat map, for λ P r0, 0.75s, transfer entropy is high if
γ is high too. Transfer entropy grows as both parameters grow. This would mean that
the more the influencer does and the higher the strength of influence is, the higher is the
amount of transferred information. This confirms the findings which were made by [80]
about spammers and bots and our initial assumption.

However, the reverse thing happens for λ P r1, 3s. Transfer entropy grows as γ grows
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but decreases as λ grows. It is also shown by HpYt|Y t´k
t´1 , X

t´k
t´1 q and HpYt|Y t´k

t´1 q that
uncertainty increases as the number of events increases. In the case where pγ “ 3, λ “ 3q,
the uncertainty in both processes reaches its maximum. There are so many events that
it is very hard to make predictions about the stochastic process.

Considering our empirical analysis, this means that we need to be careful with the choice
of the number of actors events. First, actors who do not do much need to be excluded
λ P r0, 0.2s. Second, actors who do too much also need to be filtered out λ P r1.5, 3s.
Regarding the probability distribution P pYt, Y t´k

t´1 q, we will see a peak in the bin 0|11
because it is very likely, when there are a lot of events, that at least one historic bin is
filled. An example for γ “ 3, λ “ 3 can be seen in Figure A.1.

A possibility to avoid this situation is to choose bin widths carefully by considering the
distribution of time between events, the inter-event time.

It also seems to be very important that the number of events of the influencer and the
follower is nearly the same. From Tables 3.2 and 3.3 we observe that ideally the ratio
between the number of influencer timestamps and the number of follower timestamps is
around 1:4. Additionally, the level of activity must be sufficiently high. A possibility to
ensure this is to take the actor with the least amount of events N and then randomly
select between N and 2 ¨N timestamps from the history of the other actors to compute
transfer entropy. This ensures that the ratio of events is met for each actor. The whole
process is repeated sufficiently often, and the transfer entropy can be computed as an
average of all values.

Our second assumption, the higher γ, the higher the transfer entropy, is confirmed by the
results. If one considers each row of the heat map individually, transfer entropy increases
as γ increases. This is true for every single row except the first one, where λ “ 0, which
is due to the lack of events.

In the second part of the analysis, we focus on TEYÑX . The results are presented in
Figure 3.6. Although again, transfer entropy is much lower than in the first case, the
highest values lie in the middle in this case and spread like a circle. A possible reason
for this is that in the middle region, the number of timestamps for both X and Y is
very similar. For high values of λ and γ, there are many timestamps generated for the
follower Y . Then, the knowledge of the follower process does not help that much any
more to predict the behavior of the influencer. For low values of λ, there are again not
enough events to make any meaningful assumptions.

Summary. We must exclude actors below and above a certain activity level from anal-
ysis because then, transfer entropy does not provide a meaningful measure of influence.
For a fixed influencer activity rate λ, transfer entropy increases as the strength of influ-
ence γ increases.
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3.3.3 Comparing background activity rate (µ) and influencer activity
rate (λ)

Expectations. In this experiment, we investigate the influence of background activity
rate (µ) and influencer activity rate (λ) on transfer entropy between two users in the
Influencer-Follower model. First, we anticipate that since the background activity rate
refers to the actions done by the follower individually, transfer entropy decreases with an
increasing background activity level. Second, we expect to see the same effects regarding
the influencer activity rate as in the last experiments: a too low value for λ means there
are not enough events, a too high value for λ means that there are too many events to
compute a meaningful value for transfer entropy.

Results. In the test, we observe 200 users for 7 days and report the average transfer
entropy at the end of the period. According to the standard configurations, γ is set to 2
in the experiment. Fourteen different values for µ and λ are tested in a range from 0 to
3.

Table 3.2 shows the number of timestamps generated for influencer X for each config-
uration. Since λ is the only parameter that can affect X’s behavior, the number of
timestamps does not change for different values of µ and is, therefore, the same as in
the previous experiment. Table 3.4 shows the number of timestamps generated for the
follower Y for each configuration. The higher µ and λ, the higher the number of times-
tamps. We are able to explain based on tha table what a value of µ “ 3 effectively means:
If pµ “ 3, λ “ 0q, there are 431 events in the history of Y . If pµ “ 0, λ “ 3q, there are
1283 events in the history of Y . If pµ “ 3, λ “ 3q, there are 1722 events in the history of
Y . This means that the fraction of independently executed events is around 25% in this
case, and 75% are influenced. For pµ “ 3, λ “ 1q, the ratio of both event types is equal.

Length of SY

µ

λ

0 0.01 0.05 0.1 0.2 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3
0 0 1 6 14 29 72 107 144 182 215 251 287 361 431
0.01 4 5 11 18 33 77 112 147 184 220 255 293 363 437
0.05 22 23 28 33 50 94 129 164 201 235 276 310 379 454
0.1 41 44 50 56 72 113 150 186 222 258 296 330 399 475
0.2 84 87 94 98 113 158 191 228 267 302 337 374 446 517
0.5 214 215 225 227 242 289 321 356 395 426 469 502 578 644
0.75 321 322 329 334 353 391 429 464 501 533 573 608 677 745
1 427 430 430 440 450 500 540 576 607 640 679 717 790 856
1.25 537 536 542 551 567 613 645 677 714 753 794 818 893 969
1.5 644 642 650 650 669 714 749 790 818 855 900 935 998 1069
1.75 743 756 755 771 786 829 860 892 931 965 1007 1037 1105 1179
2 862 854 879 871 885 927 964 998 1032 1080 1109 1149 1226 1285
2.5 1074 1077 1078 1092 1114 1153 1184 1215 1251 1294 1325 1360 1438 1509
3 1283 1288 1298 1311 1312 1360 1389 1420 1461 1504 1542 1566 1648 1722

Table 3.4: Number of timestamps generated for Y , the follower, for each configuration of
influencer activity rate λ and background activity rate µ. As λ and µ increase, the number of
timestamps increases because due to the follower acts more often independently and follows more
often what the influencer does.
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Figure 3.7: Influence of influencer activity rate λ and background activity rate µ on transfer
entropy in the Influencer-Follower model. The first shows TEXÑY , the transfer entropy we
computed from X (influencer) to Y (follower). If the influencer is too active or too inactive,
transfer entropy does not provide a meaningful measure of influence for these cases. For a fixed
λ (for each row), transfer entropy decreases with the background activity rate µ. On the right,
there are two heat maps showing the conditional entropies HpYt|Y t´k

t´1 qand HpYt|Y t´k
t´1 , X

t´k
t´1 q

which are highest when the amount of timestamps is the largest because then, uncertainty is the
highest.

The first part of our analysis focuses on TEXÑY . The results are shown in Figure
3.7. The first heat map shows results that are similar to the ones presented in Section
3.3.2. The amount of transfer entropy again seems to concentrate around the region of
λ P r0.2, 1.25s.
When comparing the two lower halves of the heat map, it is noticeable that transfer
entropy is higher in the left part where the follower’s independent actions are not frequent.
The lower half is also a region where the uncertainty in the process of Y is relatively low
because the general activity level is low. The process X helps to predict the process of Y
if there are enough events. This is the case for λ ą 0.1. One must always keep in mind
that the uncertainty level of the process X is constant for a fixed λ and independent from
µ. Therefore, for each λ, the higher µ is, the lower is the transfer entropy because the
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Figure 3.8: Influence of influencer activity rate λ and background activity rate µ on transfer
entropy in the Influencer-Follower model. The heat map shows TEYÑX , the transfer entropy we
computed from Y (follower) to X (influencer).

stochastic process Y has more uncertainty itself. However, if X does not fulfill a certain
level of activity (λ P r0, 0.01s), it cannot help to reduce uncertainty at all.

λ P r0.2, 1.25s and µ P r0, 1s is the area where transfer entropy is the highest. Interest-
ingly, in this region, the fraction of individual events is between 0 and 21%. If more than
21% of the follower’s actions are individual actions, transfer entropy decreases.

We again observe that if λ is too high, transfer entropy decreases because there is a lot
of uncertainty in both processes due to the huge number of events. As it was already
shown in the experiment before, we must be careful to not consider too active or too
inactive influencers in our analysis. However, what is new is that we must also make sure
that the followers are not too active (µ ă 1). Limiting the number of events might also
improve analysis results.

Furthermore, for a fixed λ, our assumptions are confirmed. Considering one row in the
heat map, transfer entropy decreases as the amount of background activity µ increases.
This is true for every single row.
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The second heat map, which is shown in Figure 3.8, shows TEYÑX . Interestingly, the
distribution pattern of the amount of information transfer looks similar to the pattern
of TEXÑY but a little bit more irregular. The reason for this is that the timestamp list
of Y is very similar to the timestamp list of X in case the influencer does many things
independently, i.e., µ is low. Then, it seems like there is information flow from the follower
to the influencer. However, if the follower starts to do more things independently, the
timestamp list becomes more diverse, and there is less similarity. In case λ is high, we
assume that there are again many events causing high uncertainty in the process of X
and low transfer entropy.

Summary. We must exclude actors below and above a certain activity level from anal-
ysis because then, transfer entropy does not provide a meaningful measure of influence.
For a fixed influencer activity λ, transfer entropy decreases as the background activity
rate µ increases.

3.4 Normalization and correction methods

In Section 3.3, we observe several problems that reduce the meaningfulness of transfer
entropy. This includes too active or too inactive influencers. In this section, we test
several normalization and correction methods in order to see whether they improve results
for transfer entropy. We evaluate normalized transfer entropy, correction of systematic
bias, and permutation tests. Our experiments are only executed for the comparison of λ
and γ. However, the results are similar in all other cases.

3.4.1 Transfer entropy normalized by HpYt|Y t´k
t´1 q

Normalizing transfer entropy by HpYt|Y t´k
t´1 q gives approximately the amount of infor-

mation flow in percent, as we discuss in Section 2.3.3. We denote it by ˆTEXÑY . It is
computed by dividing TEXÑY through HpYt|Y t´k

t´1 q. ˆTEXÑY is 1 in case X can remove
all uncertainty from Y . ˆTEXÑY is 0 in case X cannot remove any uncertainty from Y .
We expect to be able to answer more clearly if there exists information flow between X
and Y or not because we limit the effect which HpYt|Y t´k

t´1 q has on the size of transfer
entropy. Problems related to a small HpYt|Y t´k

t´1 q leading to a big information flow might
occur.

Figure 3.9 shows transfer entropy normalized by HpYt|Y t´k
t´1 q. We run the experiment for

200 users over a time frame of 7 days. The average normalized transfer entropy value
after the simulation period is reported. The background activity rate µ is set to 0.01. We
see that whenever both parameters are low but nonzero, transfer entropy is very high.
In the range λ P r0.01, 0.2s, transfer entropy grows with the strength of influence γ. In
the range λ P r0.2, 1.75s, the transfer entropy is high in the beginning for small values of
γ.

However, we run into the problems described in Section 2.3.3. In the region (λ P
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Figure 3.9: Transfer entropy normalized byHpYt|Y t´k
t´1 q for different configurations of influencer

activity rate λ and influence strength γ. We run into problems of a small HpYt|Y t´k
t´1 q leading to

a comparable large transfer entropy.

r0.01, 0.2s, γ P r0.2, 3s),HpYt|Y t´k
t´1 q is very low because there are not many events.

Uncertainty is low in the process of Y . However, since HpYt|Y t´k
t´1 q is so small and

TEXÑY is small too, we get something comparably big even though the information
flow is not big at all. For example, for (λ “ 0.01, γ “ 0.75), HpYt|Y t´k

t´1 q= 0.0001 and
TEXÑY= 0.0000131, the normalized value is 0.12. For (λ “ 0.75, γ “ 3), HpYt|Y t´k

t´1 q=
0.0107 and TEXÑY= 0.0002636, the normalized value is 0.02 due to the high value of
HpYt|Y t´k

t´1 q. Therefore, we conclude that normalizing transfer entropy by HpYt|Y t´k
t´1 q

does not improve insights that are already given to us by raw values.

3.4.2 Transfer entropy normalized by log k

Normalizing transfer entropy by log k gives approximately the amount of information
flow in percent. We denote it by ˆTEXÑY and compute it by dividing TEXÑY through
log2 k. k “ 3 in our experiment and refers to the number of bins used. ˆTEXÑY is high
in case the probability distributions used are very uniformly. Since log2 k is a constant
factor, we expect a meaningful scaling of transfer entropy values to a percentage scale.
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Figure 3.10: Transfer entropy normalized by log2 k where k “ 3 is the number of bins for
different configurations of influencer activity rate λ and influence strength γ. The normalization
method only provides a way to map the transfer entropy values to another scale.

We anticipate that this makes it easier to compare transfer entropy values.

Figure 3.10 shows the results of the experiment. The experiment is run for 200 users
over a time frame of 7 days. The average normalized transfer entropy value after the
simulation period is reported. The background activity rate µ is set to 0.01.

We see that the appearance of the heat map has not changed, confirming our expectations.
However, the advantage is, that we do not have to deal with absolute values for transfer
entropy any more but can work with a percentage value, which often makes outcomes
easier to understand. However, it does not provide a solution to the problem of too
active or too inactive actors. Additionally, it does not reduce the possibly misleading
effects which HpYt|Y t´k

t´1 q has on the result. Therefore, we will not apply it to further
experiments.

3.4.3 Systematic bias correction

The experiments we execute only take events into account, which happen in a certain
period of time. From these events, we compute the binned random variables. All these
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Figure 3.11: Bias-corrected transfer entropy using the Panzeri-Treves bias correction [61,62] for
different configurations of influencer activity rate λ and influence strength γ. The bias correction
lowers the value of transfer entropy, but does not change the relations of the values.

steps reduce the information which would be needed in order to compute the true transfer
entropy and therefore distort the result. For example, given an agent acting at times
0.2, 0.5, 0.7 and 1.2 and bin widths δ0 “ 1, δ1 “ 1, information is thrown away since
the events happening at times 0.2, 0.5 and 0.7 will be in the same bin in the beginning.
Actors cannot be observed infinitely long. The resulting distortion is called systematic
bias [61, 62].

There are several methods of how to deal with this bias. For example, one could always
ensure to take into account enough measurements such that the deviation of the esti-
mated from the true transfer entropy is insignificant [80]. However, in real-life situations,
this is not always possible, especially in cases where data is already limited. As sug-
gested by Ver Steeg et al. [80], in such cases, it has been shown that the Panzeri-Treves
bias correction, bpHpB|Aqq, for two discrete random variables A and B, gives satisfying
results. It estimates the average systematic bias which occurs.

bpHpB|Aqq “ ´ 1

2 ¨N ¨ lnp2q
ÿ

bPdompBq
pNb ´ 1q (3.3)
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N is the number of joint samples of A and B. Nb is the number of unique variables
a P dompAq which are observed for a specific b P dompBq. The bias estimate subtracted
from the computed transfer entropy. The equation for the corrected transfer entropy
TXÑY corr is then given by:

TXÑY corr “
´

HpYt|Y t´k
t´1 q ´ bpHpYt|Y t´k

t´1 qq
¯

´
´

HpYt|Y t´k
t´1 , X

t´k
t´1 q ´ bpHpYt|Y t´k

t´1 , X
t´k
t´1 qq

¯

We expect that this method reduces the systematic bias introduced by sampling. Es-
pecially in situations, where we do not have much data, the corrected transfer entropy
value might be useful.

Figure 3.11 shows the results of the experiment. We run it for 200 pairs of users over a
time frame of 7 days. The average, bias-corrected transfer entropy value is reported after
7 days. Like in previous experiments, µ “ 0.01. It can be seen that the bias correction
lowers the resulting transfer entropy, i.e., the raw value is higher than the corrected
value. The appearance of the heat map is identical to the appearance of the heat map
using raw values when ignoring the absolute transfer entropy values.

Most importantly, this means that the necessity of bias correction depends on the use
case. If there are two agents, X and Y , and the main interest lies in the absolute values
of influence, the bias estimate must be considered. However, if the main interest lies in
the relation, i.e., whether X influences Y more or vice versa, the bias correction becomes
less important since the relative values do not change. Since we are not interested in
the absolute value in further experiments, we will not work with bias-corrected transfer
entropy.

3.4.4 Permutation tests

In all our experiments, we observe that it is unknown how large the information flow from
the influencer to the follower effectively is. For example, we often saw a small transfer
entropy value from the follower to the influencer even though there was zero influence.
The transfer entropy was observed because follower and influencer have similar histories.
We need a method which allows to distinguish real from non-existent information flow.
A method to deal with this is to execute a permutation test. As suggested by Santos
et al. [69], this test compares the raw transfer entropy value with the transfer entropy
value computed for permutations of influencer and follower histories.

Figure 3.12 shows the procedure of a permutation test for 200 user pairs. First,
for every user pair, test data is generated which results in two lists of timestamps,
SX “ ttX0, tX1, ...u of length nX and SY “ ttY 0, tY 1, ...u of length nY . These values
are considered for the true or raw transfer entropy. Then, SX and SY are concatenated,
and the result is stored in variable SXY . A permutation of SXY is created by randomly
shuffling it. We create a new timestamp list for X by choosing the first nX elements from
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1 for use rPa i r = 1 to 200
2 //Compute t rue TE
3 SX ,SY = generateTestData (µ , λ , γ )
4 TE = computeTransferEntropy (SX , SY , bins , T)
5
6 //Compute perm . TE
7 SXY = SX Y SY

8 for permRun = 1 to 150
9 SXY perm = permute (SXY )

10 SXperm = SXY perm [ 0 : nX ]
11 SY perm = SXY perm [nX :nX ` nY ]
12 TEperm = computeTransferEntropy (SXperm , SY perm , bins , T)
13
14 Report average TE , average TEperm

Figure 3.12: Procedure of a permutation test for 200 user pairs. First, test data is generated,
and the true or raw transfer entropy is computed. Then, the transfer entropy is computed from
a permutation of test data. Finally, the averages are reported for alle user pairs. nX and nY
refer to the number of timestamps generated for X and Y .

SXY . We create a new timestamp list for Y by choosing the last nY elements from SXY .
In the end we have constructed SY perm such that SY perm “ SXY permzSXperm. Finally,
we report the average raw and permuted transfer entropy values.

In general, we expect that if there is information flow from X to Y , the raw transfer
entropy is higher than the average permuted value. If there is no information flow from
X to Y , the raw transfer entropy is lower than the average permuted value. A normalizing
effect can be achieved by computing the difference between the raw and permuted values.
The normalized value can also be viewed as the true influence since the influence due to
effects like history similarity is eliminated.

Figure 3.13 shows the results of the permutation test. We omit to test experiments
where λ P r0, 0.5s because in these cases, it might happen that the history of an actor
only contains one or two elements, and permuting them is useless. In the first row of
the figure, the transfer entropy computed from permuted histories is represented. The
distribution of the amount of transfer entropy is identical to the raw values.

In the second row of the figure, the normalized transfer entropy is illustrated. In the
first heat map, which illustrates ˆTEXÑY , the raw influence reaches its maximum in the
same region where also raw transfer entropy reaches its maximum. The second heat map
shows ˆTEYÑX . It must be interpreted carefully, because the more negative the value,
the more certain we can be that there is no influence.

In general, the test results show that using permutation tests, we can determine with
great certainty if there is influence between two actors (positive normalized value) or
not (negative normalized value). However, the computational effort of this method is
considerable since a great number of permutations and user pairs have to be taken into
account to provide a meaningful test result. Therefore, we will not work with this method
in the following experiments.
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Figure 3.13: Results of normalization using permutation tests. The first row shows the average
transfer entropy computed for a permutation of SX and SY . The second row shows the normal-
ized value, which is the difference between the raw and permuted value. If the normalized value
is positive, there is true influence between X and Y . If the normalized value is negative, there
is no true influence between X and Y .

3.5 Comparing bin widths δi
For the empirical analysis, only one parameter needs to be configured: the size and widths
of bins. More and wider bins mean that the time frame, in which events are analyzed,
is larger. Events which happened a long time ago still influence the present. Wider bins
also fail to recognize single events. If the history of an actor has many peaks, small bin
widths will capture this peak in a more extreme way than wider bin widths, which is
sometimes not desired. Smaller bins are prone to capture less of the agent’s history. In
summary, choosing appropriate bin widths is not an easy task. In neuroscience, bins are
often equally wide, depending on the data [80]. For the analysis of human behavior, it
turned out that bins of increasing width, starting with the smallest possible unit, lead
to reasonable outcomes [80].
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Figure 3.14: Comparison of different bin widths in the Influencer-Follower model (left) and in
the Coupled model (right) over a time frame of 6 days. The more and wider bins we use, the
higher is the transfer entropy due to the high uncertainty in the process.

We assume that the uncertainty in Y is larger if bins are too wide because then, many
events are binned into one bin, and relatively much information is lost. Therefore, we
expect the transfer entropy to be higher if the bins are wider. Accordingly, if bins are
narrow, less information is cut away, and the amount of uncertainty in the process is
reduced. We assume that transfer entropy is lower if bins are more narrow.

We execute our experiments using the Influencer-Follower model and the Coupled model
over a time frame of 6 days and report the average transfer entropy computed for 200
user pairs. Standard configurations apply, which means we set λ “ 0.9, γ “ 2, µ “ 0.01
in the Influencer-Follower model and µ “ 0.01, γX “ 0.01, γY “ 0.05 in the Coupled
model.
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Figure 3.14 shows the influence of bin widths on the test results. In both the Influencer-
Follower model and the Coupled model, the bins chosen in test scenarios wide-many and
wide-few lead by far to the highest amount of transfer entropy. In these scenarios, the bin
widths are significantly wider than in the other scenarios, which confirms our expectation
that wide bin widths lead to higher uncertainty.

narrow-many, wide-narrow-wide and narrow-few result in a higher transfer entropy than
log-ascending and ascending. The bins are significantly smaller in the last two scenarios,
which explains why there is such a huge difference. Interestingly, narrow-many results in
a higher transfer entropy than narrow-few, from which we conclude that more bins also
lead to a higher transfer entropy.

Figure 3.14 shows the test results for the Coupled model on the right side. An interesting
observation can be made in the range 100 ď T ď 120 for TEXÑY . First, transfer entropy
rises rapidly, before it decreases and finally rises again. A peak can be seen around
T “ 110 before transfer entropy converges. This cannot be observed in wide-many and
wide-few, but we assume that the peak happens before the observation starts (T ă 40q.
In the plot showing TEYÑX , this behavior seems to start earlier and finish later.

In the empirical analysis, we align the bin widths according to the data. Ver Steeg
et al. [80] propose a method to use different bin widths according to the average inter-
event times of actors. We will apply this method in the empirical analysis. They also
suggest to choose different bins for each actor. This would eliminate the problem of too
active and too inactive actors.

3.6 Synthetic influence networks

The second part of our experiments examines the utility of transfer entropy in a network
consisting of multiple actors. We execute tests based on both the Influencer-Follower
model and the Coupled model. The basic element in these scenarios is the weighted
adjacency matrix A, which defines the structure of the test network. aij P A defines how
much actor i influences actor j, i.e., it stores γ as a link weight. Using this adjacency
matrix and the other parameters (background activity rate µ, bin widths δi, influencer
activity rate λ), we generate a directed, weighted test network as described in Section 3.1.
Each node of the network represents an actor, and every actor has a list of timestamps.

The result of each experiment is the transfer entropy matrix TE, which is obtained by
computing the transfer entropy between every pair of actors in the network. Each entry
teij P TE represents the amount of information flow from actor i to actor j. TE is a
weighted adjacency matrix as well because if a node influences another, there is transfer
entropy between them. The goal of our experiments is that the transfer entropy matrix
can recover the initial network structure.

TE and A are compared against each other by computing similarity. We define two
similarity measures, first the absolute difference of their Frobenius norms and second,



CHAPTER 3. SYNTHETIC ANALYSIS 49

I1

F1 F2

A “

»

—

—

—

–

0 2 2

0 0 0

0 0 0

fi

ffi

ffi

ffi

fl

TE ¨10´5

I

F1

F2

I F1 F2

0.00 17.84 17.96

1.35 0.00 4.53

1.33 4.58 0.00

Figure 3.15: Test results for a small network with three nodes using the Influencer-Follower
model. On the left, a sketch of the network is given. In the middle, there is the weighted
adjacency matrix where aij P A describes the amount of influence from actor i to actor j. On
the right, we illustrate the computed transfer entropy matrix.

the Frobenius norm of their differences.

sim1 “
∣∣}A}F ´ }TE}F ∣∣ (3.4)

sim2 “ }A´ TE}F (3.5)

sim1 and sim2 represent the similarity between A and TE. If sim1 is low, the two
matrices have a similar Frobenius norm, and therefore they are very similar. If sim1 is
high, TE and A are not similar. The same holds for sim2: if the differences are high,
they are not similar and vice versa. Since the value ranges of A and TE can be very
different, the values are normalized by the maximum value: aij “ aij{maxij Aij .

3.6.1 Small network with 3 actors

The first test case investigates a very small network consisting of three actors. We
simulate actors’ behavior over a period of T “ 7 ¨ 24 hours and report the average
transfer entropy over 200 repetitions.

The first experiment uses the Influencer-Follower model. There are one influencer, actor
I, and two followers, actors F0 and F1. The influencer influences both actors equally
strong with γ “ 2. The influencer activity rate is set to λI “ 0.9. The background
activity rate is set to µ “ 0.01. Figure 3.15 shows a plot of the network and the weighted
adjacency matrix. We expect that there is high information flow from the influencer to
the followers, but not vice versa or between the followers.

On the right side of Figure 3.15, we plot the transfer entropy matrix. There is high
information flow from the influencer to the followers There is also a smaller information
flow from the followers F1 and F2 to the influencer I. This is the same phenomenon that
we already saw in earlier tests when TEYÑX was nonzero. Using a permutation test, one
could identify this as no influence. Interestingly, there is also transfer entropy between
F1 and F2. This likely happens because F1 and F2 both have the same influencer. Their
pattern of activity is so similar that it seems like they influence each other. The similarity
values between A and TE are sim1 “ 0.04 and sim2 “ 0.38.
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Figure 3.16: Test results for a small network with three nodes using the Coupled model averaged
over 200 repetitions. On the left, a sketch of the network is given. In the middle, there is the
weighted adjacency matrix where aij P A describes the amount of influence from actor i to actor
j. On the right, we illustrate the computed transfer entropy matrix.

In the second experiment, we use the Coupled model such that actor A0 influences both
A1 and A2 with γA0 “ 0.01 and actors 1 and 2 both influence actor 0 with γA1 “ γA2 “
0.75. The network is plotted in Figure 3.16, including the weighted adjacency matrix.
We expect that there is high information flow from A1 and A1 to A0. There should be a
smaller information flow from A0 to A1 and A2, which is only about 1% of the transfer
entropy computed in the other direction.

The transfer entropy matrix correctly shows the strong influence from actors A1 and A2
to actor A0. There is a slighter influence from actor A0 to actors A1 and A2. However,
our assumption about the amount of information flow is not met. The computed transfer
entropy from A0 to A1, and A2 is about 30% the information flow from A1 and A2 to A0,
not only 1%. Similar to the first experiment, there is also an information flow between
A1 and A2. The similarities are sim1 “ 0.05 and sim2 “ 1.76.

3.6.2 Small network with 5 actors

The second test case investigates a small network consisting of five actors. We simulate
actors’ behavior over a time span of T “ 7 ¨ 24 hours and report the average transfer
entropy over 200 repetitions.

The first experiment uses the Influencer-Follower model. There are two influencers, actors
I1 and I2, and three followers, actors F1, F2, and F3. I1 influences all actors equally
strong with γI1 “ 2. I2 influences all actors equally strong with γI2 “ 1. The influencer
activity rate is set to λ “ 0.9. The background activity rate is set to µ “ 0.01. Figure
3.17 shows a plot of the network and the weighted adjacency matrix. We expect that
there is high information flow from the influencer to the followers.

The transfer entropy matrix shows high information flow from I1 and I2 to all other
followers. According to the weighted adjacency matrix, I1 influences followers twice as
much as I2. This relation is not detected by the transfer entropy matrix because the
information flows originating at I1 are three times higher than the information flows
originating at I2. The findings show a small transfer entropy between the influencers.
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Figure 3.17: Test results for a small network with five nodes using the Influencer-Follower
model averaged over 200 repetitions. On the left, a sketch of the network is given. In the middle,
there is the weighted adjacency matrix where aij P A describes the amount of influence from
actor i to actor j. On the right, we illustrate the computed transfer entropy matrix.
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Figure 3.18: Test results for a small network with five nodes using the Coupled model averaged
over 200 repetitions. On the left, a sketch of the network is given. In the middle, there is the
weighted adjacency matrix where aij P A describes the amount of influence from actor i to actor
j. On the right, we illustrate the computed transfer entropy matrix.

We suspect that this happens because the influencers have a very similar activity pattern
since they use the same λ. As already observed in the previous section, there is a small
information transfer between the followers. The similarities between the adjacency matrix
and the transfer entropy matrix is sim1 “ 0.05 and sim2 “ 0.61.

The second experiment uses the Coupled model. A sketch of the network is given in
Figure 3.18. A0 influences everyone, but only very slightly, A1 influences everyone except
A0. A2 influences A3 and A4, but A3 also influences A2. A4 does not influence anyone.
The background activity rate is set to µ “ 0.01. In Figure 3.18, we show the weighted
adjacency matrix and transfer entropy matrix.

The transfer entropy matrix correctly suggests that A0 influences all other nodes. Inter-
estingly, A0 influences everyone with the same strength, but the transfer entropy from
A0 to A1 is only half the amount of the transfer entropy from A0 to all the other nodes.
We also observe a reverse transfer entropy from A1 to A0. The information transfer from
A1 to A2, A3, and A4 is also correctly shown by the transfer entropy matrix.

According to the transfer entropy matrix, A1 and A2 both influence A4. A1 influences A4
more than A2 influences A4. However, the transfer entropy matrix shows the opposite. It
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Figure 3.19: Test results for a network of influencers and followers using different values for
µ. In the first row, we show a sketch of the network, the weighted adjacency matrix, and the
similarity table. In the second row, we show transfer entropy matrices for different values of µ.

shows that there is more information flow from A2 to A4 than from A1 to A4. A possible
explanation for this is that TEA2ÑA4 includes the information transfer from TEA1ÑA2.
Additionally, there is the direct influence from A1, TEA1ÑA4. This sums up and results
in a higher value.

We can see the same effects of transfer entropy between influencers and reverse transfer
entropy, like in the previous section. The similarity between TE and A is sim1 “
0.38, sim2 “ 1.52.

3.6.3 Background activity rate (µ) in a network

This experiment evaluates the influence of µ on transfer entropy in a network. Again,
we simulate the actors’ behavior over a period of T “ 7 ¨ 24 hours and report the average
transfer entropy over 200 repetitions.

In the first experiment, we use the Influencer-Follower model. There are three influencers,
I1, I2 and I3, and three followers, F1, F2, and F3. I1 influences all followers. I2 influences
F2 and F3. I3 influences only F3. We use the following parameter configuration: λ “ 0.9,
γ “ 2 and µ “ 0.01. We expect that the higher the background activity rate µ, the higher
the similarity values are and, therefore, the less similar are the transfer entropy matrices
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Figure 3.20: Test results for a network using the Coupled model. In the first row, we show
a sketch of the network, the weighted adjacency matrix and the similarity table. In the second
row, we show transfer entropy matrices for different values of µ.

and the weighted adjacency matrix.

Figure 3.19 shows the outcome of the experiment using the Influencer-Follower model for
different values of background activity rate µ.

Interestingly, the information flow to F1 is the highest. The information flow to F2 is
lower, and the information flow to F3 is the lowest. We explain this with the fact that
only one influencer, I1, influences F1. Therefore, I1 can predict the behavior of F1 very
well alone. I1 and I2 influence F2. Therefore, both I1 and I2 would be both needed to
explain F2’s behavior, but we always only look at either TEI1ÑF2 or TEI2ÑF2. Both
actors partially explain the behavior of F2, but no one can do it perfectly. The same
happens for F3, which is influenced by three actors. It can be viewed as the transfer
entropy being fragmented due to the three influencers.

Contracting our assumption, the higher the background activity rate µ, the higher the
similarity is. This might happen because the higher µ, the less difference is there be-
tween TEI1ÑF1, TEI1ÑF2, and TEI1ÑF3 because the fraction of actions which are done
independently is increased.

In the second experiment, we use the Coupled model. A sketch of the network is given
in Figure 3.20. There are six actors in the network, which all have the same influence
strength. A0 influences A3, A4, and A5. A1 influences only A3 and A4, and A2 influences
only A5. Additionally, A1 and A4, and A2 and A5 influence each other. A3 influences
A4. In the Coupled model we use µ “ 0.05 and γ “ 0.25. Figure 3.20 shows the results
obtained for the Coupled model.

Generally, the opposite happens here: the higher the background activity rate, the lower
the similarity. However, this network has a much more complex structure so we must
not make direct comparisons.

The transfer entropy matrices fail to mark the right upper triangle of influence clearly.
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Figure 3.21: Test results for a network of influencers and followers using different values for
γ. In the first row, we show a sketch of the network, the weighted adjacency matrix, and the
similarity table. In the second row, we show transfer entropy matrices for different values of γ.
the influence strength is given as a vector γ “ pγI1, γI2, γI3q, denoting the amount of influence
each actor has.

The connections between A1 and A4, as well as between A5 and A2, are highlighted.
These are the only nodes in the network which influence each other. The transfer entropy
between A3 and A4 is also highlighted in many transfer entropy matrices.

3.6.4 Influence strength (γ) in a network

This experiment investigates how the influence strength γ affects transfer entropy be-
tween actors in a network. We observe actors over a period of T “ 7 ¨ 24 hours and
report the average transfer entropy over 200 repetitions.

In the first experiment, we use the Influencer-Follower model. The network is identical
to the one represented in Section 3.6.3. We set λ “ 0.9 and µ “ 0.01. We expect that
the higher the influence in a network, the more similar the transfer entropy matrix is to
the weighted adjacency matrix.

Figure 3.21 shows a plot of the network and the adjacency matrix A. Note that
here, A is the unweighted adjacency matrix. The weights are given by the vector
γ “ pγI1, γI2, γI3q. However, the similarity is computed between the transfer entropy
matrix and the weighted version of the adjacency matrix. We test four different combi-
nations of values for γ, which are listed in the similarity table and as headings for the
transfer entropy matrices.

The first two experiments compare transfer entropy using a low and a high influence
strength. If the influence is low, more reverse information flow from the followers to the
influencers appears. Again we see similar effects regarding the "fragmentation" of transfer
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Figure 3.22: Test results for a network of influencers and followers using different values for
γ. In the first row, we show a sketch of the network, the weighted adjacency matrix, and the
similarity table. In the second row, we show transfer entropy matrices for different values of γ.
The influence strength is given as a vector γ “ pγAiq, denoting the amount of influence each
actor has.

entropy in case a follower is influenced by multiple actors. The similarity according
to sim2 is higher in the case where the influence strength is higher and therefore the
experiment confirms our expectations.

Comparing the last two scenarios, (5,2,0.5) and (0.5,1,1.5), some interesting observations
can be made. For example, in the first scenario, the transfer entropy matrix does not
show any outgoing links from I2 or I3 but only from I1. Information transfer is so small
there that it is almost not displayed. In the second scenario, the transfer entropy matrix
manages to detect the link from I2 to F2 and from I3 to F3. The amount of reverse
transfer entropy is much higher in this case than in the last one.

In the second experiment, we use the Coupled model. We reuse the network from Section
3.6.3. The background activity rate is set to µ “ 0.05. Figure 3.22 shows the results
obtained for the Coupled model.

Generally, we also observe here that the higher the influence strength is, the more similar
is the transfer entropy matrix to the adjacency matrix. Both similarity measures confirm
this relation.

The results achieved for the first two test cases (γ “ 0.01 and γ “ 0.05 for all actors) fail
to infer the network structure. We assume that due to the complex network structure
and the slight influence, connections cannot be recognized as links. The similarity value
and the links detected according to the transfer entropy value for the third test, where
each actor has the same influence of 0.25, is also very good.
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Figure 3.23: Results for an Influencer-Follower network of 7 nodes. The activity level λ is
different for each influencer and is sorted in ascending order. Influencer I1 is the least active,
and influencer I4 is the most active actor. The left side shows a sketch of the network, in the
middle, there is the weighted adjacency matrix while the right side shows the transfer entropy
matrix.

The best similarity value is achieved in the test where each actor has the same influence
strength of 0.5. This test gives some other interesting insights. First, the influence of all
actors to A0 is much lower than the other information flows in the network. Next, the
information flow from A0 to A1 and A2 is also marked as very low, and the links between
A0 and A3, A4, and A5 are detected correctly. There is transfer entropy between A1
and A2, which originates from both having the same indirect influencer, A0, via their
direct influencers A4 and A5. The transfer entropy between A4 and A3 is very high but
should not be. Again, this might be because both are influenced by A0.

The last two scenarios describe situations in which influencers do not have the same influ-
ence strength. Since A4 and A5 have the strongest influence in the network, TEA4ÑA1,
TEA4ÑA3, and TEA5ÑA2 are highlighted.

3.6.5 Influencer activity rate (λ) in a network

In this experiment, we investigate the influence of λ in a network. The observation time
frame is T “ 7 ¨24 hours, and we report the average transfer entropy over 200 repetitions
at the end of the time frame.

Since the Coupled model does not employ the influencer activity rate λ, we only do
our evaluation with the Influencer-Follower model. We generate a network with four
influencers and three followers. Every influencer influences every follower and has its
own activity rate. We choose λI1 “ 0.1, λI2 “ 0.75, λI3 “ 1, λI4 “ 1.4 such that I1 is the
least and I4 is the most active influencer. The parameters µ and γ are set to µ “ 0.01
and γ “ 2. In the preliminary study, it was already shown that the highest amount of
information transfer is recorded for γ “ 2 in the region of λ P r0.5, 1s.
Figure 3.23 shows a sketch of the network, the weighted adjacency matrix, and the
transfer entropy matrix. In the experiment, it is observed that the most active actor,
I4, is the source of the most information flow. Transfer entropy increases as λ increases.
However, the results are slightly misleading. Each of the followers has a certain amount of



CHAPTER 3. SYNTHETIC ANALYSIS 57

input transfer entropy, which means it has a certain amount of individual events, events
inspired by I1, events inspired by I2, events inspired by I3, and events inspired by I4.
The amount of individual events is always constant at µ “ 0.01. The amount of events
that are inspired by an influencer is higher if the influencer is more active. In the transfer
entropy matrix, we actually see the amount of information flowing from each influencer
to each follower. Since I4 is the most active, the information flow is maximized there.
We compute the similarity between TE and A with sim1 “ 0.689, sim2 “ 1.541.

3.7 Summary

We conclude, that information transfer between actors is affected by the background
activity rate (µ), influence strength (γ), and influencer activity rate (λ). We execute
experiments with synthetic data generated by Poisson point processes and investigate
the influence of those parameters on the outcome of the experiments. The main findings
and observations of the synthetic study are:

• Actors below and above a certain activity level should be excluded from analysis
because then, transfer entropy provides misleading results.

• For a fixed influencer activity rate λ, transfer entropy increases with the influence
strength γ and decreases with the background activity rate µ.

• Normalization of transfer entropy by division throughHpYt|Y t´k
t´1 q or log k, where k is

the number of bins, does not provide further insights useful for analysis. Systematic
bias correction seems to only lower transfer entropy by a more or less constant
factor. Permutation tests can be used to evaluate how strong the influence between
two actors really is. However, the method is too computationally intensive to be
applied practically.

In the next section, we conduct an empirical study. In this study, we take into account
all the important points above which are learned from the synthetic study.



Chapter 4

Empirical Analysis

In this chapter, we evaluate whether we can utilize transfer entropy to extract meaningful
knowledge from real-world datasets. In Section 4.1, we describe the application on a small
dataset dealing with water level of rivers and show how to determine in which direction
rivers run. In Section 4.2, we use the LFM-1b dataset, which contains listening events
created by users of Last.fm. We show how to recover interesting social connections
between users of different countries and genres. In Section 4.3, we analyze tweets posted
by twitter trolls and investigate the strength of influence of certain hashtags.

4.1 Flow direction of rivers

We first evaluate the concept of transfer entropy on a small dataset, which includes
information about the water level of rivers. We focus on four different rivers, Saar,
Rhine, Danube, and Mur and cities along those rivers. In each city, there is a stream
gaging station which reports the water level of the respective river periodically. We
investigate how transfer entropy can be used in connection with the information about
water levels in order to determine the direction in which rivers flow.

4.1.1 Description of the dataset

The dataset contains data from two different data sources. First, we take the dataset
used by Budhathoki et al. [20]. It provides water levels in centimeters recorded for two
German rivers, Saar and Rhine. Measurements were taken every 15 minutes for one
month (25.6.2017 - 24.7.2017). The measurement stations are located in Fremersdorf,
Hanweiler, and Sanktarnautal for the Saar river and Speyer, Mannheim, Worms, and
Mainz for the Rhine river. Second, we create our own dataset from data provided by
eHYD1, an online archive providing various kinds of measurement data for Austrian rivers
and lakes. We focus on two large Austrian rivers, Danube and Mur. For the Danube, we
consider the measurement stations Kienstock, Korneuburg, Melk, and Thebnerstrasse.

1https://ehyd.gv.at
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datetime;graz;mureck;friesach
03.01.1987-00:00;47.0;72.3;62.7
04.01.1987-00:00;38.5;65.0;53.0
05.01.1987-00:00;38.8;56.0;48.6
06.01.1987-00:00;35.8;59.5;45.7
07.01.1987-00:00;38.4;55.9;46.5
08.01.1987-00:00;34.9;57.6;41.7
09.01.1987-00:00;31.3;54.3;37.4
10.01.1987-00:00;32.4;48.7;33.5
11.01.1987-00:00;28.8;55.2;35.6
12.01.1987-00:00;27.4;49.1;33.9

graz: [05.01.1987-00:00; 07.01.1987-00:00;
10.01.1987-00:00;]
mureck: [05.01.1987-00:00; 06.01.1987-00:00;
08.01.1987-00:00; 11.01.1987-00:00;]
friesach: [07.01.1987-00:00; 11.01.1987-00:00]

Figure 4.1: Example of preprocessing applied to a part of the Mur dataset. The left side shows
the raw data. The right side shows the preprocessed data. We convert the data into a list of
timestamps for each city.

Measurements were taken once a day over a time span of 17 years (7.10.1999 - 31.12.2016),
yielding a total of 6296 water level measurements per city. For the Mur, we consider
gaging stations in Graz, Mureck, and Friesach. The observation time covers even 29
years, yielding in total, 10956 data points per city.

4.1.2 Data preprocessing

Raw data is given in the form of a list of timestamps associated with the water level
in centimeters measured at that time in a specific city. However, the computation of
transfer entropy expects a list of timestamps. Therefore, we define the event Water level
rises. The event happens whenever the water level measured at time T is larger than the
water level measured at time T ´ 1. T ´ 1 is then reported as the timestamp when the
event happens. In other words, given timestamps t0, t1 and water levels l0 measured at
t0 and l1 measured at t1, the event occurs at time t0 if l1 ą l0.

An example for the river Mur is given in Figure 4.1. On the left side we see the dates
and the time measurements made on those dates. Our conversion results results in a list
of timestamps per city, denoting when the event Water level rises happens.

The underlying assumption of our experiments is that if the water level rises in one city,
the water level will also rise in the next city downstream. Instead, we could have also
defined the event Water level falls. Table 4.1 shows how many of these events are finally
recorded per city per river. The number of timestamps is almost equal for Mur and
Danube but differs more for Rhine and especially for Saar.

As a second preprocessing step, we map the timestamps to smaller time units. The
concept of transfer entropy does not know the notion of time. It does not bother if we
work with seconds, days or even years as the smallest time unit. However, in our dataset,
measurements are reported on a regular basis, for example, every day. It is not possible
that two Water level rises events happen within one day. We define the smallest unit
as one day. For example, two events happening at the 1st and 26nd of January would
be mapped to the timestamps 1 and 26. This step does not affect the outcome of the
experiment, but drastically reduces the computational effort.
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These preprocessing steps now allow us to construct a binned random variable. In case
the water level rises in the time frame covered by one bin, the random variable will be
1 and 0 otherwise. Then, the transfer entropy between cities C1 and C2, TEC1ÑC2, is
computed. We assume that in case the river flows from C1 to C2, TEC1ÑC2 will be
higher than TEC2ÑC1. If the water level rises in C1 it will also rise in C2, and not vice
versa.

4.1.3 Experiment design

We conduct the same experiment for each river, which is constructed as follows:

1. Preprocessing: We apply the preprocessing steps as described in the previous
section.

2. Choice of bins: The average inter-event time is computed for each city in order
to indicate the size of bin widths. We choose four different bin width configurations
for each river, which are aligned to the average inter-event time.

3. Computation of TE: We compute the transfer entropy between cities for all the
different bin width configurations.

4. Discussion: In the last step, we provide a detailed discussion of the results. The
results are represented using the transfer entropy matrix. Additionally, we provide
an intuitive graph in which correct edges are marked in green and incorrect edges
are marked in red.

Steps 2-4 are explained in detail for each river in the following sections.

4.1.4 Results for Saar river

The Saar is a river in France and Germany. It is 246km long. The minimal time unit
for Saar data is 15 minutes. Figure 4.2 shows the inter-event distribution for all cities.
Note that outliers are removed before plotting the histogram using the Tukey outlier
test [78] using parameter k “ 10. The outlier filtering is only done for the illustration.
Sanktarnautal has the largest average inter-event time, followed by Fremersdorf and
Hanweiler. The overall average inter-event time is t “ 1.23 hours “ 74 minutes. We
round this to t “ 75 minutes.

Saar

Hanweiler 153

Sanktarnual 599

Fremersdorf 994

Rhine

Speyer 519

Mannheim 736

Worms 599

Mainz 762

Mur

Friesach 3953

Graz 4000

Mureck 3947

Danube

Melk 2420

Kienstock 2435

Korneuburg 2452

Thebnerstrasse 2425

Table 4.1: The dataset consists of data about four rivers, Saar, Rhine, Mur, and Danube. There
are 3 or 4 cities along each river which delivers measurement data about the water level. The
number of times in which the water level rises is given together with the city.
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Figure 4.2: Distribution of inter-event times in the Saar dataset. To make the illustration more
understandable, outliers are excluded. The overall average is 0.8294 hours.
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Figure 4.3: Test results for the Saar river using bins of width δ0 “ t{5, δ1 “ 2{5t, δ2 “ 4{5t.
The first heat map shows the transfer entropy matrix between the cities. The second heat map
shows HpYt|Y t´k

t´1 , X
t´k
t´1 q. Note that if X “ Y then HpYt|Y t´k

t´1 , X
t´k
t´1 q= HpYt|Y t´k

t´1 q. The row
refers to Y , the column refers to X. The graph shows the edges between the cities based on
the transfer entropy matrix. A red edge means an incorrect edge, a green edge means a correct
edge. We compute the similarity between the correct adjacency matrix and the transfer entropy
matrix.

In the first experiment, we test a few narrow bins. For the most recent history, we set
δ0 “ 15 min = t{5. For the history one step further in the past, we set δ1 “ 30 min
= 2{5t. For the history furthest in the past, we set δ2 “ 60 min = 4{5t. Every link is
detected correctly except the one from Hanweiler to Sanktarnual, as it is shown in Figure
4.3. The second heat map shows the entropy of each stochastic process. Since the bins
are chosen very narrow the history of Hanweiler is captured very well, which leads to
a small uncertainty in the respective stochastic process. There are many Fremersdorf
events, the history is captured less well, and there is high uncertainty. The same thing
happens for Sanktarnual, which is why the transfer entropy originating there is higher in
general. This leads to an incorrectly inferred link between Sanktarnautal and Hanweiler.
Therefore, we need to choose bin widths which capture the histories of Sanktarnual and
Fremersdorf better.

The results of the second, third and fourth experiment are shown in Figure 4.4. In
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Figure 4.4: Test results for the Saar river using different configurations of bin widths. The
first heat map shows the transfer entropy matrix between the cities. The graph shows the edges
between the cities based on the transfer entropy matrix. A red edge means an incorrect edge.
A green edge means a correct edge. We compute the similarity between the correct adjacency
matrix and the transfer entropy matrix.

the second experiment, we choose one more bin, δ3 “ 2 hours = 8{5t. Again, the
link between Hanweiler and Sanktarnual is not detected correctly. Compared to the
first experiment, the absolute transfer entropy originating at Hanweiler is now higher.
The link between Hanweiler and Sanktarnual is still detected incorrectly. The difference
between TEHÑS and TESÑH became smaller because, due to the additional bin, the
history of Sanktarnual can be captured better which leads to a reduction in uncertainty.

The third experiment works with three bins of size 30 minutes, 1 hour, and 2 hours. Now,
the link between Hanweiler and Sanktarnual is detected correctly, but the link between
Sanktarnual and Fremersdorf is wrong. This might happen because the first bin is too
wide for Fremersdorf data, which has a very small inter-event time.

In the last experiment, we try to combine bin widths such that the insights from the first
and the third experiment are realized optimally. We observe in the first experiment that
bins should be wide, and in the third experiment that the first bin must be 15 minutes.
Therefore, we set the bin widths to 15 minutes, 30 minutes, and 2 hours. The transfer
entropy matrix is able to detect all links correctly.

For each of the transfer entropy matrices, we do a comparison with the adjacency matrix,
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Figure 4.5: Distribution of inter-event times in the Rhine dataset. To make the illustration
more understandable, outliers are excluded. The overall average is 1.1 hours.
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Figure 4.6: Test results for the Rhine river using bins δ0 “ t{5, δ1 “ 2{5t, δ2 “ 4{5t. The first
heat map shows the transfer entropy matrix between the cities. The second heat map shows
HpYt|Y t´k
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Y , the column refers to X. The graph shows the edges between the cities based on the transfer
entropy matrix. A red edge means an incorrect edge, a green edge means a correct edge. We
compute the similarity between the correct adjacency matrix and the transfer entropy matrix.

which is an upper triangular matrix. The similarity values do not indicate correct results
very well. For example, the similarity value in the fourth experiment is higher than in
the second experiment, which means "less similar". The reason is that in the fourth
experiment, the link between Fremersdorf and Sanktarnautal is less clear than in the
second experiment. The difference between the absolute transfer entropy values is higher.

4.1.5 Results for Rhine river

The Rhine river originates in Switzerland, and flows through Germany to the North Sea.
It is 1200km long. The minimal time unit for Saar data is 15 minutes. The inter-event
distribution for all measurement stations is shown in Figure 4.5. As described in the
previous section, outliers are removed for the diagram using the Tukey test with k “ 3.
Speyer has the largest average inter-event time with 1.38 hours, followed by Worms with
1.2 hours and Mannheim and Mainz with around 0.95 hours. The total overall average
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Figure 4.7: Test results for the Rhine river using different configurations of bin widths. The
first heat map shows the transfer entropy matrix between the cities. The graph shows the edges
between the cities based on the transfer entropy matrix. A red edge means an incorrect edge.
A green edge means a correct edge. We compute the similarity between the correct adjacency
matrix and the transfer entropy matrix.

inter-event time is t “ 1.1 hours. Again, we round this to t “ 1 hour.

The results of the first experiment are shown in Figure 4.6. We observe a strong cor-
relation between the inter-event times and the entropy HpYt|Y t´k

t´1 , X
t´k
t´1 q, like in the

previous example. Speyer has the lowest entropy and the highest average inter-event
time. Mainz and Mannheim both have similar average inter-event times and a similar,
higher entropy. The link between Speyer and Mannheim, as well as Worms and Mainz,
is detected incorrectly. This might be a hint that the bin widths are too wide because
we fail to detect one-hop links, but can easily detect multi-hop links.

The results for the following experiments are shown in Figure 4.7. In the second exper-
iment, we want to investigate what happens if we exchange the second bin, δ1, with a
smaller bin (1 hour). All one-hop links are detected correctly, but now we fail to recognize
the multi-hop link between Worms and Speyer. This confirms our assumption about too
wide bin widths of the first last experiment.

The third experiment is done with bins of width pt{2, 3{4t, tq. Two multi-hop links are not
recognized as well as one one-hop link. This means that bin widths are chosen entirely
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Figure 4.8: Distribution of inter-event times in the Danube dataset. To make the illustration
more understandable, outliers are excluded. The overall average is 62.06 hours.
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Figure 4.9: Test results for the Danube river using bins δ0 “ t{5, δ1 “ 2{5t, δ2 “ 4{5t. The
first heat map shows the transfer entropy matrix between the cities. The second heat map shows
HpYt|Y t´k
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Y , the column refers to X. The graph shows the edges between the cities based on the transfer
entropy matrix. A red edge means an incorrect edge, a green edge means a correct edge. We
compute the similarity between the correct adjacency matrix and the transfer entropy matrix.

wrong since the binning process cannot capture the history of any city sufficiently. The
first bin is too wide, which is why Speyer is involved in two wrong links. Overall, the
bins do not observe enough time at once, which is why the multi-hop link between Mainz
and Mannheim is wrong.

In the last experiment, we choose the same bins as in the second experiment but remove
the last bin. This experiment gives an interesting insight as it shows the same relations
but in general, a lower transfer entropy. This confirms the theoretical finding we had
about bin widths in the first section.

4.1.6 Results for Danube river

The Danube is the second-longest river in Europe and flows through 10 countries. The
Danube dataset is different from the Saar and Rhine dataset because the measurement
data is not delivered every 15 minutes but every 24 hours. The minimal time unit is
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Figure 4.10: Test results for the Danube river using different configurations of bin widths. The
first heat map shows the transfer entropy matrix between the cities. The graph shows the edges
between the cities based on the transfer entropy matrix. A red edge means an incorrect edge.
A green edge means a correct edge. We compute the similarity between the correct adjacency
matrix and the transfer entropy matrix.

therefore 24 hours. The average inter-event times are much higher than in the first two
datasets. Additionally, we expect that detecting correct flow directions will be more
difficult since the information we have is less detailed. Figure 4.8 shows the inter-event
time distribution for all cities along the Danube river. Outliers are excluded using the
Tukey method with k “ 2. The total average inter-event time is 62.06 hours, which we
again round to t “72 hours (3 days). Melk has the largest inter-event time with 62 hours.

In the first experiment, we chose the bins p1{3t, 2{3t, 4{3tq. The results can be seen in
Figure 4.9. Not a single link is detected correctly, and the transfer entropy matrices,
which should be an upper triangular matrix, is a lower triangular matrix. The transfer
entropy matrix shows a high information flow from the last station, Thebnerstrasse to
Melk, a lower to Kienstock, and an even lower to Korneuburg. The matrix showing
HpYt|Y t´k

t´1 , X
t´k
t´1 q looks different from what we saw in the last section since the average

inter-event times are almost equal for all cities. The highest transfer entropy appears at
the point where we have the least uncertainty, between Thebnerstrasse and Melk.

The results for the following experiments are shown in Figure 4.10. The second exper-
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Figure 4.11: Distribution of inter-event times in the Mur dataset. To make the illustration
more understandable, outliers are excluded. The overall average is 66.26 hours.
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Figure 4.12: Test results for the Mur river using bins δ0 “ t{5, δ1 “ 2{5t, δ2 “ 4{5t. The first
heat map shows the transfer entropy matrix between the cities. The second heat map shows
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entropy matrix. A red edge means an incorrect edge, a green edge means a correct edge. We
compute the similarity between the correct adjacency matrix and the transfer entropy matrix.

iment repeats the first, but with one more bin. The results are the same as in the first
experiment. We assume that bins are not wide enough. The third experiment works with
bins p4{3t, 8{3t, 8{3tq, and still, no links are detected correctly. However, we observe that
the transfer entropy above the transfer entropy matrix’ diagonal increases.

As expected, we need to choose wider bins. In the fourth experiment, we work with bins
of size p8{3t, 8{3t, 8{3tq. Now, all the links are detected correctly except one. Notably,
information flow to Thebnerstrasse is very high compared to the other values in the
transfer entropy matrix. In the previous scenarios, we saw that information flow from
Thebnerstrasse was very high.

4.1.7 Results for Mur river

The Mur river is 450km long and runs through Austria and Slovenia. The minimal time
unit for is 24 hours. Figure 4.11 shows the inter-event time distribution for all cities.
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Figure 4.13: Results for test runs on the Mur river for different bin widths. A green arrow
means a correct edge while a red arrow denotes an incorrect one.

Outliers are removed by setting k “ 3 in the Tukey test. Friesach has the largest average
inter-event time, followed by Graz and Mureck. The overall average inter-event time is
66.26 hours. We round this to t “ 72 h = 3 days.

The first experiment is done with bins p4{3t, 4{3t, 4{3t. The results are shown in Figure
4.12. Friesach has the highest uncertainty in its history, which might be related to the
slightly higher average inter-event time. Interestingly, the information flow to Mureck is
higher than the information flow to Graz. We already saw in previous experiments with
networks. Actors who are influenced by multiple actors accumulate their information
transfer. Information flow to Mureck is very high because it "includes" the information
flow from Friesach to Mureck and from Graz to Mureck.

The results for the following experiments are shown in Figure 4.13. In the second ex-
periment, we use wider bins of equal width of 8 days. All links are detected correctly,
and we still see a big difference between the transfer entropy to Graz and the transfer
entropy to Mureck.

In the third experiment, we narrow down the first bin to 2 days. The transfer entropy
matrix fails to detect the multi-hop link between Friesach and Mureck. We hypothesize
that this happens because, in total, the computation window of the binned random
variable is reduced to 18 days instead of 24 days and that therefore, the window is too
small to analyze the two-hop connection in a meaningful way.
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The last experiment works with four bins of size p4{3t, 4{3t, 8{3t, 8{3tq. Just like in the
first experiment, the link between Friesach and Graz is not detected correctly. This might
hint that bins are chosen too narrow.

4.1.8 Summary

The experiment with the river dataset allows us to get a first estimation of how we can
use transfer entropy in order to extract useful information from a tiny dataset. The cities
can be mapped to actors or stochastic processes. In the beginning, we define the event
Water level rises and compute the timestamps on which the event occurs.

This makes it possible to compute the average inter-event time, which we use to choose
appropriate bin widths. Then, we compute transfer entropy between the cities along a
river.

In general, determining the correct flow direction works better for Rhine and Saar than
for Danube and Mur. The reason is that we get measurement data for the first two every
15 minutes and the last two every 24 hours.

However, several other factors affect the quality of the results, including:

• Obstacles along the river: Smaller distances make it easier to detect the correct
flow directions because there are fewer obstacles that can change the water level, for
example, embankment dams or reservoirs.

• Tributaries: Rivers which lead into a larger river can influence downstream cities.
For example, the river Sulm ends up in the Mur between Graz and Mureck. If the
water level of the Sulm rises, this might also trigger events in Mureck, which are not
caused by Graz.

• Forks: Similar to tributaries, a river can fork and continue as a smaller side river
and a bigger main river.

These experiments should give first insights into the topic of transfer entropy in empirical
studies. In the next section, we have a look at a larger dataset.
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4.2 Last.fm

In the following we analyze the meaning and behavior of transfer entropy using a larger
dataset, the LFM-1b dataset. It contains listening events of users on the platform
Last.fm. First, we examine the information flow between users in certain countries who
listen to a specific artist. Second, we investigate whether users who listen to Country,
R&B/Hip-Hop or Rock influence each other.

4.2.1 Description of the dataset

The LFM-1b dataset [70] contains data retrieved from Last.fm. Last.fm is a website
which offers an online music database and a sophisticated recommendation system for
their users. Users can share which music they listen to or meet other people with the
same music taste. Last.fm does not offer music streaming. It only tracks which music
users listen to. Data is sent to Last.fm when users listen to music using certain apps on
their smartphones, e.g., Spotify or Apple Music, or certain programs on their desktop
devices [9].

Last.fm offers an API for researchers to build their own datasets [10]. Schedl [70] worked
with tags in order to retrieve meaningful data from Last.fm to build the LFM-1b dataset.
On the platform, users can tag music. This means they assign terms to music which
describe the track, album or artist. For example, they might assign rock to a song by
Queen. Schedl focused on those tags which were used by users most. Each song has an
artist associated with it, and each artist has fans. The users represented by the dataset
is a randomly chosen subset of these fans, yielding around 120 000 users in total.

Table 4.2 gives an overview of all the objects and fields to describe the objects in the
dataset. Each user is characterized by a unique identifier, country, age and gender. As
shown in [70], less than 50% of users specify their country or gender. Only about 40% of
all users provide their exact age. If a user listens to a song, a listening event is created.
A listening event is described by a timestamp, the user, the track, the artist, and the
album. Furthermore, for each artist and album, there is a unique identifier and a name.

Object Fields Number

User (userid, country, age, gender) 120.322

Artist (artistid, artistname) 3.190.371

Album (albumid, albumname) 15.991.038

Track (trackid, trackname, artistid) 32.291.134

Listening event (userid, artistid, albumid, trackid, timestamp) 61.534.450

Table 4.2: Description of objects in the LFM-1b dataset, the fields associated with them and
the number of data items per object.
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Tracks are characterized by a name and the identifier of the respective artist.

The timestamps of listening events cover a range of 20 months, beginning in January
2013 and ending in August 2014. The dataset contains 61 million listening events, 32
million tracks, 15 million albums and 3 million artists.

4.2.2 Countries as stochastic processes

In the first experiment we evaluate how users of different countries influence each other.
We focus on the five countries with the most users, as listed in [70]. The group of users
which does not specify their country (N/A) is excluded. The countries can be described as
a stochastic process with certain properties, just like the actors in the synthetic analysis.
The list of timestamps is created by taking all listening events of users of a particular
country.

We execute the experiment with five different artists, Adele, Rihanna, Bruno Mars,
Taylor Swift, and Drake. These artists are selected based on the rating of the Billboard
magazine. The Billboard magazine is a famous music magazine in the United States
which publishes charts, rating music artists in different genres. The artists are the five
top artists listed in the Billboard Year-End Charts 2012 and 2013 [7, 8]. We select all
listening events created by users living in a certain country, for example, Germany, who
listen to Bruno Mars. The result is a list of timestamps per country that can directly be
binned and then be used in the transfer entropy computation.

The first step is to determine the bin width for the analysis. Therefore, the average
and median inter-event time in minutes is computed for each artist and each country, as
shown in Table 4.3. The second to last column of the table shows the total average and
median inter-event times. In the last column, we write down the bin widths which are
used for the experiment.

We choose the first bin according to the median inter-event time. For the second bin,
we use 3t, which results in a time between 2 hours and 5 hours. For the third bin, we
choose 16t, which results in a time between 12 hours and 25 hours. One should keep in

Artist US RU DE UK PL Total Bins

Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. (in minutes)

Adele 31 4 80 5 82 5 79 5 25 4 46 4 δ0 “ 4, δ1 “ 46 ¨ 3, δ2 “ 46 ¨ 16
Rihanna 40 5 97 5 106 14 76 7 41 4 60 5 δ0 “ 5, δ1 “ 60 ¨ 3, δ2 “ 60 ¨ 16
Bruno Mars 62 121 252 18 140 14 108 7 63 4 95 7 δ0 “ 7, δ1 “ 95 ¨ 3, δ2 “ 95 ¨ 16
Taylor Swift 36 5 266 5 249 7 74 5 200 5 86 5 δ0 “ 5, δ1 “ 86 ¨ 3, δ2 “ 86 ¨ 16
Drake 25 4 351 5 271 13 66 5 141 5 65 4 δ0 “ 4, δ1 “ 65 ¨ 3, δ2 “ 65 ¨ 16

Table 4.3: Inter-event times in minutes for each country per artist. Avg. denotes the mean,
Med. denotes the median of the raw data. In the last column we show the bins we choose for the
experiment. The first bin refers to the overall median, the second and third bin to the average
inter-event time.
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Adele
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.80 1.50 2.37 5.12

11.48 0.00 2.41 2.88 5.82

11.57 1.12 0.00 3.71 8.58

12.09 1.06 2.38 0.00 8.16

12.32 1.17 3.07 4.31 0.00

Rihanna
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.97 1.64 2.82 4.13

11.52 0.00 3.30 5.56 9.20

9.81 1.38 0.00 5.77 6.83

11.07 1.14 3.20 0.00 7.18

12.04 1.71 4.01 7.31 0.00

Bruno Mars
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.23 0.24 0.22 0.29

2.22 0.00 0.95 1.61 2.40

3.28 0.43 0.00 1.56 2.47

3.63 0.49 0.73 0.00 1.68

3.47 0.56 1.57 1.83 0.00

Taylor Swift
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.33 0.41 1.00 0.46

9.31 0.00 1.06 1.94 1.03

6.84 0.66 0.00 1.73 1.13

9.23 0.51 1.12 0.00 0.80

6.29 0.63 1.22 2.10 0.00

Drake
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.36 0.58 0.88 0.51

14.72 0.00 0.95 2.47 1.41

10.47 0.62 0.00 1.90 0.90

18.68 0.67 0.91 0.00 1.59

15.50 0.54 0.85 3.73 0.00

Figure 4.14: Transfer entropy between users from different countries listening to a specific
artist. We used raw (unfiltered) data for the analysis, but we should have removed too active
countries. The reason for the high amount of transfer entropy towards the US is the time
difference.

mind that by choosing the first bin not equal to the minimal time unit (1 minute), we
will not be able to capture the exact occurrence of every single event.

The total number of listening events per country per artist is sown in Table 4.4. The US
has the most listening events for each artist, except for Adele, where Poland has more
than the US. Since all artists are English speaking artists from either the US, UK or
Canada, we expect that the US and possibly the UK have a strong influence on the other
countries.

We evaluate the transfer entropy between the five countries for each artist. First, we
compute the raw transfer entropy on unfiltered data. The results are shown in Figure
4.14.

First, we observe that the influence of all countries to the US is very strong. This
does not confirm our initial assumption that the US would be the country with the
strongest influence. The reason for this is the time difference between the US and all
other European countries. The dataset specifies timestamps in UTC format. Assume
that Adele releases her new album 21 on January 24, 2011, at 1 PM GMT (Greenwich
Mean Time). In London, people start to listen to the music immediately, and there are a
lot of listening events. The UTC time is be January 24, 2011, at 1 PM. In Los Angeles,
it is 5 AM local time, and many people will still be asleep, then go to work and then
start to listen to Adele - much later than in the UK.

Artist US RU DE UK PL

Adele 124.363 43.298 41.661 49.445 137.584

Rihanna 116.829 41.453 44.684 63.637 116.186

Bruno Mars 36.753 8.218 16.087 21.643 33.877

Taylor Swift 112.397 12.252 13.296 50.416 16.265

Drake 143.220 7.560 9.621 46.618 19.754

Table 4.4: Number of listening events per country per artist.



CHAPTER 4. EMPIRICAL ANALYSIS 73

Adele
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.83 1.69 2.48 1.75

2.69 0.00 2.40 2.43 1.82

2.84 1.09 0.00 3.09 2.35

3.05 1.03 2.36 0.00 2.20

3.78 1.25 3.35 4.01 0.00

Rihanna
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 1.21 1.79 2.09 1.41

3.24 0.00 3.07 3.46 2.88

3.05 1.37 0.00 3.68 2.12

3.55 1.20 3.00 0.00 2.23

4.12 1.96 3.88 4.75 0.00

Bruno Mars
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.29 0.41 0.36 0.34

0.59 0.00 0.89 0.90 1.05

0.85 0.41 0.00 0.85 0.93

0.90 0.45 0.63 0.00 0.80

0.94 0.48 0.92 0.91 0.00

Taylor Swift
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.40 0.55 0.56 0.42

0.84 0.00 0.99 0.67 0.82

0.75 0.66 0.00 0.70 0.89

1.03 0.48 0.79 0.00 0.72

0.66 0.62 1.12 0.71 0.00

Drake
TE ¨10´3

US

RU

DE

UK

PL

US RU DE UK PL

0.00 0.51 0.57 0.62 0.53

0.69 0.00 0.78 0.58 0.66

0.57 0.59 0.00 0.53 0.51

0.99 0.66 0.78 0.00 0.70

0.77 0.53 0.66 0.70 0.00

Figure 4.15: Transfer entropy between users from different countries listening to a specific
artist. We used filtered data by choosing random subsets of pairwise equal length for each
computation.

The problem is that most listening events will occur at different times of the day in the
US and in Europe, which makes it hard to choose bins which appropriately cover this
behavior. In both countries, users might listen to music before going to bed. Therefore,
most listening events happen at around 8 PM GMT in Europe but at 3 AM UTC in the
US.

For Adele and Rihanna, we observe a high information transfer towards Poland. Poland
has a huge number of listening events in these cases. Since we are working with raw,
unfiltered data, this result is not very surprising. The synthetic analysis suggests to filter
out too active and inactive actors.

In the second part of the experiment, we apply this filtering. We cannot exclude actors
from the analysis since actors are countries in this case, and we want to analyze all five
countries. Therefore, we apply a filter that works with random subsets of the data. We
choose the country with the smallest number of timestamps. For example, for the artist
Rihanna this would be Russia with 41453 timestamps. We select 41453 timestamps from
all other countries randomly. This forms the new, filtered history of the countries. Then,
we can compute the transfer entropy between them and ensure that all actors are equally
active. We repeat this random selection 100 times and then report the average transfer
entropy. The results can be seen in Figure 4.15.

We can extract similarity patterns of influence from these five cases. For example, Poland
has a high influence on the UK when listening to Adele, Rihanna, or Bruno Mars. Russia
has a high influence on Poland when listening to Bruno Mars or Taylor Swift. The US
seems to influence the UK most. However, randomly shuffling data does not solve the
timezone problem, which is why we do not see transfer entropy between the US and other
countries at all.

4.2.3 Genres as stochastic processes

In the second experiment, we evaluate how users of a specific genre influence each other.
As genres we select R&B/Hip-Hop, Country and Rock, three top genres suggested by
the Billboard magazine. Each genre is represented by ten tracks. Half of it were the
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top 5 tracks in the respective genre in the Year-End charts of 2012, the other half in the
Year-End charts of 2013 [1, 2, 3, 4, 5, 6]:

• R&B/Hip-Hop: Thrift Shop - Macklemore, Blurred Lines - Robin Thicke, Can’t Hold Us
- Macklemore, Suit & Tie - Justin Timberlake, Holy Grail - Jay Z, Love On Top - Beyonce,
Climax - Usher, Lotus Flower Bomb - Wale, The Motto - Drake, Mercy - Kanye West

• Country: Cruise - Florida Georgia Line, Wagon Wheel - Darius Rucker, Boys ’round Here
- Blake Shelton, Crash My Party - Luke Bryan, I Want Crazy - Hunter Hayes, Time Is
Love - Josh Turner, You Don’t Know Her Like I Do - Brantley Gilbert, Why Ya Wanna -
Jana Kramer, Cowboys And Angels - Dustin Lynch, (Kissed You) Good Night - Gloriana

• Rock: Radioactive - Imagine Dragons, Ho Hey - The Lumineers, Royals - Lorde, Safe And
Sound - Capital Cities, Sail - AWOLNATION, Lonely Boy - The Black Keys, These Days -
Foo Fighters, Burn It Down - Linkin Park, Somebody That I Used To Know - Gotye, Gold
On The Ceiling - The Black Keys

In other worlds, if a user listens to one of the ten tracks of one genre, he or she listens to
the specific genre. For example, if a user listens to Royals by Lorde, he or she listens to
Rock. Only users from the US who listen to all three genres are considered. We analyze
how many users who listen to a specific genre are inspired to also listen to another genre.
For example, we analyze how likely it is that users who listen to rock will, therefore, also
listen to Country.

Table 4.5 shows the inter-event times for each genre. Rock has the highest average inter-
event time with 618 minutes, which is about 10 hours, and the most listening events,
followed by R&B/Hip-Hop and Country. For our computations we can now derive the
bin widths δ0 “ 154 minutes, δ1 “ 556{2 minutes, δ2 “ 556 ¨ 2 minutes.

Figure 4.16 shows the results of the experiment. The first transfer entropy matrix shows
the raw transfer entropy. We observe that R&B/Hip-Hop users and Rock users influence
each other and also have a strong influence on Country users. However, Country users do
not influence Rock and R&B/Hip-Hop users that much. This might be because Country
music is much less popular. According to a study executed by Nielsen Music in 2015 [11],
the most famous music genres, according to sold CDs, vinyl, and online streams, are Rock
(30%) followed by R&B/Hip-Hop (22%). Additionally, from a very subjective point of

Genre Average Median Number of listening events

Country 528 133 2518

R&B/Hip-Hop 514 161 2955

Rock 618 164 3200

Total 556 154

Table 4.5: Average and median inter-event times in minutes for each genre. The last column
shows the number of listening events per genre. We choose the bin widths δ0 “ 154, δ1 “
556{2, δ2 “ 556 ¨ 2 according to median and average.
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Figure 4.16: Influence of US-users listening to music from a specific genre. The first heat map
shows the raw transfer entropy computed between the genres. The second heat map shows the
transfer entropy computed between random subsets of the data of equal length. The influence
of users listening to Country is not that big.

view, a large fraction of Rock and R&B/Hip-Hop music can also be classified as Pop
music, which has a popularity of 19% too. Country only has a popularity of 10%, and
most Country songs can be clearly classified as Country. The border to other genres is
more clear.

Figure 4.16 also shows the results of the tests executed with random subsets of equal
length. The genre with the least amount of timestamps is Country. We randomly select
2518 timestamps from genres Rock and R&B/Hip Hop, compute the pairwise transfer
entropy and report the average. In general, the outcome is similar to the first case. The
transfer entropy from R&B/Hip-Hop to Rock is even stronger.

4.2.4 Summary

The LFM-1b experiments allow us to test transfer entropy in a larger dataset to analyze
the behavior of users in a social network, Last.fm. In the first part, we view countries as
stochastic processes and investigate how users from the US, Russia, Germany, the UK,
and Poland influence each other. The main problems in this analysis were time zone
differences in the data and massive differences in the number of available listening events
per country. In the second part, we view music genres as stochastic processes. A genre
is defined by a set of 10 songs. We take users from the US who listen to all three genres
and examine their influence. The outcome of the experiment showed that users from the
Country genre follow users from the other two genres.

Another issue of the analysis is the choice of bin widths. We choose the widths in
ascending order, starting with the median inter-event time. The median inter-event time
is not the smallest time unit in the analysis. In a situation where a lot of listening events
happen within a small time frame, we are not able to detect all the listening events. In
the next section we show how the result changes when using the smallest possible or the
median inter-event time for the first bin width.
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4.3 Twitter trolls

In this section, we conduct an analysis of tweets posted by Russian and Iranian trolls
on Twitter using transfer entropy. The central question is if there is influence between
hashtags, in other words, if users using hashtag A can influence users to use hashtag
B. In the first experiment, we analyze the 100 most used hashtags and their influence.
In the second experiment, we filter out hashtags that are used too often and not often
enough and analyze their influence.

The second goal of this analysis is to determine how important the choice of the first
bin width is. In the previous sections, we have already shown that the bin widths
considerably affects the result, and that the average inter-event time is a good indicator
of the ideal bin widths. The Twitter study conducted by Ver Steeg et al. [80] mentions
that a possible strategy is to use wider bin widths for less recent history. They also
mention using the finest resolution for the first bin. In the following, we want to evaluate
the results we get when using bins according to the average inter-event time. In the first
run of each experiment, we set δ0 “ 1 minute, the finest resolution. In the second run of
each experiment, we set δ0 to the median of inter-event times.

4.3.1 Description of the dataset

In 2018, Twitter released 9 million tweets, which were posted by around 3800 Russian
troll accounts between 2013 and 2018 [36]. Internet trolls are persons who post rude
and offensive messages on social media sites. Very often, the messages are provocative
or aim at starting arguments with other users [30]. Russia allegedly uses troll farms or
troll factories to conduct political campaigns on Twitter, who post fake news and try
to manipulate the opinion of other users [55, 75]. The accounts used by trolls are very
often fake accounts. For example, in 2016, Russian trolls were suspected to be employed
in the US elections to manipulate people’s opinions. Other cases include the Brexit
referendum in 2016, the elections in France 2017, and the 2017 Catalan independence
referendum [34,39,45,76].

In total, the dataset comprises 9 million tweets posted by 3841 accounts. The data is
given in CSV format. Each line represents a tweet, and each tweet is described by the
time when it was posted, the list of hashtags used, and several other attributes. Since
we focus on the hashtags, we filter out all tweets which do not use hashtags. This results
in 2 million tweets referring to 152892 different hashtags.

The further preprocessing steps, which are applied to the data, are very similar to the
ones applied in the river dataset, as described in Section 4.1.2. In general, we start with
a list of tweets using certain hashtags. This list is transformed to a list of hashtags. Each
hashtag list is associated with a list of tweet timestamps. The timestamp mapping, as
it is described in 4.1.2, is also applied in this case since tweets. The minimal time unit
is one minute, since the tweet timestamps are also given in minutes. We do not know
about the exact second when a tweet was posted. Generally, one can view the hashtag
as a stochastic process and the tweet times associated with the hashtag as the history of
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the process.

4.3.2 Experiment design

The experiment design is also very similar to the one applied when working with the
river dataset (see Section 4.1.3). In this case, we only have two experiments. The first
experiment aims at analyzing the influence of the 100 most used hashtags. The second
experiment aims at analyzing the influence of hashtags which are used not too rarely and
not too often. The experiments are designed in 5 phases:

1. Preprocessing: We apply the preprocessing steps as described in the previous
section to the test data.

2. Filtering: In the first experiment, we exclude hashtags that are not among the
100 most used. In the second experiment, we first compute the average number of
tweets per hashtag. Then, we exclude all hashtags which have fewer tweets then the
average number. In the next step, we compute the first and third quartile, q1, and
q3 from the number of tweets per hashtag. We exclude all hashtags which have less
than q1` 0.6 ¨ pq3´ q1q or more than q3 associated tweets.

3. Choice of bins: The average inter-event time is computed for the resulting
datasets in order to indicate the size of bin widths.

In the first run of each experiment, we set the first bin width δ0 to 1 minute. In
the second run of each experiment, we choose the first bin width according to the
median inter-event time. The second and third bins are always chosen according to
the average inter-event time.

4. Computation of TE: We compute the transfer entropy between all hashtags.

5. Discussion: We provide a detailed discussion of the results by listing the hashtags
with the most information outflow and the most information inflow. Additionally,
we list the links with the most transfer entropy.

4.3.3 100 most used hashtags

In the first experiment, we investigate the 100 most used hashtags, i.e., the 100 hashtags,
which have the longest timestamp list.

In order to determine the bin-widths, the average-inter event time needs to be computed.
Figure 4.17 shows the distribution of inter-event times excluding outliers. Most tweets
have a very short average inter-event time. The median is 18 minutes. However, there are
some extreme outliers. The average inter-event time is 190 minutes. We select δ1 “ 190
and δ2 “ 190 ¨2 for the widths of the second and third bin. In the first part we use δ0 “ 1
and in the second part we use δ0 “ 18.

The distribution of the number of timestamps per hashtag after selecting the 100 most
used hashtags is shown in Figure 4.18. Most of the hashtags have a low number of
timestamps. The most used hashtag has a timestamp list of length 198000, i.e., occurs
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Figure 4.17: Distribution of inter-event
times of all Tweets of the 100 most used hash-
tags. For the purpose of easier illustration,
outliers not shown. The total average inter-
event time is 190 minutes, the median inter-
event time is 18 minutes.
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Figure 4.18: Number of tweets/timestamps
per hashtags for the 100 most used hashtags.
Outliers are not excluded. The most used
hashtag appears 198684 in a Tweet, the 100th
most used hashtag 2088 times. On average,
there are 11533 tweets per hashtag.

in 198000 tweets. The least used hashtag, which is the 100th most used in total, occurs
in 2088 tweets. On average, one hashtag has a timestamp list length of 11500.

Results for (δ0 “ 1, δ1 “ 190, δ2 “ 190 ¨2). In Table 4.6 we report the top 10 hashtags
according to the total outdegree TE. These can be seen as the hashtags which influence
others the most. Apparently, the most influential hashtags are Украина, which means
Ukraine in English, политика, politics, and политика, news, which all indicate political
content. The only hashtag which is not directly related to politics is Футбол, football.

100 most used hashtags (δ0 “ 1, δ1 “ 190, δ2 “ 190 ¨ 2)
Hashtag Total Out-

degree TE Hashtag Total In-
degree TE Hashtag Src. Hashtag Dst. TE

Украина1 0.02265 новости2 0.10653 Футбол3 новости2 0.00486

политика4 0.02225 USA 0.06675 культура6 новости2 0.00474

Футбол3 0.02205 local 0.05469 Зенит7 новости2 0.00454

РФ8 0.02100 sports 0.05296 авто5 новости2 0.00429
Образ
России

9 0.02085 Россия10 0.04588 россия10 новости2 0.00415

world 0.02082 love 0.04433 games новости2 0.00413

crime 0.02071 politics 0.04339 Украина1 новости2 0.00337

культура6 0.02048 America 0.04104 true USA 0.00329

Россия10 0.02043 Украина1 0.03841 ОбразРоссии9 новости2 0.00313

celebs 0.01980 НевскиеНовости11 0.03411 РФ8 новости2 0.00308

Table 4.6: Top 10 of hashtags among the 100 most used hashtags. We use the bins δ0 “ 1, δ1 “
190, δ2 “ 190 ¨ 2 for our computations. The first two columns show the 10 hashtags with the
largest cumulated outgoing TE, the second two columns show the largest cumulated ingoing TE,
the last three columns show the links with the largest TE.
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The hashtags with the most indegree TE are those users felt most inspired to use. They
are also all very political. The top hashtag is новости, news. Interestingly, the most
influential links, which are shown in the right part of the table, all lead to the hashtag
news, except one.

In the Appendix, in Figures A.2 and A.3, we can see the influence network extracted
from the total in- and outdegree TE. The top hashtags are marked in orange. In both
cases, we observe a slight clustered structure. It is noticeable that the hashtag language
in one such cluster is always either English or Russian, which indicates that trolls rarely
mix languages in their tweets. In both figures, see one cluster using Russian hashtags
related to politics and one cluster using English hashtags seemingly related to sports and
celebrities.

Results for (δ0 “ 18, δ1 “ 190, δ2 “ 190 ¨ 2). In Table 4.7 we present the 10 hashtags
with the highest outdegree TE. More or less the same hashtags as in the previous section
are reported, only the ordering is slightly different. TopNews, entertainment and SanJose
are new hashtags. The hashtags with the most indegree influence are also very similar.
We see the same result about the links with the most TE. The destination hashtag is
always новости, news.

In the Appendix, in Figures A.4 and A.5 we can see a similar structure as before. How-
ever, the graphs appear to be less clustered.

100 most used hashtags (δ0 “ 18, δ1 “ 190, δ2 “ 190 ¨ 2)
Hashtag Total Out-

degree TE Hashtag Total In-
degree TE Hashtag Src. Hashtag Dst. TE

Россия10 0.24725 новости2 0.73928 Футбол3 новости2 0.03087
Невские
Новости

11 0.24061 local 0.44543 культура6 новости2 0.03078

crime 0.22715 USA 0.37958 Зенит7 новости2 0.02932

Украина1 0.22574 Невские
Новости

11 0.33501 games новости2 0.02852

политика4 0.22528 politics 0.32874 авто5 новости2 0.02590

РФ8 0.22070 sports 0.32237 россия10 новости2 0.02332

world 0.21893 America 0.32041 Украина1 новости2 0.02099

TopNews 0.21827 Россия10 0.30895 ОбразРоссии9 новости2 0.01988

entertainment 0.21757 кино12 0.26901 Россия10 новости2 0.01919

SanJose 0.21722 Украина1 0.26509 музыка13 новости2 0.01784

Table 4.7: Top 10 of hashtags among the 100 most used hashtags. We use the bins δ0 “ 18, δ1 “
190, δ2 “ 190 ¨ 2 for our computations. The first two columns show the 10 hashtags with the
largest cumulated outgoing TE, the second two columns show the largest cumulated ingoing TE,
the last three columns show the links with the largest TE.
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Figure 4.19: Distribution of inter-event
times of all Tweets of the quartile-filtered hash-
tags. For the purpose of easier illustration,
outliers not shown. The total average inter-
event time is 10638 minutes, the median inter-
event time is 44 minutes.
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Figure 4.20: Number of tweets/timestamps
per hashtags for the quartile-filtered hashtags.
Outliers are not excluded. The most used
hashtag appears 76 times in a Tweet, the least
used hashtag 57 times. On average, there are
65 tweets per hashtag. In total, we analyze
794 hashtags.

Summary. In general, we can argue that changing the bin widths of the first bin does
not have a crucial influence on the result. In both cases, we see more or less the same
results, and it is easy to identify very influential hashtags.

However, if one wants to know which one of two hashtags is more influential, the task
becomes harder. For example, the first results suggest that Украина is more influential
than Россия, but the second results suggest the opposite. The question is also if there
influence is different in reality. Therefore, if the goal of the experiment is to compare the
influence of two hashtags, we suggest to repeat the experiment with several different bin
widths and then combine the results.

4.3.4 Quartile-filtered hashtags

In the second experiment, we investigate hashtags that were filtered by the number of
tweets they occur in, which is the same as the number of timestamps associated. First, we
compute the average number of timestamps per hashtag and exclude all hashtags which
have fewer timestamps than that. Then, we compute the first and third quartile and
exclude all hashtags which have less than q1`0.6¨pq3´q1q and more than q3 timestamps.
We needed to increase the lower boundary from simply q1. This is because further
investigations showed that q1 would allow hashtags which have not enough timestamps
to provide meaningful analysis results.

In order to determine the bin widths, we need to investigate the average inter-event
time. Figure 4.19 shows the distribution of inter-event times excluding outliers. The
distribution indicates that the vast majority of tweets has a short average inter-event
time. The distribution is less balanced than it was in the first experiment. The reason
for this is that now we allow hashtags which have a shorter number of timestamps. A
small number of timestamps in a certain time frame always lead to a longer average
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inter-event time than a large number of timestamps. The total average inter-event time
is 10638 minutes. The median is 44 minutes.

Figure 4.20 shows the number of timestamps per hashtag. Quartile-filtering of data
leads to the lower bound of 57 timestamps and the upper bound of 76 timestamps.
For our experiment we choose the bin widths (δ0 “ 1, δ1 “ 10638{2, δ2 “ 10638) and
(δ0 “ 44, δ1 “ 10638{2, δ2 “ 10638). In total, we analyze 794 different hashtags.

Results for (δ0 “ 1, δ1 “ 10638{2, δ2 “ 10638). The most influential hashtags by
means of outgoing transfer entropy are shown in Table 4.8. We see that most of the
hashtags are now English hashtags because, apparently, Russian trolls prefer to post in
Russian. Most of the topics are political, for example corruption and motivation. Others
might indicate propaganda or controversial topics, for example abortion or blackgirlmagic.
BBC, a big news company, is the second most influential hashtag.

The hashtags with the most ingoing transfer entropy are also political in the first place.
We assume that MerylStreep was used by trolls in a political discussion, too. Streep,
who is an actress, gave a speech at the 2016 Democratic National Convention to support
Hillary Clinton [12]. Nowplaying is used in a tweet by a user to announce which music
the user is currently listening to.

The links with the most transfer entropy give very interesting insights. Two of them orig-
inate at ЦРУ, CIA. The first destination hashtag is ShockingmurderinAtlanta. Several
sources claim that this hashtag indicates fake news spread by Russian trolls about a black,

Quartile-filtered hashtags (δ0 “ 1, δ1 “ 10638{2, δ2 “ 10638)

Hashtag Total Out-
degree TE Hashtag Total In-

degree TE Hashtag Src. Hashtag Dst. TE

Israeli 0.00548 LiberalCrybabies 0.00707 Meet Nowplaying 0.00167

BBC 0.00545 ПутинНаш
Президент

w14 0.00683 NoJustice
NoPeace

HowToSpot
ASocialist 0.00012

abortion 0.00537 TrumpWasRight 0.00679 StopKillingUs MomIn5Words 0.00011

LGBTQ 0.00533 Nowplaying 0.00678 UltimOra MomIn5Words 0.00011

motivation 0.00533 PrayForFlorida 0.00666 ЦРУ15 Shockingmurder
inAtlanta 0.00011

ЦРУ15 0.00525 Stockholm 0.00666 ЦРУ15 AskNacks 0.00011

women 0.00518 MerylStreep 0.00648 Еврови
дение

16 RahmEmanuelOut 0.00011

blackgirl
magic 0.00512 blackart 0.00640 ShutItDown HowToSpot

ASocialist 0.00011

Corruption 0.00511 writingtips 0.00632 sport MomIn5Words 0.00011

corruption 0.00511 Article50 0.00623 JayZ ItsUnacceptableTo 0.00011

Table 4.8: Top 10 of hashtags among quartile-filtered hashtags. We use the bins δ0 “ 1, δ1 “
10638{2, δ2 “ 10638 for our computations. The first two columns show the 10 hashtags with
the largest cumulated outgoing TE, the second two columns show the largest cumulated ingoing
TE, the last three columns show the links with the largest TE.
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unarmed woman who was shot by the police [23, 26, 59]. The hashtag MomIn5Words is
used to construct a tweet consisting of five words that a mom would say to her children.
In theory, it could be possible that trolls use this hashtag to make seemingly off-topic,
non-political posts occasionally to lower the chance to be reported and banned from
Twitter.

In the Appendix, Figures A.6 and A.7 show the influence network around the analyzed
hashtags. In Figure A.6 we see a small cluster in which all influence originates at black-
girlmagic. This hashtag was introduced by HuffPost, an online newspaper, to "celebrate
the beauty, power and resilience of Black women" [85]. In Figure A.7 we see that a
lot of information flow originates and destines at the hasthag SanctuarySewer, which is
apparently a term from a video game.

Results for (δ0 “ 44, δ1 “ 10638{2, δ2 “ 10638). In this step, we increase the size of
the first bin. The results are presented in Table 4.9. We observe that about 50% of the
hashtags, which are most influential, are the same as in the first step with δ0 “ 1. The
most influential hashtag is seemingly motivation, which has a very broad meaning. The
hashtag PeoplesMonday is used in tweets about police brutality against black people.

The top hashtag, according to indegree transfer entropy, is Nowplaying, but the others all
indicate controversial topics. Interestingly, four out of ten hashtags refer to black people
who were shot by the police between 2016 and 2017. This includes DeborahDanner,
JordanEdwards, TyreKing and TerenceCrutcher. FreeRicky is about a black man who
was mistakenly imprisoned for 39 years in the US [72].

Quartile-filtered hashtags (δ0 “ 44, δ1 “ 10638{2, δ2 “ 10638)

Hashtag Total Out-
degree TE Hashtag Total In-

degree TE Hashtag Src. Hashtag Dst. TE

motivation 0.13226 Nowplaying 0.25716 Meet Nowplaying 0.00167

chicago 0.13111 FidelCastro 0.18934 Kindle Nowplaying 0.00165

Corruption 0.12911 DeborahDanner 0.16828 PeoplesMonday Nowplaying 0.00158

LGBTQ 0.12775 JordanEdwards 0.16275 Красавицы_
России

17 Nowplaying 0.00153

women 0.12720 OC 0.14952 Красавицы
России

17 Nowplaying 0.00153

Catholic 0.12669 MerylStreep 0.14218 ПолныйКонтакт18 Nowplaying 0.00149

Clintons 0.12648 TyreKing 0.13793 dreams Nowplaying 0.00144
Peoples
Monday 0.12641 новосибирск19 0.13770 Nizza Nowplaying 0.00143

Romance 0.12571 TerenceCrutcher 0.13747 antifa Nowplaying 0.00143

abortion 0.12518 FreeRicky 0.13720 Антимасонское
движение

20 Nowplaying 0.00140

Table 4.9: Top 10 of hashtags among quartile-filtered hashtags. We use the bins δ0 “ 44, δ1 “
10638{2, δ2 “ 10638 for our computations. The first two columns show the 10 hashtags with
the largest cumulated outgoing TE, the second two columns show the largest cumulated ingoing
TE, the last three columns show the links with the largest TE.
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The links with the most information transfer are completely different from what we saw in
the first test. They all lead to the hashtag Nowplaying. However, the link with the most
information transfer is the same as in the previous example. Similar to MomIn5Words,
we think this is again used by trolls to distract from their political messages.

Figures A.8 and A.9 show the influence network we extract from the most influential and
influenced hashtags. Both show a more or less clustured structure.

Summary. In the second experiment, the results we got for both bin widths are similar
but more different than in the first experiment. One reason is that we analyze more
hashtags, which is to say 794 instead of 100. This means we analyze in total around
630.000 links instead of 10.000. The "chance" that we find more influential links in the
second run is therefore higher. Another reason is that the inter-event times are, by far,
not evenly distributed. The average is 10.000 minutes, while the median is 44 minutes.
In the first experiment, this difference was smaller.

4.3.5 Summary

In the first experiment, a larger bin width for the first bin doe snot change the outcome
significantly. The top hashtags according to outdegree and indegree transfer entropy are
more or less the same, only the order is different. The links with the most TE all destine
in the same hashtag.

In the second experiment, the results are more different which we think is due to the
higher amount of analyzed hashtags and links.

We conclude that the structure and characteristics of the data affects whether the choice
of bins makes a big or a small difference. Significant deviations in the average inter-event
times can lead to distorted results.



Chapter 5

Conclusion

In this thesis, we investigated the use of transfer entropy to analyze social networks.
We worked with datasets consisting of data about multiple actors, where each actor is
described by a list of timestamps. A timestamp indicates the occurrence of an event.
We showed how to identify influentials and to extract information networks from such
datasets using the concept of transfer entropy.

Few researchers have addressed the study of transfer entropy applied to synthetic data in
detail. In this thesis, we introduce two data generation processes, the Influencer-Follower
model and the Coupled model. Both models can be tuned by several parameters, includ-
ing the activity rate and strength of influencers and the fraction of events executed by
followers independently. We provide an in-depth, pairwise comparison of those parame-
ters and analyze how they affect transfer entropy. The comparison is made in situations
where two actors exist as well as in networks of actors. These experiments revealed that
it could be problematic to evaluate transfer entropy between two actors whose activity
levels differ too much. Additionally, we found that bin widths have to be chosen with
care and that the average inter-event time of actors’ actions provides an informative basis
for their choice.

Several normalization methods were studied in this work, including normalization by the
follower’s entropy and normalization by the number of bins. Additionally, we investigated
a method to correct the systematic bias introduced by the estimation of entropies from
probability distributions of binned random variables. However, none of these methods
turned out beneficial for further computations. We also studied permutation tests and
found them helpful in determining the true influence between two stochastic processes.
We did not apply this approach to further experiments since it was too computationally
intensive.

We applied the insights of our synthetic analysis to three different empirical datasets.
The river dataset contains the water level of four European rivers, measured in different
cities regularly. We showed that the flow direction of these rivers could be determined
using transfer entropy. The LFM-1b dataset contains millions of listening events of users

84
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on Last.fm. A listening event is described by a timestamp, the user, and which track
the user listens to. We investigate whether users from different countries influence each
other and find that different time zones can be a problem. In a further experiment, we
examine the influence of users between different genres and see that users listening to
Country music are often inspired by users listening to Rock or R&B/Hip-Hop. The third
dataset we investigated was a dataset comprising tweets of Russian trolls. The aim of this
analysis was to find out about the influence of specific hashtags. We especially focused
on differences in the results when using a narrow or wide width for the first bin, which
accounts for the most recent history. We deduce that the differences are negligible since
the top 10 most influential hashtags were nearly the same, independent of the width of
the first bin. However, when one wants to compare the influence of two hashtags directly,
the choice of bin widths is important.
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Figure A.1: Conditional and joint probability distribution when computing transfer entropy
for three different bins.
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Figure A.2: 100 most used hashtags / bins: δ0 “ 1, δ1 “ 192, δ2 “ 190 ¨ 2. Visualization of
the top hashtags according to total outdegree TE. The orange nodes refer to one of the top 10
hashtags according to total outdegree TE. The orange edges mean that the source of the edge
is a top 10 hashtag.
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Figure A.3: 100 most used hashtags / bins: δ0 “ 1, δ1 “ 192, δ2 “ 190 ¨ 2. Visualization of
the top hashtags according to total indegree TE. The orange nodes refer to one of the top 10
hashtags according to total indegree TE. The orange edges mean that the destination of the
edge is a top 10 hashtag.
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Figure A.4: 100 most used hashtags / bins: δ0 “ 18, δ1 “ 192, δ2 “ 190 ¨ 2. Visualization of
the top hashtags according to total outdegree TE. The orange nodes refer to one of the top 10
hashtags according to total outdegree TE. The orange edges mean that the source of the edge
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Figure A.5: 100 most used hashtags / bins: δ0 “ 18, δ1 “ 192, δ2 “ 190 ¨ 2. Visualization of
the top hashtags according to total indegree TE. The orange nodes refer to one of the top 10
hashtags according to total indegree TE. The orange edges mean that the source of the edge is
a top 10 hashtag.
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Figure A.6: Quartile-filtered hashtags / bins: δ0 “ 1, δ1 “ 10638{2, δ2 “ 10638. Visualization
of the top hashtags according to total outdegree TE. The orange nodes refer to one of the top 10
hashtags according to total outdegree TE. The orange edges mean that the source of the edge
is a top 10 hashtag.
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Figure A.7: Quartile-filtered hashtags / bins: δ0 “ 1, δ1 “ 10638{2, δ2 “ 10638. Visualization
of the top hashtags according to total indegree TE. The orange nodes refer to one of the top
10 hashtags according to total indegree TE. The orange edges mean that the destination of the
edge is a top 10 hashtag.
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Figure A.8: Quartile-filtered hashtags / bins: δ0 “ 44, δ1 “ 10638{2, δ2 “ 10638. Visualization
of the top hashtags according to total outdegree TE. The orange nodes refer to one of the top 10
hashtags according to total outdegree TE. The orange edges mean that the source of the edge
is a top 10 hashtag.
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Figure A.9: Quartile-filtered hashtags / bins: δ0 “ 44, δ1 “ 10638{2, δ2 “ 10638. Visualization
of the top hashtags according to total indegree TE. The orange nodes refer to one of the top 10
hashtags according to total outdegree TE. The orange edges mean that the source of the edge
is a top 10 hashtag.
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1 Ukraine

2 news

3 football

4 politics

5 automatic

6 culture

7 peak

8 RF (Russian Federation)

9 image of Russia

10 Russia

11 Nevsky News

12 cinema

13 music

14 Putin our president

15 CIA (Central Intelligence Agency)

16 Eurovision

17 beauties of Russia

18 full contact

19 Novosibirsk

20 Anti-masonic movement

Table A.1: English translations of Russian Hashtags
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