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Abstract

Embedded and IoT devices rely on cryptographic building blocks to protect

sensitive user data from unrestricted access. Cryptographic algorithms have

been designed to provide security against mathematical attacks, assuming that

the adversary knows the input, output, and the algorithm itself but not the

secret key. Real-world attackers are often more powerful because they can exploit

physical access to the device, allowing them to observe physical properties like

the device’s power consumption. Using side-channel attacks, such as differential

power analysis, these physical properties can be statistically analyzed to extract

the secret key. One popular countermeasure is masking, which splits sensitive

values into multiple random shares, effectively decoupling the sensitive data

from the data processed by the device and, thus, the power consumption. The

security of masking schemes is based on the independent leakage assumption

(ILA), which states that independent computations result in independent leakage.

Unfortunately, it has been shown that the ILA does not always hold for masked

implementations that are used in practice. In this thesis, we work on improving

the security and efficiency of masked implementations in software and hardware.

First, we study the security of masked software when executed by a micropro-

cessor and identify several microarchitectural building blocks that could prevent

leakage-free execution due to ILA violations. To fix the discovered issues, we

explore possible solutions on the hardware and software level and compare them

with respect to efficiency. We focus on simple as well as more complex CPUs,

which include multiple pipeline stages and superscalar building blocks. Further-

more, we investigate the security of masked software when running as a task

in an operating system. To identify leakage in the first place, we propose a

new formal verification approach that allows to verify the execution of masked

software implementations directly on the CPU netlist, facilitating the detection

of ILA violations stemming from the CPU microarchitecture.

Second, we focus on masked hardware implementations. Typically, these im-

plementations compensate for ILA violations either by consuming a significant

amount of fresh randomness or by an increased encryption latency. We research

strategies to lower the randomness consumption of masking in hardware without

increasing the latency, mainly by reusing fresh randomness for unrelated compu-

tations during the encryption. In addition, we research new formal verification

concepts for masked hardware implementations and apply these techniques in

different contexts. We construct a verification approach that supports both

Boolean and arithmetic masking and allows us to detect ILA violations in imple-

mentations adapting both types of masking. In the context of masked hardware

implementations on FPGAs, we build a new verification tool that can be used to

uncover leakage introduced by the FPGA synthesis process.
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Part I.

Efficient and Secure
Masking Schemes to

Counteract Power Analysis
Attacks in Practice

1





The greatest of luxuries is your secrets.

Taylor Swift – Dear Reader

1
Introduction

The Internet of Things (IoT) is becoming increasingly intertwined with our daily

lives, offering comfortable and easy solutions to our everyday problems. While in

2003, approximately 500 million devices were connected to the internet, already in

2010, the number of connected devices (12.5 billion) by far outgrew the number of

humans living on the planet (6.8 billion) [Eva11]. Reasons for this steep increase

are the introduction of ubiquitous devices like smartphones and tablets and the

growing ability of everyday objects to communicate with the world around them.

In 2024, it is almost impossible to imagine the world without electronic door

locks, cameras automatically recognizing the number plate of our cars when we

pass the tollbooth and the possibility of tracking goods in real-time in supply

chain management. However, the sheer convenience and benefits of using IoT

technology often make us blind to the possible risks to our privacy. It is in the

nature of IoT devices to collect, process, and transmit our data, which is in most

cases sensitive corporate or personal information, for example, our heart rate

monitored by fitness trackers or information about the electricity consumption of

our home sent by smart meters to the grid operators. Since leaking this data to

the outside world can have serious monetary, legal, or safety consequences, a key

aspect of implementing IoT devices is protecting them from unauthorized access.

Cryptography One of the most critical measures to secure communication

between two parties, e.g., an IoT device and a server, is cryptography. One

general tool provided by cryptography are encryption algorithms (ciphers) that

allow to transform a message (plaintext) into a concealed message (ciphertext)

using a key. In the case of symmetric cryptography, the communicating parties

share a common secret key k, which is only known to them and is used for both

encryption and decryption. To securely transmit a message, the sender encrypts

the message m with the algorithm E using the key k and obtains the ciphertext

3
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c = Ek(m). The sender then sends the ciphertext c to the receiver, who uses

the same key to decrypt the message and obtains the plaintext m = E−1
k (c).

The encryption algorithm is designed in a way such that any eavesdropper

who observes c cannot practically obtain any information about k or m, which

refers to security in the so-called black-box model. In the black-box model, the

adversary can control the input plaintext and observe the plaintext-ciphertext

pairs for a certain amount of encryptions. Additionally, the adversary knows

which cryptographic algorithm is used but has no knowledge about the internal

cipher state. Over the years, security in the black-box model has been the

focus when designing cryptographic primitives, which covers mathematical and

statistical attacks like differential or linear cryptanalysis [BS90; BS91; Mat93].

Physical Attacks In the context of the IoT, symmetric cryptography is used by

cryptographic devices such as smart cards, which store a cryptographic key and

perform cryptographic operations using these keys [MOP07]. The cryptographic

key needs to be kept secret. If the key falls into the hands of an attacker, the

possible consequences are devastating, including data breaches, identity theft, and

financial loss. For example, the cryptographic key stored on a prepaid credit card

could be misused to increase the balance or issue malicious money transactions.

Compared to the traditional setting, an attacker in the IoT world often has more

powerful abilities, effectively turning the black box into a gray box. While the

black-box model assumes that the only insecure component in the cryptographic

system is the transmission channel and that the operations performed by the

cryptographic devices are entirely hidden, this is not necessarily the case in

reality. In many scenarios, attackers might be able to gain physical access and

perform physical rather than mathematical attacks. Especially IoT devices

make perfect targets for physical attacks due to their ubiquitous nature. For

example, attackers can quickly gain access to electronic key cards, e.g., by just

stealing them. For big server machines located in a company’s server room, this

is much harder. In general, physical access means that the attacker possesses

the cryptographic device or is in close vicinity and can observe and record its

physical properties, which are referred to as side-channel information. The idea

of exploiting side-channel information is that cryptographic devices perform

computations involving the secret key, and computations, in turn, strongly

influence physical properties. Consequently, a dependency exists between the

secret key and the side-channel information that can be analyzed to recover the

key. From an attacker’s perspective, the cryptographic primitive is then found in

a gray-box setting because some information about the internal cipher state is

leaked through side-channel information.

Side-channel attacks using various kinds of physical properties have been used

to extract secrets from cryptographic devices, including time [Koc96; OST06;

SWT01], electromagnetic radiation [GMO01; Hey+12; QS01], sound [Gen+19;

GST14], temperature [HS13], and photonic emission [FH08; Sch+12; Sch+13;
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Power consumption
Processed data,

executed operations
Secret key

depends on
nop

li x20, 0x4

lw x1, (x20)

li x20, 0x14

lw x8, (x20)

and x4, x1, x8

depends on

Figure 1.: Dependency chain between secret key and power consumption of a

cryptographic device (extended from [MOP07])

Sko09]. In 1999, Kocher et al. [KJJ99] proposed power analysis attacks that

utilize the instantaneous power consumption of CMOS circuits as side-channel

information. CMOS is the prevailing technology for building ICs like ASICs,

FPGAs, and microprocessors because of its low overall power consumption. Power

analysis attacks exploit a specific characteristic of CMOS circuits: instantaneous

power consumption is primarily determined by switching activity, such as a

register or wire changing its logical value. As a result, different operations

on different data cause different switching activity and, thus, different power

consumption. Differential Power Analysis (DPA) is one of the most popular

methods to exploit power consumption as a side-channel. To perform DPA, the

attacker statistically analyzes the differences in the power consumption over

multiple executions of the encryption to obtain information about intermediate

values processed by the cryptographic device, which depend on the secret key.

Countermeasures In order to counteract power analysis attacks like DPA, it is

necessary to identify the requirements for a successful attack. One fundamental

requirement is the dependency between the power consumption and the secret

key, as shown in Figure 1. During the execution of a cryptographic algorithm,

the secret key is leaked by the processed data and the executed operations

via the power consumption. To prevent the leakage of the key, either the link

between the power consumption and the data/operations or the link between

the data/operations and the secret key must be broken. There exist two general

classes of countermeasures, hiding and masking, which focus on breaking either

one of these two links.

Hiding aims at weakening the dependency between the power consumption

and the processed data and executed operations by randomizing or equalizing

the power consumption. Randomization of the power consumption can be

achieved by shuffling the execution order of operations, inserting random delays

or dummy operations, or utilizing noise engines to produce random switching

activity. Another possibility is equalizing the power consumption such that every

operation for every data value consumes approximately the same amount of power,

e.g., by using dual-rail logic styles. Several proposals to protect cryptographic

devices by hiding exist [CCD00; Das+17; GM11b; HOM06; Man04; MSS09;
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RPD09; TV04].

The goal of masking [Cha+99; GP99] is to remove the dependency between the

secret key and the processed data and operations. This is achieved by randomizing

sensitive intermediate values, such as the key, by splitting them randomly into

multiple shares. The cryptographic algorithm itself is adapted to process each

share individually instead of the secret key. Although the power consumption of

the cryptographic device still depends on the processed data, the processed data

is effectively random. Every share is statistically independent of the sensitive

value, such that the sensitive value can only be recovered by recovering all shares,

which makes attacks much more difficult and often impractical. The security of

a masked cryptographic algorithm is determined by the security order d, which

is also referred to as the masking order. For instance, first-order masking (d = 1)

works with at least two shares and protects against first-order DPA attacks, while

protection against dth-order attacks requires dth-order masking, and thus, at

least d+1 shares. In the context of symmetric cryptography, Boolean masking is

commonly used, which uses the exclusive or (⊕) operator to split a value into

multiple shares. Other areas, for instance, some PQC schemes, require a mix of

arithmetic masking based on modular additions and Boolean masking. Compared

to hiding, masking does not require modifications to the power consumption

characteristics of the physical device since it is applied exclusively on algorithmic

level. In this thesis, we focus on the masking countermeasure.

Besides hiding and masking, countermeasures can be implemented on protocol

level, such as re-keying, which ensures that a single key is only used for one or

very few encryptions. Re-keying is a central building block for the design of

leakage-resilient modes of cryptographic primitives [DP08], which aim at limiting

the amount of side-channel information an attacker is able to collect. However,

in many scenarios, frequent updates of the secret key are not possible. For

instance, smart cards are usually assigned their secret key upon production, and

no mechanism exists to update it.

The Independent Leakage Assumption The security of a masking scheme against

DPA attacks can be formally proven. This is achieved by verifying that the

distribution of every processed intermediate does not depend on the sensitive

value. In the case of a masking scheme working with d+ 1 shares, every tuple

of d or less intermediate variables must be independent of the sensitive variable

to be secure. For example, to split a sensitive value s into two shares s1 and

s2, one would sample s1 randomly from a uniform distribution and compute

s2 = s⊕ s1. Clearly, s1 is independent of s, but also s2 is independent because

s is concealed (masked) by s1. Many works give formal proofs of the security

of masking schemes [Bar+18; Cor+13; Gou01; NSS22; PR13], including, for

instance, the work of Rivain et al. [RP10], who propose a generic dth-order

masking of the AES along with a manually derived formal security proof.

Formal security proofs have in common that they are based on the independent
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leakage assumption (ILA) [Ren+11]. The ILA states that independent com-

putations lead to independent leakage, i.e., the leakage caused by two distinct

computations depends on at most one intermediate value but not on their com-

binations. For example, on a microprocessor, the ILA implies that the power

consumption of two instructions executed successively is independent of each

other. To obtain a secure masking scheme that meets the properties derived in

the formal proof, it must be ensured that the ILA holds.

Masking in Practice Based on the algorithmic description of a masking scheme

of a cryptographic primitive, the masking scheme is either implemented in

hardware or in software. For instance, to create a hardware implementation,

masking schemes are often coded in a Hardware Description Language (HDL)

like Verilog and then manufactured into an ASIC or ported to an FPGA. Masked

software implementations are frequently created using a programming language

like C or assembly and then executed by a CPU, either in bare-metal mode or

within an operating system. ASICs, FPGAs, and CPUs are typically built using

CMOS technology, which is prone to physical effects like glitches, transitions,

and couplings. In a CMOS circuit, at the beginning of a clock cycle, the data

stored by registers is propagated into the combinatorial logic of the circuit. Due

to differences in the wire lengths and propagation delays of gates, some gates

might temporarily compute incorrect results when one gate input has arrived but

the other has not. These temporary events are known as glitches and transitions.

Coupling effects include crosstalk between adjacent wires, power supply noise, or

IR drop.

Numerous publications demonstrate that the ILA is violated by physical

effects in CMOS circuits [Cnu+17; Dho21; FG05; GMK16; ISW03; LBS19;

MPG05; MPO05; Rep+15], leading to insecure masked hardware and software

implementations. For example, combining two shares s1 and s2 with a random

value r by the expression x = (s1 ⊕ r) ⊕ s2 is valid in theory. In a masked

hardware implementation representing the expression as a CMOS circuit, r could

be delayed, and x would temporarily compute s1 ⊕ s2, leading to the combined

instead of independent leakage of the two shares. In the case of masked software

implementations, physical effects occurring in the CPU on the hardware level can

lead to violations of the ILA [Bal+14; Cor+12; Gro+16a; MMT20; PV17]. For

instance, overwriting a CPU register that stores one share with its counterpart

can leak the Hamming distance between the two shares.

Verification of Masked Implementations To detect potential violations of the

ILA, after creating a masked implementation from the theoretical description of a

masking scheme, designers need to test if the security order in practice adheres to

the theoretical protection order. One option is to perform empirical verification

using leakage assessments such as Welch’s t-test or concrete attacks like DPA.

For masked hardware implementations, this can be done by producing an ASIC



8 Chapter 1. Introduction

test chip or evaluating the design on an FPGA board. For masked software,

it is possible to assess the implementation directly on the microcontroller or

use a leakage simulator that tries to estimate the power leakage for a specific

microprocessor [Har+03; MOW17; She+21a; She+21b].

Formal verification approaches analyze the masked implementation for ILA

invalidations and generate a security proof in case the implementation is secure.

This analysis can be performed in an automated way by a formal verification

tool with respect to a specific attacker model. For example, existing approaches

for masked hardware circuits often work by investigating the implementation

in the robust probing model [Fau+18; ISW03]. In the robust probing model,

the attacker possesses d probes, which allow the observation of values of up to d

wires in a masked circuit. The probes are parametrized by a tuple (g, t, c), which

defines whether glitches (g = 1), transitions (t = 1), or coupling (c = 1) effects

can be observed by a probe. A masked hardware circuit is dth-order secure in

the robust probing model if an attacker, who places d probes on arbitrary wires

in the circuit, cannot infer any information about the secret value by combining

these observations.

1.1. Objectives and Contributions

The objective of this cumulative thesis is to improve the security and efficiency

of masked implementations in software and hardware. In Section 1.1.1 and

Section 1.1.2, we describe the main contributions made in each area. Part II

contains the scientific publications that are part of the author’s thesis. Each

work is preceded by the publication details and a brief description of the author’s

contribution. The content of the papers is unmodified from the camera-ready

versions published at the respective conferences, but the format was modified to

fit the layout of this thesis.

1.1.1. Masking in Software

Masked software implementations that have been proven secure in theory often

exhibit leakage in practice when being executed by a CPU. This is due to physical

effects, like glitches and transitions, that occur in the CPU on hardware level

and violate the ILA [Bec+22; Cor+12; Gro+16a; MMT20; PV17]. Based on this,

Balasch et al. [Bal+14] formulate the so-called order reduction theorem, which

states that a masking scheme that has been proven to be dth-order secure in

theory is only ⌊d2 ⌋th-order secure when implemented in software and executed by

a CPU. To deal with the leakage of masked software, ILA violations first need to

be identified and then eliminated.

The identification of ILA violations is usually done empirically by executing

the masked software on a microprocessor. However, the results of this analysis

are highly dependent on implementation details of the CPU, including placement,
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routing, and the used standard cell library [Aro+21; MPW22]. Additionally,

identifying the concrete root causes of leakage, e.g., components in the CPU,

is a very challenging task, especially when working with CPUs that adapt

a more complex microarchitecture. To eliminate ILA violations, changes to

the masked software implementations need to be made. One strategy is to

rewrite the software with respect to the identified leaking instructions and CPU

components [PV17; She+21a; She+21b]. Another strategy is to use the lazy

engineering approach [Bal+14], which tries to address this issue by using a higher

protection order than theoretically required to compensate for the loss of masking

order without identifying the concrete leakage sources. While both strategies

result in a secure implementation, they come with very high overhead in terms

of runtime and memory [Gro+16a; PV17].

Main Contributions In this thesis, we investigate the security of masked software

implementations in practice when executed on CPUs. We explore methods to

facilitate the identification and efficient elimination of ILA violations. Our analysis

includes both small and more complex microprocessors, as well as masked software

running in bare-metal mode or as a task within an OS.

In [Gig+21], we demonstrate that glitches and transitions in CPU components,

such as the register file or the ALU, are possible root causes of ILA invalidations.

We show that eliminating the leakage is more efficient and easier when done both

on the hardware level (by integrating small changes into the CPU netlist) and on

the software level (by applying a set of constraints). Furthermore, we create a

list of requirements that need to be fulfilled by the SRAM block attached to the

processor to enable secure loads and stores of shares. This analysis is done using

the 32-bit open-source RISC-V Ibex core. After applying the hardware fixes, we

obtain a secured version of the core, which guarantees that masked software can

be executed without invalidating the ILA, given that the software adheres to the

constraints. To identify the ILA invalidations in the first place and verify that

our fixes provide the expected security level, we propose a new multi-level formal

verification approach called Coco. Coco includes the gate-level netlist of the

CPU, as well as the masked assembly implementation, allowing the identification

of ILA invalidations in the CPU netlist during the execution of the masked

software.

This work was published at USENIX Security 2021 in collaboration with Vedad

Hadzic, Robert Primas, Stefan Mangard, and Roderick Bloem. The respective

publication can be found in Chapter 3.

In [GPM21], we show that constructing secure and efficient masked software

becomes more challenging for CPUs that have a more complex microarchitecture.

Using Coco, we demonstrate that for such processors, glitches in the forwarding

(bypass) logic that connects the CPU’s pipeline registers can potentially lead
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to leakage in the execution of masked software. To formalize our findings, we

adapt the order-reduction theorem such that the number of pipeline stages and

execution units is considered. Again, we show that ILA invalidations can be

eliminated by modifying both the hardware and the software. When following

the proposed software constraints, masked software can be executed securely but

not always efficiently. Therefore, we suggest several implementation strategies

and coding techniques that allow us to apply these constraints more efficiently.

This work was published at ASIACRYPT 2021 in collaboration with Robert

Primas and Stefan Mangard. The respective publication can be found in Chap-

ter 4.

In [GPM23b], we provide the first analysis of masked software when executed as

a task in an embedded OS instead of bare-metal mode. We show that OS-specific

events, such as context switches, can potentially lead to ILA invalidations, causing

leakage when executing the masked software. This leakage mainly stems from

overwriting shares in memory and transitions on the register file and memory

read and write ports that occur during a context switch. To fix these issues, we

explore several efficient strategies to harden a context-switching routine of an OS

against these leakage effects, while keeping the overhead for unmasked software

minimal.

This work was published at AsiaCCS 2023 in collaboration with Robert Primas

and Stefan Mangard. The respective publication can be found in Chapter 5.

Other Contributions This section briefly describes publications in the area of

software masking that the author worked on as a co-author during her PhD, but

are not included in this thesis.

In [Blo+22], we propose power contracts between the masked software and

the CPU, which define the exact leakage behavior of every instruction. When

constructing masked software, it is then enough to check it within the power

contract, which makes verification much faster and offers vendors the opportunity

to release a power contract corresponding to their CPU instead of the complete

CPU netlist. To demonstrate our approach, we model a power contract for the

secured Ibex core and give a formal proof that the contract is complete.

The paper “Power Contracts: Provably Complete Power Leakage Models for

Processors” [Blo+22] was published at CCS 2022 in collaboration with Roderick

Bloem, Marc Gourjon, Vedad Hadzic, Stefan Mangard, and Robert Primas.

In [Gig+24b], we construct an efficient second-order masked software implemen-

tation of the Ascon cipher. The resulting implementation does not require any

fresh randomness, and applies various other techniques to handle ILA violations

caused by the CPU directly on the software level. We evaluate the implementation

in terms of performance and security on 32-bit ARM and RISC-V processors.
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Our work includes both an empirical assessment based on Welch’s t-test and a

formal study using Coco and the secured Ibex core.

The paper “Efficient Second-Order Masked Software Implementations of As-

con in Theory and Practice” [Gig+24b] is currently in submission and is a

collaboration with Florian Mendel, Martin Schläffer, and Robert Primas.

1.1.2. Masking in Hardware

To deal with glitches and transitions causing ILA invalidations in masked hard-

ware circuits, glitch-resistant masking schemes like Threshold Implementations

(TI) [NRR06] and Domain-Oriented Masking (DOM) [GMK16] have been sug-

gested. Such schemes are based on the idea of inserting glitch-stopping registers

and refreshing masks during critical computations. Applying such measures

requires additional registers, gates, and RNGs, which leads to a significant in-

crease in the chip area and latency and a general decrease in the efficiency of

an implementation. One promising technique to reduce the randomness con-

sumption of masked hardware designs is the changing of the guards (COTG)

technique [Dae17]. To refresh an intermediate value, COTG suggests using a share

of another unrelated intermediate value instead of fresh randomness. Since its

proposal, COTG has been successfully applied to various kinds of cryptographic

algorithms, including the AES. However, regarding AES, most implementations

focus on the first-order case [Ask+22; Sug19; WM18], or optimize exclusively for

randomness, resulting in a higher latency [Bey+21; DSM22].

Besides efficiency, another important aspect of masking in hardware is to

verify that the resulting implementation is secure in the presence of physical

effects. To do so, a wide variety of automated formal verification tools have been

proposed [Bar+19; Bel+22; Blo+18; KSM20] that allow to check if the ILA is

invalidated for a given masked hardware design. While these tools are applicable

in many different scenarios, the focus is clearly on Boolean masking and designs

intended for ASICs.

Main Contributions In this thesis, we study ways to improve the efficiency

of masked hardware implementations in terms of randomness and latency. We

research new formal verification techniques, including one for arithmetic masking

and one for FPGA platforms.

In [Gig+24a], we propose a second-order AES design protected by DOM, which

provides a decent tradeoff between latency and randomness. In particular, we

significantly reduce the required amount of fresh randomness per encryption while

keeping a latency of 5 cycles per round. Reducing the randomness is achieved by

the COTG technique, i.e., by sharing fresh randomness across the S-boxes and

using shares of state bytes as randomness in other unrelated computations. The

resulting implementation only requires 3 200 random bits per encryption (instead
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of 20 800), and has an area of 117 kGE (instead of 176 kGE). To verify that our

concept of reusing randomness is valid, we use a modified version of Coco, which

can verify hardware implementations and perform empirical measurements of our

design on an FPGA board.

This work was published at CHES 2024 in collaboration with Franz Klug,

Stefan Mangard, Florian Mendel, and Robert Primas. The respective publication

can be found in Chapter 6.

In [GPM23a], we extend the formal verification approach proposed by Bloem et

al. [Blo+18] to the domain of arithmetic masking. The resulting verification tool

is capable of handling both arithmetic and Boolean masking of any order. For

the first time, we formally analyze so-called A2B and B2A conversion algorithms,

which are required to switch from the Boolean to the arithmetic domain and vice

versa. In our analysis, we investigate a popular A2B/B2A algorithm implemented

in hardware and show that glitches might compromise its security. Furthermore,

we show that the approach can also be applied in the software domain, allowing

us to report new findings of leakage caused, e.g., by register transitions.

This work was published at ACNS 2023 in collaboration with Robert Primas

and Stefan Mangard. The respective publication can be found in Chapter 7.

In [GPM24], we provide new insights on the security of masking schemes when

implemented on FPGAs. We demonstrate that FPGA-specific optimizations

performed during the synthesis process, which translates the HDL design to an

FPGA configuration file, might introduce glitches invalidating the ILA. Con-

sequently, even when adapting a glitch-resistant masking scheme, there is no

guarantee that it is still glitch-resistant after FPGA synthesis. To detect such

effects, we present Fenix, the first formal verification tool that operates directly

on FPGA netlists and can handle any-order masked hardware implementations.

This work was published at HOST 2024 in collaboration with Kevin Pretter-

hofer and Stefan Mangard. The respective publication can be found in Chapter 8.

Other Contributions This section briefly describes publications in the area of

hardware masking the author worked on as a co-author during her PhD, but are

not included in this thesis.

In [Cas+24], we construct a tool to automatically generate pipelined masked

hardware implementations. Based on a Boolean equation describing the function-

ality of a cryptographic primitive, our tool generates a secure masked hardware

implementation of the desired protection order from composable building blocks.

The resulting designs have a low area consumption due to the elimination of

synchronization registers in the pipeline, which is achieved by assigning computa-

tions to register stages in an optimized way such that registers can be removed

or merged without breaking the ILA.
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The paper “Compress: Generate Small and Fast Masked Pipelined Circuits”

is currently in submission and is a collaboration with Gaëtan Cassiers, Stefan

Mangard, Charles Momin, and Rishub Nagpal.

In [Nag+22], we propose a low-latency hardware masking scheme. The idea is to

synchronize the propagation of shares such that glitches cannot lead to violations

of the ILA by adapting a dual-rail encoding instead of registers. Our approach is

generic and can be integrated into already existing masking schemes such as DOM.

We show that it can be used to construct single-cycle glitch-resistant masked

S-boxes. To validate the practicality and security of the proposed technique, we

perform empirical verification on an FPGA and formal verification with Coco.

The paper “Riding the Waves Towards Generic Single-Cycle Masking in Hard-

ware” was published at CHES 2022 in collaboration with Rishub Nagpal, Robert

Primas, and Stefan Mangard.





Familiarity breeds contempt.

Taylor Swift – Bejeweled

2
Background and State of the Art

This chapter provides the necessary background for this thesis. We start with

a brief introduction to cryptography in Section 2.1. In practice, cryptographic

concepts are implemented by cryptographic devices, which we cover in Section 2.2.

Physical attacks represent a serious threat to the security of such devices. We give

a brief overview of possible attacks, in particular Side-Channel Analysis (SCA)

attacks like DPA, and discuss some more recent attack techniques in Section 2.3.

To counteract SCA attacks, masking is one of the most popular countermeasures,

which we describe in Section 2.4. To obtain a secure masked implementation, the

ILA needs to be fulfilled, which is not always the case in practice. Section 2.5

presents common ILA violations observable in masked hardware and software

implementations. To detect these violations, it is necessary to verify a masked

implementation, either empirically or formally. We cover empirical verification

in Section 2.6 and formal verification in Section 2.7. In the context of formal

verification, we give a description of the most common adversary models, and

give an overview of state-of-the-art automated formal verification tools.

2.1. Cryptography

Cryptography addresses the security of information exchanged between multiple

parties [Sch96]. The goal of cryptography is to provide confidentiality, data

integrity, and authentication of messages through cryptographic primitives such

as encryption schemes, hash functions, and digital signature schemes [MOV96].

Encryption schemes provide the confidentiality of messages, which means that

the message is concealed in a way such that it can only be understood by the

intended receiver. Hash functions can provide message integrity, which refers to

detecting whether the concealed message was altered by an unauthorized third

party. Message authenticity refers to the sender and receiver identifying each

15
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other when communicating, which can be achieved by digital signature schemes.

All these cryptographic building blocks are based on the usage of keys, which

represent a piece of information exchanged by the sender and receiver before

communicating and then used to encrypt and decrypt messages. The security of

cryptographic systems and their ability to provide properties like confidentiality,

integrity, or authentication relies on the secrecy of the cryptographic key.

In general, based on the usage of keys, cryptographic primitives can be divided

into symmetric and asymmetric primitives [MOV96]. In this thesis, we mostly

focus on symmetric cryptography, although some of our contributions in the

area of arithmetic masking can also be applied in the asymmetric domain (cf.

Section 2.4.2, Chapter 7). Therefore, we describe both briefly in the next section

but choose the symmetric domain as the basis for the rest of this chapter.

2.1.1. Symmetric and Asymmetric Cryptography

Both asymmetric and symmetric cryptography work with encryption schemes that

allow the transformation of a message to a ciphertext using encryption/decryption

keys. In the case of asymmetric cryptography, two different keys are used for

encryption and decryption, while two identical keys are used for symmetric

cryptography. In general, an encryption scheme specifies the message space M,

the key space K, and the ciphertext space C. To encrypt a message m ∈ M using

the key a ∈ K with the encryption function E, one computes the ciphertext c ∈ C
by c = Ea(m). E needs to be bijective, such that it can be reversed and a unique

plaintext message can be recovered for each ciphertext during the decryption

process. Therefore, to decrypt a ciphertext c using a decryption key b ∈ K, one

computes m = E−1
b (c). For instance, in a two-party communication setting, the

sender transmits c over an insecure channel to the receiver, who decrypts c to

obtain the message m.

Symmetric Cryptography In symmetric cryptography, the encryption key is

equal to the decryption key, i.e., a = b, which is kept secret. Before starting

the communication, the sender and receiver need to exchange a in order to

agree on a common key, which is done using dedicated mechanisms for key

agreement or key exchange. Block ciphers are one of the most important elements

in many symmetric-key systems, which break up a message into n-bit blocks

and map each block to a n-bit ciphertext [MOV96]. The mapping function

must provide confusion and diffusion, which means that the relationship between

key and ciphertext is as complex as possible (confusion), and every ciphertext

bit is influenced by every key bit (diffusion) [Sha49]. One method to achieve

confusion and diffusion is to follow the structure of a Substitution-Permutation

network, which provides confusion in the substitution layer through a non-

linear function and diffusion in the permutation layer through a linear function.

The Advanced Encryption Standard (AES) [DR02; Nat01] is one of the most

prominent symmetric block ciphers based on the SP principle. It works with a
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block size of 128 bits, an 8-bit S-box in the substitution layer, and the ShiftRows,

AddRoundKey, and MixColumns functions in the permutation layer.

Asymmetric Cryptography Asymmetric cryptography keeps a public key a for

encryption and a private key b for decryption, for which it holds that a ̸= b [DH76].

To start the communication, the receiver generates a key pair (a, b) and transmits

a over a potentially insecure channel to the sender. The sender then uses the

public key a to encrypt a message, which can, however, only be decrypted by

the receiver who possesses the private key b. An adversary is able to observe

a and c, which allows them to encrypt a message but not decrypt c because

b is unknown. One of the most famous asymmetric encryption schemes is the

Rivest-Shamir-Adleman (RSA) cryptosystem [RSA78].

Trapdoor one-way functions are the core of asymmetric schemes. They are

easy to compute but hard to invert unless some trapdoor information (the private

key b) is known. The integer factorization problem, as used in RSA, is a popular

choice for the trapdoor function. It is based on the multiplication of two large

prime numbers. While it is easy to compute the product, it is very hard to

factorize the result and find out which numbers were initially multiplied unless

one number is known. Integer factorization is believed to be intractable for very

large prime numbers on modern computers, although it may be solved efficiently

by quantum computers in the future [Sho94]. If, one day, quantum computers

are powerful enough, they could be used to break many cryptographic schemes

that are currently in use. Consequently, research in the area of post-quantum

cryptography (PQC) emerged in recent years. PQC aims at finding cryptographic

algorithms that are secure even in the presence of an adversary who has access

to a quantum computer by using alternative trapdoor functions.

2.1.2. The Black-box Model

The main goal of symmetric cryptography is to provide ways to communicate

securely under the assumption that the encryption key is secret. To quantify the

security of a symmetric encryption scheme, a specific attack model is used which

defines the abilities and limitations of the adversary. Traditionally, symmetric

encryption schemes have been designed to be secure in the black-box model.

In this model, adversaries can make encryption queries by taking a plain-

text, sending it to the encryption function, and retrieving the respective cipher-

text [Aum17]. The encryption itself is a black box because the internal state of

the cipher is unknown, and only the input and output are observable. Further

refinements of the black-box model are possible, for example, depending on

whether the adversary is allowed to choose the plaintext or the ciphertext or

whether only a single or multiple plaintext-ciphertext-pairs are accessible.

Attacks in the black-box model generally include mathematical and statistical

attacks like differential or linear cryptanalysis [BS90; BS91; Mat93], but also

exhaustive search where the adversary tries out all possible keys. Attacks in
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the black-box model can further be divided into multiple categories [Aum17;

MOV96; Sch96]. Ciphertext-only attacks allow the adversary to only observe

the ciphertext, but not the plaintext, while known-plaintext attacks give access

to both. When performing a chosen-plaintext attack, the attacker can actively

decide which plaintext should be encrypted. Chosen-ciphertext attacks allow the

attacker to submit several ciphertexts and observe the decrypted plaintext.

2.2. Cryptographic Devices

To use a cryptographic algorithm in practice, an implementation of the algo-

rithm is constructed. Devices that execute these implementations and store

secret encryption keys are called cryptographic devices [MOP07]. In general,

implementations can either be done in hardware or in software. Since this thesis

deals with securing cryptographic implementations in hardware and software,

we discuss the characteristics of both implementation platforms more in detail.

In Section 2.2.1, we describe cryptographic hardware implementations and give

more details specifically about ASICs and FPGAs. In Section 2.2.2, we introduce

CPUs and embedded operating systems, which are used to execute cryptographic

software implementations. Modern ASICs, FPGAs, and CPUs are usually based

on CMOS technology, which we cover later in Section 2.3.3.

2.2.1. Cryptographic Hardware

Cryptographic hardware implementations are typically created from functional

descriptions, often formulated in a hardware description language (HDL) like

Verilog or VHDL, and then employed in an ASIC or FPGA design. ASICs are ICs

customized for a particular task or application. They are heavily optimized and

tailored towards the respective use case, which makes them the most powerful and

performance-driven implementation platform. FPGAs represent reconfigurable

logic circuits consisting of lookup tables (LUTs), that can be configured to

represent an arbitrary logic function, connected by a programmable interconnect.

Compared to ASICs, the big advantage of FPGAs is the possibility to update,

reusability, and shorter time-to-market, albeit FPGAs are clearly less efficient

and less powerful.

For both ASICs and FPGAs, the design steps to take from the HDL to the

final circuit are similar. First, during synthesis, the design is transformed into

a gate-level netlist, which essentially represents a graph, where the nodes are

logic gates and the edges are wires. In the case of ASICs, the logic gates are

defined according to a standard-cell library, while for FPGAs, the logic gates are

LUTs. In the next step, the floorplanning, placement and routing of the design

happens. This includes deciding on the exact location of logic gates on the chip,

and establishing the wires between them such that specifications like the clock

frequency are met. In the case of an ASIC, the design is then sent to a fab where
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Figure 2.: Illustration of the 3-stage pipeline of the Ibex core (simplified), con-

sisting of IF, ID+EX and WB stage [low24]

the manufacturing of the chip happens. In the case of an FPGA, a configuration

file specifying the behavior and connection of LUTs is created and then flashed

onto the FPGA.

Cryptographic hardware implementations are typically used as co-processors

that are connected to a microprocessor and can be used to accelerate specific

cryptographic operations. Depending on how tight or loose the connection

(coupling) is, the co-processor and microprocessor can, for instance, communicate

via a bus system or directly via custom instructions added to the processor’s

ISA. Numerous works describe the construction of co-processors for all kinds

of cryptographic operations. For example, Steinegger et al. [SP20] propose a

tightly-coupled accelerator for Ascon connected to a RISC-V CPU, that can be

controlled via custom instructions added to the CPU. Another example is the

work by Fritzmann et al. [Fri+22], who develop several side-channel protected

PQC building blocks in hardware, where some can be accessed via an AXI bus,

and some are directly integrated into the microprocessor. One famous example

from outside of the embedded world is the AES accelerator built into many

desktop-grade CPUs manufactured by Intel [Gue]. It can be controlled using

dedicated instructions specified by the AES-NI instruction set. For instance,

when executing the AESENC instruction, a whole round of an AES encryption is

performed by a hardware circuit connected to the CPU. Besides co-processors,

cryptographic hardware can also be found in other contexts, for instance, memory

or disk encryption.

2.2.2. Cryptographic Software

As an alternative to hardware implementations, one can implement the crypto-

graphic scheme in software and then use a general-purpose processor to execute

the software. For embedded devices, compact microprocessors are used, rather
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than large and powerful processors which can be found in desktop PCs and servers.

Since embedded microprocessors deal with tasks that are less computing-intensive

and often operate in low-power environments, they typically do not include more

advanced features like out-of-order execution, complex branch prediction logic,

virtual memory, or an extensive cache hierarchy. Such CPUs either directly run

the software in bare-metal mode or as a task within an OS. Again, in the context

of embedded systems, when referring to the OS we do not mean a full-scale

Linux or Windows system, but rather a simple embedded OS, sometimes even

providing real-time functionality. Code for cryptographic purposes is usually

written directly in Assembly, or a high-level programming language suited for

embedded use-cases like C, and then translated into Assembly with a compiler.

The Assembly instructions are then executed by the CPU.

Microprocessors Microprocessors work by executing instructions that are located

in some type of memory, such as a ROM or a RAM. The CPU first fetches an

instruction, executes it, and writes the result back to memory. The architecture

of a microprocessor refers to the Instruction-Set Architecture (ISA), which

defines the instructions a processor can execute and provides a description of

the configuration and data registers available [Pag09; Pec08]. Compared to that,

the microarchitecture of a CPU refers to the concrete implementation of the

ISA. Figure 2 shows an example of the microarchitecture of the RISC-V Ibex

core. In the following, it serves as our example since other embedded processors

follow a very similar structure. The Ibex core features a pipeline with three

stages: Instruction Fetch (IF), Instruction Decode and Execution (ID+EX), and

Writeback (WB). Other central building blocks are the register file, which consists

of multiple general-purpose registers, several computation units, including the

Arithmetic Logic Unit (ALU) and the multiplier, and the Load-Store Unit (LSU)

to handle memory accesses.

Pipelining is used to increase the throughput of a processor, i.e., the number

of instructions executed per time unit. The idea of pipelining is to split the

execution of an instruction into multiple stages, where each pipeline stage deals

with completing a specific step in the execution of an instruction [BO16; HH12;

HP12]. Different pipeline stages complete different steps of different instructions

in parallel. Therefore, in a pipeline with n stages, n different instructions can

be processed in parallel, although each in a different level of completion. For

example, the Ibex core can decode and execute the first instruction while fetching

the second instruction in the same cycle.

Sometimes, it is not possible to execute all instructions in the pipeline in the

given order, for example, when one instruction depends on the result of another

instruction which has not yet finished its execution [BO16; HH12; HP12]. For

instance, in the Ibex core, one instruction in the ID+EX stage might require the

result of the previous instruction, which resides in the WB stage and has not yet

been written into the register file. In such a situation, it might be necessary to
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stall the pipeline, i.e., pause the execution of all previous instructions until the

result of the required instruction becomes available in the register file. Clearly,

stalls have a negative impact on the performance of the CPU. A more efficient

alternative is forwarding. Forwarding logic, also called bypass logic, allows to

send the result of an instruction from a later pipeline stage back to an earlier

one if required [BO16; HH12; HP12]. Besides forwarding, many other concepts

to optimize pipelining exist, e.g., superscalar execution. Superscalar processors

employ copies of certain pipeline stages to execute multiple instructions in the

same stage simultaneously. For instance, a processor could contain two ALUs,

allowing it to compute the result of two add instructions in the same cycle.

Embedded Operating Systems Many embedded systems require multitasking

functionality to handle the communication over a bus or the network, or to acquire

and process sensor data. One common example are smart meters that record

information about the energy consumption of a household while communicating

with the grid operator and providing statistics to the local customer over WiFi.

In such situations, dedicated embedded OSs are used that run the cryptographic

software as one out of many concurrent tasks or processes. Unlike in desktop-

grade Linux systems, the tasks that will be spawned by the OS are already

known at compile time. This is especially important to be able to meet real-

time guarantees if required by the application. Hence, the CPU executes the

cryptographic software, which is compiled together with the embedded OS in

bare-metal mode. Switching from one task to another is enabled by interrupts,

which are triggered periodically by a timer or non-periodically by external events

such as IO operations. On a software level, a task switch is called a context

switch, where the register contents of one task are saved to memory, the scheduler

selects the next task and the register contents of the next task are loaded from

memory.

2.3. Physical Attacks

Cryptographic schemes have been designed to maintain security in the black-box

model. To be used in practice, these schemes are implemented in hardware

or software and then executed by cryptographic devices. In reality, attackers

frequently manage to gain physical access to the device, which turns the black box

into a gray box, paving the to physical attacks. Physical attacks exploit additional

leakage caused by the fact that cryptographic devices run implementations of

cryptographic schemes that violate the assumptions of the black-box model. Side-

channel attacks are a subclass of physical attacks in which the attacker passively

observes and analyzes the leakage (the side-channel information) emanating

from the device. The device’s power consumption is one powerful example of

side-channel information that can be exploited in the context of a power analysis

attack.
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In the following, we give an overview of physical attacks in general (Sec-

tion 2.3.1), then cover side-channel attacks (Section 2.3.2), and give more details

about power analysis attacks (Section 2.3.3, Section 2.3.4). Throughout this and

the following chapters, our explanations and discussions are based on the example

of a cryptographic device running a symmetric encryption scheme. However, the

statements are not limited to this setting and generally extend to other contexts

as well.

2.3.1. Overview

The gray-box model assumes that the adversary has physical access or is in very

close vicinity to the device when performing the encryption queries. Physical

access allows the recording of physical characteristics, such as power consumption

or timing, which can be analyzed to gain insight about the internal state of

the cipher. Therefore, the encryption is not a black box anymore which shields

any views from the adversary on intermediate computation results of the cipher.

Instead, it is rather a gray box that allows observing some intermediate com-

putation results besides the input and output when performing the encryption.

Physical attacks have been shown to be very powerful since information on the

internal state of the cipher can often be used to find out the secret encryption

key, which leads to a complete break of the security of a system.

Mangard et al. [MOP07] propose a classification of physical attacks into

passive and active attacks, which we briefly summarize in the following. When

performing a passive attack, the adversary is merely observing the device and

recording its physical properties while performing the encryption queries. By

contrast, the goal of an active attack is to change the behavior of the device by

tampering with its inputs or the execution environment. For instance, during

a fault attack, the adversary operates the device outside the specification by

increasing or decreasing the temperature or changing the clock speed or supply

voltage for the purpose of skipping encryption rounds or creating a bias in the

output ciphertext of multiple encryptions with the same input that eventually

hints the key. Active attacks are out-of-scope for this thesis.

A further categorization of passive attacks according to the degree of invasive-

ness is possible, as discussed in [KK99; MOP07]. Invasive attacks completely

disassemble the cryptographic device, for instance, by etching the chip’s surface,

which is extremely powerful but also requires rather expensive equipment. Non-

invasive attacks are performed without changing the device, which is typically

cheaper. Non-invasive, passive attacks are also known as side-channel attacks,

which are the focus of this thesis.

2.3.2. Side-Channel Attacks

Side-channel attacks exploit the unintentional leakage of information via the

physical properties of a device [And08; MOP07; SKS09; Spr+18; Sta10]. This
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information is called side-channel information. During the attack, the adversary

first records the side-channel information using dedicated measurement instru-

ments and then tries to infer the secret key from the recorded information using

statistical tools. Various kinds of physical properties have been used to extract

secrets from cryptographic devices. The first side-channel attacks targeted the

execution time of cryptographic implementations and were based on analyzing

differences in the execution time caused by the input data and secret key [Koc96;

OST06; SWT01]. One famous example is leaking the secret exponent in an RSA

cryptosystem that is based on the square-and-multiply algorithm for modular

exponentiation. It is based on the observation that if a bit of the secret exponent

is 1, the square and the multiply function are executed, which takes longer than

executing only the square function in case a bit is 0. Ever since the publication

of these attacks, the constant-time property has become an essential requirement

to secure cryptographic code.

Even if implementations are constant-time, there are still other kinds of side-

channel information that can be exploited, including electromagnetic radia-

tion [GMO01; Hey+12; QS01], sound [Gen+19; GST14], temperature [HS13] and

photonic emission [FH08; Sch+12; Sch+13; Sko09]. One of the most commonly

used side channels is power consumption [KJJ99]. To perform a power-analysis

attack, an adversary uses an oscilloscope to measure the voltage drop over a

shunt resistor placed in the VDD or GND path of the device. The voltage drop

is proportional to the power consumption of the device, which differs depending

on which data/key is used and can therefore be analyzed to be exploited.

2.3.3. CMOS Power Consumption

Today, almost all ICs are built using CMOS technology, mostly because of its low

power consumption. The implementation of a CMOS cell is based on MOSFET

transistors (NMOS and PMOS), which basically represent voltage-controlled

switches. If the input signal is 1, NMOS transistors act like a switch that is

on, while PMOS transistors act like a switch that is off. The CMOS technology

combines NMOS and PMOS such that they work in a complementary fashion.

Every CMOS cell consists of a PMOS pull-up network connecting the output to

1 (VDD) and an NMOS pull-down network connecting the output to 0 (GND).

For any input pattern, exactly one network is switched on, while the other is

switched off [Voi13; WH11].

The power consumption of a CMOS cell comprises a static and a dynamic part.

Static power is consumed when the inputs are constant and no switching activity

happens, and is mainly due to a small leakage current [AR02; Yea11]. It is

negligible in most cases because in any stable state, no conductive path between

VDD and GND exists. The static power consumption is by far outweighed by

the dynamic power consumption, which occurs when the inputs of a CMOS cell

change. The main reason for dynamic dissipation is the charging and discharging

of load capacitances and the small short-circuit current which flows for a very
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Figure 3.: Power consumption of an AES encryption. Left: Power trace of

complete encryption. Right: Difference in the power consumption

when processing plaintexts p0 and p1

short period of time when the transistors switch, and both the pull-up and pull-

down network are conducting simultaneously [AR02; WH11; Yea11]. Therefore,

whenever the input of the cell transitions from 0 to 1 or from 1 to 0, a different

amount of power is drawn, especially compared to the case where the input does

not change. Consequently, the dynamic power consumption is highly dependent

on the processed data and the executed operations [AR02; Bak10; MOP07;

WH11].

In Figure 3 on the left, we show an example of a power trace of a single AES

encryption. One can clearly identify the 9 AES rounds, which are followed by

the 10th shorter round, which does not compute MixColumns. Additionally,

within each round, it is possible to see differences depending on which concrete

operation (AddRoundKey, SubBytes, MixColumns, ShiftRows) is executed. On

the right side, we plot the power consumption of the AES encryption for two

different plaintexts p0 and p1 using the same key, and zoom into the beginning

of the first round. The difference in the power consumption is clearly visible,

underlining that it is dependent on the processed data but also dependent on the

executed operations, as it can be seen on the left side.

2.3.4. Power Analysis Attacks

Power analysis attacks exploit both data and operation dependencies in the

power consumption of cryptographic devices. Data dependencies are connected

to the secret key and plaintext since cryptographic devices mostly process this

kind of data. Operation dependencies can be exploited because although the

adversary is not assumed to know the implementation, they typically know

which cryptographic algorithm is executed. The first power analysis attacks,

SPA (Simple Power Analysis) and DPA (Differential Power Analysis) [KJJ99],

inherently targeted dynamic power consumption. More recently, successful attacks

based on the static power consumption [MM21; MMR17; Moo19; Mor14; Poz+15],

as well as the impedance of the chip [MMT23] have been demonstrated. They

show that the static power consumption is also data-dependent because the

amount of leakage current of a CMOS cell differs depending on the concrete input

value and that the difference is significant enough to be exploitable in practice.
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Figure 4.: Typical measurement setup for an SCA attack

For more details, we refer to the discussion in the respective papers.

The attention of this thesis is on attacks targeting dynamic power consumption.

In the following, we first describe a typical setup to conduct a power analysis

attack and give an overview of SPA, DPA, and state-of-the-art attack techniques.

Attack Setup One central part of any power analysis attack is measuring

the power consumption of a cryptographic device. Figure 4 shows a typical

measurement setup, which consists of the cryptographic device storing the secret

key, an oscilloscope, and a computer operated by the adversary. The cryptographic

device can be any CMOS circuit performing a cryptographic operation, e.g., an

encryption, using a secret key. The computer is connected to the cryptographic

device in order to perform encryption queries, which involves sending a plaintext

to trigger the encryption and receiving a ciphertext. An oscilloscope is used to

record the power consumption of the device by measuring the voltage drop over

a shunt resistor placed in the VDD or GND path of the device with a probe.

The oscilloscope returns the measured power consumption in the form of a power

trace to the computer. A power trace, as it is shown on the left side of Figure 3,

consists of multiple sampling points, each representing the power consumption of

the circuit at a specific point in time. The remainder of the attack is executed

by the adversary on the computer, which typically involves statistical analysis of

the power traces.

Simple Power Analysis In the case of SPA, the attacker tries to disclose the

secret key by looking at only a few, or even a single, power trace [KJJ99; MOP07].

SPA tries to exploit patterns in the power trace, which are caused by the key-

dependent timing or order of operations or key-dependent processed data values.

One famous example is attacking square-and-multiply in an RSA cryptosystem,

which is based on a specific pattern in the power trace that can be observed

depending on whether a bit of the secret exponent is 0 or 1. One possibility to

improve SPA attacks are template attacks [CRR02], where the adversary first

systematically characterizes the device’s power consumption using templates

and then uses the templates in the SPA attack. Soft-Analytical Side-Channel
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Attacks (SASCA) represent a further improvement of template attacks based on

belief propagation [VGS14]. Since their publication, SASCA attacks have been

successfully demonstrated in various contexts [KPP20; Li+22; PP19; PPM17;

You+23].

Differential Power Analysis DPA aims at disclosing the secret key by considering

a large amount of power traces, usually a few thousand or even millions [KJJ99;

MOP07]. The main idea is to exploit the differences in these power traces, which

were recorded for multiple different inputs but with a constant key. DPA works

in a divide-and-conquer fashion by splitting the encryption key into smaller

chunks, which are then leaked individually. For example, in the case of AES-128,

exhaustive search has an attack complexity of 2128, while with DPA, it can be

reduced to 256×16 = 212 by attacking the key byte-by-byte. In the following, we

briefly summarize the steps of a classic DPA attack using the example of a single

key byte of AES-128, based on the description of [MOP07]. For more details, we

refer to [MOP07].

First, the adversary chooses an intermediate value for the attack that is

computed during the encryption and depends on the key byte and input plaintext

in a non-linear way. In the case of AES, the output of the SubBytes operation,

Sbox(k⊕p) makes a good candidate. Then, the adversary records n power traces,

each consisting of m samples, by sending n random plaintexts to the encryption

device. Knowing which plaintexts were sent to the device, the adversary then

computes the hypothetical intermediate values for each possible subkey value.

In the case of AES, there are 256 possible values per subkey (subkey guesses).

For each key guess kg, and for each of the n plaintext bytes pi, the hypothetical

intermediate value is calculated by v = Sbox(kg⊕pi). By applying a power model,

the hypothetical power consumption for each v can be computed. The power

model is a function f : R → R that maps v to the approximate amount of power

consumed to compute it. Popular choices are the Hamming weight (HW) model

(f(v) = HW (v)), the Hamming distance (HD) model (f(v, w) = HD(v, w) =

HW (v ⊕ w)), the identify model (f(v) = v), the Least Significant Bit (LSB)

model (f(v) = v&1), or the Most Significant Bit (MSB) model (f(v) = v&128).

Finally, the adversary matches the hypothetical power consumption for each

subkey guess to the recorded power traces. The subkey guess, for which the

hypothetical power consumption best matches the power traces, is most likely the

correct key guess. As a measure of comparison, the Pearson correlation coefficient

is frequently used. DPA attacks based on the correlation coefficient are also

called Correlation Power Analysis (CPA).

Others Over the years, power analysis attacks evolved in many ways. For

instance, adversaries have been becoming more powerful simply due to the

availability of a better measurement setup, which allows them to record more

power traces in a shorter amount of time. Another interesting research direction
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is the combination of power analysis and machine learning, which is based on

training a classifier with previously collected templates and using the trained

model to perform the attack [Ben+20; HGG20; Hos+11; Ker+22; Kim+19;

MDP20; MPP16; MWM21; Pic+19; Pic+23; Wan+23; Zai+20]. Similar to

that, there also exist several works that utilize side-channel analysis attacks

to leak the architecture of neural networks instead of keys from cryptographic

devices [Bat+19; MBC21; Wei+18; Yos+20]. Furthermore, Remote Power

Analysis attacks represent a class of power analysis attacks that do not require

that the adversary has direct physical access to the cryptographic device or is

even in close vicinity [MDB21]. Instead, such attacks use hardware components

that are natively part of the cryptographic device as voltage sensors that can

be read remotely by the attacker. For example, in a multi-tenant FPGA cloud

scenario, the adversary can build a voltage sensor based on ring oscillators to

spy on the victim running on the same FPGA [Gra+19]. The topic of remote

power analysis has been analyzed by many other works [JUP24; Kra+19; Lip+21;

OD19; Ram+18; Sch+18; Udu+22].

2.4. Masking against SCA

One of the most popular countermeasures against power analysis attacks is

masking, which aims at decoupling the secret key from the data processed by the

cryptographic device. In this section, we first explain the basic working principle

of masking schemes (Section 2.4.1). Section 2.4.2 presents the different types of

masking. In Section 2.4.3, we provide an overview of the most commonly used

masked gadgets, which represent the basis of masked implementations. Later,

the application of the masking countermeasure to cryptographic hardware or

software implementations is discussed in Section 2.5, as well as methods to check

if a masked implementation is secure (Section 2.6, Section 2.7).

2.4.1. Overview

Masking was initially proposed in 1999 by Chari et al. [Cha+99] and Goubin et

al. [GP99], and is based on the principle of randomizing intermediate variables.

An intermediate variable is sensitive if it depends both on the plaintext and the

secret key. Randomization is established by splitting the sensitive intermediate

variable into multiple random shares and adapting the cryptographic algorithm

to process these shares instead. Consequently, the power consumption of the

device depends on the shares instead of the sensitive intermediates, preventing

the exploitation of side-channel leakage.

Given a sensitive intermediate value s, the core idea of masking is to split it

into N random shares s1, ..., sN using the splitting operation ◦ such that:

s = s1 ◦ s2 ◦ ... ◦ sN (1)
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The shares s1, ..., sN−1 are sampled randomly from a uniform distribution, while

sN = s ◦ s1 ◦ s2 ◦ ... ◦ sN−1. The N -tuple (s1, ..., sN−1) is called a sharing of the

sensitive variable s. Masking relies on the fact that an adversary who manages

to recover N − 1 shares cannot learn any information about s because any subset

of up to N − 1 shares is statistically independent of s. The masking type is

determined by the splitting operation ◦, which is often the Boolean XOR (⊕),

the modular addition (+) or the modular multiplication (∗). In practice, the

generation of shares is performed by the cryptographic device, before the execution

of the encryption algorithm. The sharing does not only affect the sensitive

intermediate values but also the cryptographic functions which are applied to

it. Any function F is split into multiple component functions F1, F2, ..., FN such

that the combination of the outputs of these resemble the original function’s

output, i.e., F (s) = F1 ◦F2 ◦ ... ◦FN . In case F is a linear function, it can simply

be called for every share individually, i.e., F (s) = F (s1) ◦ ... ◦ F (sN ). In case

F is a non-linear function, the situation is more difficult since every component

function operates on more than one share, which requires the correct addition of

randomness to prevent the accidental unmasking of intermediate computation

results. In the end, a masked implementation of an encryption algorithm outputs

N shares, which need to be combined together by the cryptographic device to

retrieve the actual ciphertext.

Masking is parameterizable by the security order d. In general, dth-order

masking protects against dth-order DPA attacks, which exploit the joint leakage

of d intermediate values [Din+14; MOP07]. Hence, to obtain a dth-order secure

implementation, at least d+ 1 shares are required. Since handling more shares

leads to a larger implementation overhead, working with the minimum number

of shares (N = d+ 1) is the preferable option. For example, in Section 2.3.4, we

run a first-order DPA attack by considering the leakage of only one intermediate

value. Besides the independent leakage of shares, sufficient measurement noise

is a crucial requirement for the security of masking. Masking of order d can

only provide protection against dth-order attacks if the measurement samples

are sufficiently noisy because then the number of required measurements grows

exponentially with d [Cha+99]. Many works deal with the relation between

noise and the security order d, e.g., [Bar+17; DFS15a; PR13; RPD09; Sta+10],

as well as higher-order attacks in general [Cor+13; Gie+10; MM17; PRB09].

Formalizations in this direction are often done in adversary models, which we

discuss in Section 2.7.1. More recently, several works use machine learning

techniques to improve attacks on masking [GHO15; Lu+21; PWP22; Tim19;

WPP20; Wu+23a]. Other than DPA, it has been shown that masking can have

a positive effect on SPA but should generally better be combined with other

countermeasures like shuffling [Jen+23; PPM17]. Several works have also pointed

out that, in some cases, masking can be used to defeat fault attacks [ACS18;

BH08; Dob+18; DOT24; MSS24].
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2.4.2. Masking Types

A masking scheme is characterized by the choice of the splitting operation ◦.

Boolean Masking The most popular type of masking is Boolean masking, where

the exclusive OR (⊕) is used as the splitting operator. It is frequently applied to

symmetric cryptographic algorithms that use linear operations and non-linear

S-boxes over a characteristic-two field F2k . For such algorithms, linear operations

such as adding the round key with an XOR operation or bit permutations are

easy to mask with Boolean masking, as they can just be applied to every share

independently. For instance, to apply first-order Boolean masking to AES, the

128-bit state and the 128-bit key are first split into two 128-bit shares each.

The linear functions of the AES (ShiftRows, MixColumns, and AddRoundKey)

are applied to the shares of the state within the round function and the shares

of the key within the key schedule individually. The AES S-box represents a

non-linear function because Sbox(s1 ⊕ s2) ̸= Sbox(s1)⊕ Sbox(s2), and therefore

requires dedicated solutions that will be discussed later in terms of masked

gadgets Section 2.4.3. In this thesis, we focus on Boolean masking, which we

refer to in the following sections unless otherwise stated.

Arithmetic Masking Another type of masking is arithmetic masking, where the

relation between shares of a sensitive value s is the modular addition: s =
∑

i si =

s1 + ...+ sN mod q. The modulus is either a power of two (q = 2k) or a prime

number (q ∈ Fq). One common use-case are ARX-based constructions like the

hash function SHA-256 [Nat02], the stream cipher ChaCha [Ber08], or the block

cipher Speck [Bea+13], where each round consists of a modular addition (using

a power-of-two modulus), a rotation and an exclusive OR operation. In practice,

masking these primitives requires both arithmetic masking (for the modular

addition) and Boolean masking (for the rotation and exclusive OR). One option

to deal with this is to stay in the Boolean domain and use a dedicated algorithm

to securely add Boolean shares, as e.g. proposed by [CGV14]. Alternatively,

one can switch between the arithmetic and Boolean domain using dedicated

conversion algorithms called A2B and B2A [BCZ18; BDV21; CGV14; Cor+15;

Cor+22; Cor17; Gou01; HT19]. The implementation of A2B and B2A algorithms

in a secure way is challenging since they involve information from all shares but

must not accidentally leak information about the unmasked value s.

With the rise of the PQC, arithmetic masking, especially using a prime modulus,

has gained a significant amount of new attention. The fundamental building block

of many PQC algorithms is polynomial multiplication, which can be implemented

using the number theoretic transform (NTT), which is most efficiently masked

in the arithmetic domain. At the same time, Boolean masking is required to

protect building blocks like Gaussian samplers and decoders. Therefore, efficient

conversion techniques for PQC have been researched more extensively in recent

years, especially focusing on the use of a prime modulus [BC22; Fri+22; Sch+19].
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Other Types Several other masking types have been proposed in literature. Mul-

tiplicative masking uses field multiplications ⊗ to protect sensitive intermediates

by computing s = ⊗isi [GT02; MOP07; MQ]. It has, for example, been applied

to mask the AES S-box, which represents a field inversion (Sbox(s) = s−1) [AG01;

MRB18]. Due to the close relation of Multi-party Computation (MPC) and

masking, which are both secret sharing techniques, several proposals borrow ideas

from the MPC domain [GSF14], for instance, masking based on Shamir’s Secret

Sharing [GM11a]. Inner product masking follows a slightly different approach,

representing shares in the form of two random vectors that are connected by the

inner product [Bal+12; Che+21; DF12].

2.4.3. Masked Gadgets

Masking cryptographic operations affects both the processed data, which is

split into multiple shares, and also the operations, which need to be replaced

by masked gadgets. For a function F (s) that is computed by the unprotected

implementation, a gadget F ′(s1, ..., sN ) is used to replace it in order to obtain the

masked implementation. Gadgets implement exactly the same functionality as

the original function, i.e., if the Boolean masked gadget F ′(s1, ..., sN ) produces

the output sharing (s′1, ..., s
′
N ) then s′1⊕...⊕s′N = F (s). Gadgets are used both in

hardware and software, although some gadgets are more optimized for either use

case. For instance, to build a masked hardware implementation, the logic gates

in the unprotected circuit are replaced by suitable gadgets. For masked software,

an implementation technique called bit-slicing is very popular. Bit-slicing reduces

the computation of a function to bitwise logic operations (for example AND, XOR,

OR, NOT) by utilizing an arrangement of the bits of an input data word in the

CPU registers [AP21; GR16; Kön08; MN07], allowing to execute several instances

of the function in parallel. To obtain a masked implementation, these bitwise

instructions are replaced by masked gadgets consisting of (multiple) instructions.

Masked gadgets can be divided into affine gadgets, refresh gadgets, and

multiplication gadgets. Affine gadgets are primarily used to mask exclusive

OR computations and negations and can simply be constructed by applying

the original function to every share independently because, e.g., in the first-

order case F (s) = F (s1) ⊕ F (s2) ⊕ c for a constant c. For example, the

addition of the round constant Rc of the AES to a state byte s is repre-

sented by the function AddRC(s,RC) = s ⊕ RC. The masked version is then

AddRC(s1, RC)⊕AddRC(s2, RC)⊕ c with c = RC. Refresh gadgets are used

to re-randomize a sharing for a sensitive variable, which can improve the security

of a masked implementation. They essentially represent the identity function,

i.e., F (s) = s, but transform the input sharing (s1, ..., sN ) into a fresh output

sharing (s′1, ..., s
′
N ) by setting s′i = si ⊕ ri for 1 ≤ i ≤ N − 1, and s′N = sN ⊕i ri.

Multiplication gadgets are a fundamental building block to implement non-

linear functions, such as masked S-boxes, by providing a way to multiply two

shared field elements. A one-bit multiplier corresponds to an AND-gate, which is
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why multiplication gadgets are also called masked AND gadgets. The construction

of secure masked multipliers is not trivial and requires the careful addition of

fresh randomness. In a first-order Boolean masking scheme working with 1-

bit values, a multiplication gadget combines the value u, represented by the

sharing (u1, u2), with the value v, represented by the sharing (v1, v2), such that

for the resulting value w, represented by the sharing (w1, w2), it holds that

w = u ∧ v = (u1 ⊕ u2) ∧ (v1 ⊕ v2). Naively, one can compute the shares (w1, w2)

using the distributive property:

w1 = (u1 ∧ v1 ⊕ u1 ∧ v2) (2)

w2 = (u2 ∧ v1 ⊕ u2 ∧ v2) (3)

However, this is not secure because w1 is not independent of v, and w2 is not

independent of u. Over the years, many works have proposed constructions to

compute the product of two shared variables securely. In the following, we will

discuss the most frequently used masked gadgets in more detail.

Trichina AND Gate Trichina et al. [Tri03] proposed one of the first masked

multipliers, which is suitable for first-order Boolean masking. It introduces a

fresh random value r that is used to construct the shares of w as follows:

w1 = r (4)

w2 = (((r ⊕ u1 ∧ v1)⊕ u1 ∧ v2)⊕ u2 ∧ v1)⊕ u2 ∧ v2 (5)

The Trichina AND gate provides first-order security given that operations are

applied in the exact order as depicted above, i.e., the random value needs

to be added to the first partial product in the beginning. Several masked

implementations have been constructed using the Trichina AND gate, especially

to mask the AES S-box [Bal+15; SS16; Tri03].

Treshold Implementations (TI) Threshold Implementations (TI) [NRR06] do

not exclusively focus on multiplication gadgets but represent a more general

framework for the design of masked implementations. The main idea of TI is to

decompose a cryptographic algorithm into multiple component functions that

fulfill the correctness, non-completeness, and uniformity properties. Correctness

means that the sum of the outputs of the component functions resembles the

same result as the original, unmasked function. Non-completeness states that

every component function must only operate on a subset of the input shares.

Uniformity refers to the distribution of input and output shares, which should

be uniform to prevent problems when composing multiple component functions.

Implementing a first-order secure multiplication gadget requires at least three

shares to fulfill the non-completeness property. For instance, one possibility to
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implement such a multiplier is:

w1 = F1(u1, u2, v1, v2) = u1 ∧ v1 ⊕ u1 ∧ v2 ⊕ u2 ∧ v1 ⊕ r0 ⊕ r1 (6)

w2 = F2(u1, u3, v1, v3) = u3 ∧ v3 ⊕ u1 ∧ v3 ⊕ u3 ∧ v1 ⊕ r1 (7)

w3 = F3(u2, u3, v2, v3) = u2 ∧ v2 ⊕ u2 ∧ v3 ⊕ u3 ∧ v2 ⊕ r0 (8)

In this example, every component function excludes at least one of the three

shares. Uniformity is achieved by adding the fresh random variables r0 and r1.

TI, in principle, comes with a larger overhead due to the fact that more than the

minimum number of shares is required, although this often allows us to avoid

using fresh randomness. TI has been popular for hardware implementations

because it is provably secure against glitches (cf. Section 2.5.1), and numerous

works applying the scheme to various kinds of algorithms exist, e.g., [Bil+13;

Bil+14; Caf+21; Cha+22; Gro+15; Jat+20; Mor+11; STE15]. Furthermore,

masked software implementations based on TI have been proposed [Cha+22;

GD23; SBM18; She+21a].

Ishai-Sahai-Wagner (ISW) Multiplier Masking schemes that are generic in

terms of the protection order do not only defend against first-order DPA, such as

Trichina’s AND gate but rather support an arbitrary protection order d. One

of the first works in this direction is the ISW multiplier proposed by Ishai et

al. [ISW03]. The multiplication of the Boolean sharings (u1, ..., ud+1) with

(v1, ..., vd+1) results in the output sharing (w1, ...wd+1). The multiplication is

performed in two steps. First, the random bits rij for 1 ≤ i < j ≤ (d+ 1) are

generated. Second, the output shares wi for 1 ≤ i ≤ (d+ 1) are computed by:

wi = ui ∧ vi ⊕
(⊕
i ̸=j

(rij ⊕ ui ∧ vj)⊕ uj ∧ vi
)

(9)

Based on the ISW multiplier, Rivain et al. [RP10] propose a generic masking

scheme for AES together with a security proof. Furthermore, it is a popular

construction to build conversion algorithms to convert between Boolean and

arithmetic masking, as shown by several works [BCZ18; Cor+15; Cor17].

Domain-Oriented Masking (DOM) Another generic masking approach is DOM,

which was presented by Gross et al. [GMK16]. The idea of DOM is to assign each

share a domain, and to keep the domains independent from each other. Domains

are similar to the component functions in TI but less restrictive such that it is

possible to work with the minimum number of shares (d+ 1 shares for security

order d). A DOM multiplication gadget is structured in three phases: calculation,

resharing, and integration. In the calculation phase, the shares are multiplied in

pairs, resulting in inner-domain (ui ∧ vi) and cross-domain (ui ∧ vj , i ≠ j) terms.

Cross-domain terms are then reshared using fresh randomness in the resharing
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phase. Due to the resharing, the cross-domain terms are statistically independent

of other values and, therefore, can be summarized into domains again in the

integration phase. In a dth-order DOM masking scheme, one output share of the

multiplier wi for 1 ≤ i ≤ (d+ 1) is given by:

Calculation Calculation Calculation

Refreshing Refreshing

Integration

wi = ui ∧ vi ⊕
( ⊕
j>i

ui ∧ vj ⊕ ri+j(j−1)/2

)
⊕
( ⊕
j<i

ui ∧ vj ⊕ rj+i(i−1)/2

)

(10)

We mark the terms computed in the calculation and refreshing phase with blue

and red braces, respectively. The integration phase includes the addition of all

three partial sums. Compared to ISW, DOM comes with significant advantages

in terms of masked hardware implementations, such as shorter delay paths by

balancing the arrangement of multiplication terms and improved security in the

presence of glitches (cf. Section 2.5.1).

Nowadays, several projects make use of DOM for side-channel hardening. For

example, Google launched the OpenTitan project [Joh+18; low19a; low19b],

a commercial-grad open-source hardware root of trust, which employs a first-

order DOM-masked AES implementation. Besides that, implementations of

Ascon [Gro; Pra+23], Keccak [GSM17], and AES [GMK17] based on DOM

have been proposed. Gross et al. [Gro+16b] propose a DOM-masked RISC-V

processor that can execute unprotected software implementations in a side-channel

protected manner. Kiaei et al. [KS20] and Marshall et al. [MP21] suggest an

ISA for masked software implementation using DOM. Furthermore, Fritzmann et

al. [Fri+22] use DOM to build a masked adder for Boolean shares. DOM is even

applied in the area of side-channel resistant machine learning [Dub+22] and as

part of a combined countermeasure against fault attacks [Gru+21].

Composable Multiplication Gadgets To securely mask a cryptographic algorithm

as a whole, several masked gadgets need to be stacked together. However, just

because the security of a masked gadget was proven, it does not imply that the

composition of several of these gadgets is also secure. This does not only hold for

the composition of multiplication gadgets, but can even lead to insecure designs

when composing an affine (linear) and a non-linear gadget. Therefore, deriving

composability properties for masked gadgets is currently an important research

topic [Bar+15; Cas+21; CS20; KSM20], also because it is not always feasible to

(formally) verify the security of a complete cipher due to complexity. Instead,

one could prove the security and composability of a small masked gadget and

follow a bottom-up approach to construct the complete masked design. One of

the biggest challenges when designing composable gadgets is to keep the overhead
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low since composability is enabled by frequent refreshing, leading to increased

randomness consumption.

2.5. Masking in Practice

Masking is a provably secure countermeasure. Its security against SCA can be

formally proven in theory with respect to a set of assumptions. One of these

assumptions is the independent leakage assumption (ILA) [Ren+11], which states

that the shares are always leaked independently from each other. It has been

shown that the ILA does not always hold, leading to a gap between the theoretical

and practical security of masking. More concretely, to use a masking scheme

in practice, it needs to be manifested in an implementation. One option is to

implement the masking scheme in hardware, for instance, as an ASIC or on an

FPGA. For masked hardware implementations, physical side-effects of CMOS

circuits, like glitches, have been shown to break the ILA. Section 2.5.1 focuses

on these effects with respect to masked hardware implementations in detail.

Alternatively, one can craft the masked implementation in software, which can

then be executed on a CPU. CPUs are usually also based on CMOS technology,

which also exposes them to these physical effects that may compromise the

security of masked software. Section 2.5.2 explains the connection between

physical effects and masked software in detail.

To be practical, masking schemes need not only to be secure but also efficient.

While masking already comes with a relatively large overhead, dealing with ILA

violations further drastically increases the cost. Therefore, methods to decrease

the overhead by optimizing masked implementations are important to make

masking countermeasures more practical. In Section 2.5.3, we discuss state-of-

the-art optimization techniques for both hardware and software implementations.

2.5.1. ILA Breaches in HW

CMOS circuits are comprised of combinatorial subcircuits consisting of logic

gates and registers. The input signals for each gate usually do not arrive at the

same time because of different gate delays and wire lengths. The gate delay, or

propagation delay, is the time a gate needs to “react” to input changes, i.e., the

time it takes to produce an output in response to a change of its inputs [KL03;

WH11]. It depends, among other things, on the type of gate and the concrete

input values. Given that in combinatorial logic, multiple logic gates are cascaded,

the individual arrival time of an input signal at a gate is determined by a variety

of factors, including the delay of all previous gates that were passed through and

the individual wire lengths. The gates might temporarily produce an incorrect

output signal, e.g., when one of the input signals has already arrived but the

other one has not, until both input signals have reached their stable state and

the correct result is computed. Such temporary effects are called glitches.
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Figure 5.: Example of a first-order masked circuit computing (s1 ⊕ r)⊕ s2. The

sensitive value s is represented by the sharing (s1, s2), and the value r

represents fresh randomness. Due to glitches, the second XOR gate

temporarily computes s1 ⊕ s2 = s, leading to an insecure design.

Many works point out that the security of masked hardware circuits is compro-

mised by glitches [FG05; GMK16; ISW03; Moo+19; MPG05; MPO05; Rep+15].

In a CMOS circuit, glitches lead to unexpected combinations of data values for

a short period of time until all signals are stable. In a masked CMOS circuit,

data values are shares, and combining these shares leads to the non-independent

leakage of them, which breaks the ILA. Figure 5 shows an example of a first-order

masked circuit, working with a sharing of the sensitive variable s = (s1, s2) and

the fresh random value r. It computes (s1⊕r)⊕s2, which is valid from a masking

perspective. Additionally, the partial sum (s1 ⊕ r) is valid and independent from

s. The circuit consists of two XOR gates, where o1 = (s1 ⊕ r) and o2 computes

the final result. In the example, the wire lengths between the inputs s1 and s2
and the respective XOR gates are short, while the wire length between the input

r and the XOR gate is long. Therefore, s1 will arrive at the second XOR gate

before being combined with r. Additionally, s2 will arrive at the second XOR

gate quickly, and o2 temporarily computes s1 ⊕ s2 = s, which refers to a leak in

the masking scheme. After a while, r will also arrive and propagate through the

circuit, o1 computes the final (stable) result, s1 ⊕ r, and o2 computes s1 ⊕ r⊕ s2,

which is secure.

This example highlights very well the gap between theory and practice in

masked design. In theory, the computation is secure because no intermediate

computation result depends on the sensitive value. Even the designer who

constructs the implementation, e.g., in Verilog, can hardly see any problem. The

issue arises for the first time after the HDL model has been processed by the

synthesis, placement, and routing flow because the decisive factors (wire lengths)
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are picked in that stage. At the same time, other placement strategies might lead

to shorter wire lengths between r and the XOR gate, which causes r to always

arrive first and does not create any issues. Note that in this example, we assume

uniform gate delays and extreme setup times to better highlight the problem.

Transitions typically occur when data from the previous cycle which still

resides in the circuit at the beginning of the current clock cycle. When the data

from the current cycle propagates through the circuit, it is possible to observe

a transition from the old to the new data value. In the context of masking,

this can, in the worst-case, cause transitions from one share to another, and the

attacker can observe the Hamming distance between the first and the second

share, effectively breaking the ILA. One typical example of leakage caused by

transitions is overwriting a register that stores one share with its counterpart.

Transitions in masked hardware implementations are addressed by many recent

works [Cor+12; CS21; Dho21; Mül+22].

A third effect that breaks the ILA in masked CMOS circuits is coupling, which

basically refers to crosstalk between adjacent wires and the physical proximity of

shares [Cnu+17; Dho21; Gur+23; LBS19; SK23]. For example, De Cnudde et al.

[Cnu+17] show that masked TI designs are vulnerable due to coupling between

shares on an FPGA. Levi et al. [Gur+23; LBS19] show in several experiments that

coupling-based side-channel leakage can be amplified by the adversary through

tweaks applied to the measurement setup. In the future, the challenge posed by

coupling in the context of masked designs will become even more relevant. With

the ongoing evolution of CMOS technology, distances between wires on the chip

will shrink more and more, which provokes crosstalk.

Glitches, transitions, and couplings have been analyzed for ASICs, but also

specifically for FPGAs [Cnu+17; GLE15; Li+20; MM12; Mül+23; Roy+15]. One

example is the work of Roy et al. [Roy+15], who study an implementation of a

first-order masked SIMON without synchronization and show that glitches lead

to leakage when implemented on an FPGA.

Countermeasures As illustrated in the example, glitches are difficult to predict

when designing masked hardware implementations. The first proposals tried to

balance or reorder the operations in a circuit, such that the glitches causing ILA

breaches can be eliminated [Ala+09; Gho+07; KMC07]. Nowadays, solutions

have been shifted to the algorithmic level because they are easier to apply for

more complex circuits and do not require modifications to the back-end design

flow. The foundation of algorithmic defenses are registers, which stop glitches

from propagating and, therefore, serve as synchronization points. To make the

circuit in Figure 5 secure, a register would need to be inserted between the two

XOR gates, storing the value of o1. As a result, the register ensures that only

s1 ⊕ r is forwarded to the second XOR gate, but never s1 alone, independent of

how fast r reaches the first XOR gate.

Glitch-resistant masking schemes are defined on algorithmic level when registers
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need to be used in order to prevent glitches. TI [NRR06] was the first provably

secure glitch-resistant masking scheme. Due to the non-completeness property,

no glitch in a component function can reveal any information about all shares

of a sensitive variable. In order to ensure that the property also holds when

the output of a component function is used as the input of the next, the result

needs to be stored in a register. DOM [GMK16] uses registers to secure crossings

of share domains. To ensure that the refreshing phase is completed before the

integration phase, a register is placed after combining the fresh randomness

with the cross-domain terms. It prevents that due to a glitch, multiple cross-

or inner-domain terms are combined, which results in statistical dependence of

the sensitive value, and breaks the ILA. Composable masking schemes provide

another way to build glitch-resistant designs by composing multiple, smaller

glitch-resistant building blocks [Cas+21; Cas+24; Fel+22; Kni+22; Mül+23].

Transition effects receive slightly less attention in the context of masked

hardware, as defeating them can basically be done by the careful handling of

registers. For instance, masked encryption schemes are often implemented in a

pipelined fashion, where the encryption state is stored in registers connected by

combinatorial logic. Every share is stored in its own “copy” of the state registers

(in its own domain), which is updated with a share of the same domain after the

round function has been computed.

2.5.2. ILA Breaches in SW

It is challenging to maintain the theoretical protection order of masked software

implementations in practice when executed by a CPU. The typical reason for

the observed leakage are transitions occurring in the CPU microarchitecture,

causing distance-based instead of value-based leakage [Bal+14]. While value-

based leakage means that an implementation leaks the computed intermediates

individually (hence, corresponds to the ILA), distance-based leakage describes

that intermediates could also be leaked in pairs (hence, violating the ILA). For

instance, overwriting a register that stores value a with the new value b exhibits

distance-based leakage of HD(a, b) = HW (a)⊕HW (b), that is, a transition from

a to b. Papagiannopoulos et al. [PV17] call this effect the register overwrite effect,

or short, the overwrite effect. Register overwrite effects can easily be introduced

by compilers when writing masked software in a higher-level language such as C

because the register allocation is done by the compiler, which has no intuition

about masking. Even when masked software implementations are written in

Assembly, it is often challenging to prevent register overwrite effects since the

exact expressions stored in registers need to be tracked by the programmer.

Before overwriting the register with the value from another register or from

memory, it needs to be ensured that the transition between the old and new value

does not violate the ILA. If that is not possible, another register needs to be

chosen, or the register first needs to be cleared. Several works provide empirical

evidence of the register overwrite effect in practice, including [Bal+14; Bec+22;
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MMT20; PV17; She+21b]. The overwrite effect can also be observed for data

memory, i.e., when overwriting a share stored in memory with another share of

the same sensitive variable [Cor+12; PV17].

While one could argue that register overwrite effects can be detected by

carefully investigating the Assembly code, other leakage effects are more difficult

and sometimes even infeasible to see. The reason is that they often reside from

the microarchitecture of the processor, which is, in most cases, closed-source

and not known by the designer. Several works discuss the leakage caused by

microarchitectural elements of the processor [Gig+21; GPM21; MPW22; PV17;

She+21a; She+21b]. For example, Papagiannopoulos et al. [PV17] point out the

neighbor leakage effect, which refers to distance-based leakage observed between

two distinct data storage units, e.g., registers, although an instruction accesses

only one of them. Related to that, data manipulated by two distinct instructions

might be leaked via transitions in hidden microarchitectural storage elements,

such as registers used by the memory bus [She+21b]. Gao et al. [Gao+20] show

that it is even possible that bits stored in the same registers are leaked when

performing a bitwise instruction, e.g., by barrel shifters in the ALU.

Countermeasures One option to address leakage in masked software implemen-

tations is to simply ignore the problem. This approach is called lazy engineering,

and is based on the order reduction theorem proposed by Balasch et al. [Bal+12].

The theorem states that a masking scheme that is dth-order secure assuming

value-based leakage (intermediates are leaked individually) is
⌊
d
2

⌋
th-order se-

cure assuming distance-based leakage (intermediates are leaked in pairs). As a

consequence, a designer applying the lazy engineering approach would design a

dth-order secure masked software implementation if
⌊
d
2

⌋
is practically required.

The advantage of lazy engineering is that it can be applied without knowledge

about the microprocessor. The disadvantage is, however, the large overhead: for

instance, to get 2nd-order security in practice, a 4th-order implementation needs

to be constructed.

Another option is to (empirically) build a leakage model that characterizes

the leakage behavior of the target microprocessor, and then adapt the masked

assembly implementation in a way such that it is secure in the leakage model.

Adaptations might require programming tricks, such as inserting dummy memory

accesses to clear registers of the memory bus, temporarily using additional

randomness to mask data stored in registers, or rotating shares before storing

them in registers [Bar+21a; PV17; She+21b].

A quite different approach is to modify the processor such that SCA-protected

operations are facilitated [CPW24; Gao+21; Gro+16b; MGH19; SS22; TKS11].

For example, Cheng et al. [CPW24] propose an Instruction-Set Extension (ISE)

for RISC-V that contains dedicated instruction for masked software implementa-

tions. However, such approaches often imply a large overhead for the CPU as well

as a certain performance penalty with respect to (unprotected) general-purpose
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software.

2.5.3. Optimizing Masked Implementations

Applying the masking countermeasure to the implementation of a cryptographic

algorithm comes at a significant cost. On the one hand, this cost originates

from the algorithmic changes to enable the masking countermeasure in the first

place. This includes splitting the sensitive intermediates into multiple shares

(which potentially requires additional RNGs for mask generation), and processing

them by multiple instances of linear functions, or dedicated non-linear functions

respectively. On the other hand, a certain amount of overhead stems from

compensating for ILA breaches, such as defeating glitches and transitions.

Optimizing Masked Software Typical cost metrics to quantify the overhead of

masked software are the amount of memory (RAM) that is needed on top, the

code size, and the runtime overhead, usually measured in clock cycles. Existing

optimization strategies often combine bit-slicing with clever register scheduling to

minimize memory accesses, which can be expensive in terms of CPU cycles [GR17;

SS16]. De Groot et al. [Gro+16a] propose an optimized implementation of the

PRESENT cipher on an ARM Cortex-M4, that tries to lower the overhead caused

by lazy engineering with bitslicing.

Optimizing Masked Hardware The overhead of a masked hardware implementa-

tion is usually evaluated in terms of area, latency, and randomness. Latency refers

to the (minimum) number of clock cycles required to run an implementation.

The randomness includes both offline and online randomness. Offline randomness

is used to obtain the initial sharing of the input, while online randomness is

consumed by the design during the encryption, e.g., for refreshing. However,

randomness overhead will eventually translate into area because when requiring

more randomness, more/larger/more powerful RNGs are needed to deliver the

random bits, and additional logic gates are needed to add them to the masked

design. While techniques like DOM, TI, or composable masking schemes brought

secure masking into practice, the security came with a certain cost, which ever

since has been tried to be minimized by the scientific community. In the context

of optimizations, there clearly exists a tradeoff between latency and random-

ness/area. For example, glitch-stopping registers increase the latency of a design.

Eliminating such registers requires adding more fresh randomness at another

point of the design, which increases the randomness/area.

Several proposals following either of the two optimization directions (reduction

of latency and reduction of randomness/area) exist. Various proposals in the

direction of low-latency masking exist [AZN21; GIB18; KM22; Nag+22; Sas+20;

Sim+22; Sim+23]. For example, the low-latency variant of DOM [GIB18] is

based on the idea of eliminating the glitch-stopping register by skipping the
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compression step in the masked multiplier and duplicating the necessary logic

respectively. Removing registers also has a negative impact on the length of

the critical path, which affects the frequency at which the design can run in

practice. While a non-optimized first-order masked AES S-box implementation

runs in 8 cycles and requires 18 bits of fresh randomness, their low-latency variant

runs in a single cycle but requires 2 048 bits of fresh randomness. In order to

reduce the amount of randomness required in a design, one method is using a

freshly generated random value at several independent points in a design, or by

applying the changing of the guards (COTG) technique. Works in this direction

include [Bey+21; Fel+22; KM23; Pap18]. COTG was initially introduced by

Daemen [Dae17] to achieve uniformity in TI-based designs more efficiently. This

work showed that instead of freshly generating a new random value, it is simply

possible to use an unrelated share of the cipher state, which is independent of

the one being refreshed. Since its proposal, COTG has been successfully applied

to various kinds of cryptographic algorithms, e.g., [ANR19; Bey+21; Gig+24a;

JPS18; SD17; Sug19; WM18].

2.6. Empirical Verification of Masking

After creating a masked implementation, designers need to test if the security

order in practice adheres to the theoretical protection order by checking if running

the implementation exhibits any observable side-channel leakage. Leakage can

simply be caused by implementation errors (bugs), or by ILA breaches which

were not sufficiently handled. Empiric verification of masked implementations

involves the collection of power traces of the cryptographic implementation and

the subsequent analysis of these traces to identify leakage.

2.6.1. Collecting Power Traces

Masked hardware implementations are subject to empirical verification at multiple

stages throughout the design process. Clearly, it is desirable to detect potential

issues as early as possible. To facilitate this, FPGA boards are commonly

utilized for initial power measurements of the masked design alongside simulation

tools. Masked software implementations can often directly be run on the target

microprocessor, or a simulator for the respective device is used. In the following

we focus on how power traces were collected for the designs in this thesis. We

refer to the work of Buhan et al. [Buh+22] for a broader overview and comparison

of automated leakage detection tools.

Power Traces from Concrete Devices Masked hardware implementations are

frequently assessed on an FPGA board to collect power traces in the early stages

of the design process. In this thesis, we work with different FPGA evaluation

boards that are specifically designed for SCA evaluations, the SAKURA-G
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Figure 6.: Measurement setup based on the CW305 evaluation board used in

this thesis, consisting of: (1) connection to oscilloscope to measure the

power consumption, (2) trigger signal, (3) clock output, (4) external

power supply, (5) USB connection to PC to provide plaintexts

board [GIS14], and the NewAE CW305 board [New24]. Figure 6 shows our

measurement setup to acquire power traces based on the CW305 evaluation board.

The cryptographic implementation which we want to assess runs on the FPGA.

The power consumption is measured via a cable connected to the oscilloscope (1).

In order to determine when the cryptographic operation starts, we use a trigger

signal (2). To improve the quality of measurements, we synchronize the clock

signals of the FPGA and oscilloscope (3) and use an external, low-noise power

supply (4). Finally, to provide the implementations with different plain texts, we

connect our lab PC via USB (5). To perform post-silicon evaluations, the ASIC

chip can, for example, be embedded into a PCB [MOP07].

Masked software implementations can directly be run on the microcontroller,

which is usually also embedded into a PCB to facilitate power measurements. The

setup is in general very similar to the one described above, the main difference

is that the cryptographic implementation is not run on the FPGA, but on the

microprocessor.

Leakage Simulators Estimating the power consumption via simulations repre-

sents an alternative to collecting power traces directly from a concrete device.

Simulations can be performed in cases where no measurement equipment is
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available, extremely low-noise power traces are needed, or when only a part of

the design should be assessed instead of the complete implementation. Given

a masked hardware circuit, one simple way to approximate the dynamic power

consumption is to count how many signal transitions happen on a gate’s output

during one clock cycle while simulating the circuit [TV05]. Another more recent

approach in this context is PROLEAD [MM22], which does not approximate the

dynamic power consumption of a circuit directly but instead simulates the values

of intermediate variables. Based on this simulation, the tool later runs statistical

tests to detect leakage in masked implementations.

For masked software implementations, leakage simulators follow a different

path since the power consumption of microprocessors without access to the

microarchitecture is hard to estimate, especially when considering the effects

of breaking the ILA. Instead, the goal is more to build a leakage model of the

processor which determines the leakage behavior of each instruction on the CPU.

Designers of masked software can use the resulting leakage model to estimate

the security of their implementation. For example, ELMO [MOW17] was built

based on an empirical analysis of the power consumption of instructions executed

on the ARM Cortex-M0 processor. ASCOLD [PV17] can be used to assess

implementations for the 8-bit ATMega163 microcontroller. As an extension to

PROLEAD, PROLEAD-SW [ZMM23] has been proposed that allows to simulate and

analyze the leakage of masked software running on an ARM CPU.

2.6.2. Analyzing Power Traces

In order to perform empirical verification of a masked implementation, the power

traces obtained by either physical measurements or simulations are statistically

analyzed to detect potential leakage. One option is to run a DPA attack, as de-

scribed in Section 2.3.4, which simply allows to learn whether the implementation

withstands this specific attack or not. No conclusions about all the other attack

models and approaches that have been proposed over the years are possible.

Another option is to run a TVLA (Test Vector Leakage Assessment), as described

by Goodwill et al. [Goo+11], which aims at uncovering statistical dependencies

between the power consumption and processed data in general. TVLA comes

in several different variants, as proposed in [Goo+11]. In this thesis, we focus

on the non-specific fixed vs. random test since this is also the most common in

literature.

TVLA is based on Welch’s t-test, which measures the significance of the

difference of means of two distributions. In the context of cryptographic imple-

mentations, it compares the leakage of a cryptographic device while processing

a fixed plaintext to the leakage while processing a random plaintext. In both

cases, the same encryption key is used. The idea of the t-test is that if the

power consumption of the fixed and the random group can be distinguished, it is

data-dependent and can, therefore, potentially be exploited by attacks like DPA

that are based on differences in the power consumption.
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To perform a t-test for a cryptographic device, the device is first programmed

with a fixed key that remains unchanged throughout the experiment. Then, the

power consumption of the device is recorded while processing either a random

or a fixed input plaintext. The traces are are assigned to the sets Sf ∈ Rnf×m

(fixed plaintexts) or Sr ∈ Rnr×m (random plaintexts). nf denotes the number

of traces recorded for a fixed plaintext, while nr denotes the number of traces

recorded for a random plaintext. m is the number of samples a power trace

consists of. Based on Sf and Sr, a t-statistic, or t-score t ∈ Rm, is computed for

each of the m samples:

t =
µf − µr√
s2f
nf

+
s2r
nr

(11)

In this case, µf and µr are the means of Sf and Sr, and sf and sr are the

standard deviations. The null hypothesis is that Sf and Sr have equal means, i.e.,

they cannot be distinguished. The null hypothesis is accepted if the t-score stays

between ±4.5, which means that it is not possible to say whether a fixed or a

random plaintext was used based on the power consumption. If the t-score exceeds

±4.5, the null hypothesis is rejected with a confidence greater than 99.999%,

which means that the power consumption shows data-dependent differences.

TVLA is frequently used to assess masked implementations. In that case,

having a “fixed” key means choosing a value k for the key but refreshing the

shares of k with every invocation of the cryptographic device. The shares of the

fixed plaintext are handled accordingly, while the shares of the random plaintexts

are simply chosen randomly every time. TVLA, as described above, can be

used to detect first-order leakages in implementations, as the analysis is based

on comparing the means (first statistical moment) of Sf and Sr. To detect

higher-order leakages, it is necessary to investigate higher statistical moments,

e.g., the variance for a second-order implementation.

The interpretation of the results obtained from TVLA needs to be done

cautiously, as discussed in [Pap+23; SM15; Sta18]. If the t-score exceeds the

±4.5 border, it just means there are data-dependent differences in the power

consumption. It does not imply that these differences can be exploited successfully,

e.g., in a DPA attack, nor does it tell anything about the attack effort in

case an attack applies. For example, the t-score of a masked cryptographic

implementation that loads the unmasked plaintext from memory will exceed

the critical border because this causes data-dependent differences in the power

consumption. However, it is not possible to do, e.g., a DPA attack, because this

operation only involves the plaintext but not the secret key. On the other hand,

if the t-score does not exceed the ±4.5 border, it just means that there are no

data-dependent differences in the power consumption. It does not prove that the

implementation is secure, as it might still be broken in another evaluation setup,

e.g., when using more traces, another test device, or another oscilloscope.
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2.7. Formal Verification of Masking

Empirically verifying a masking scheme is very important for investigating the

security of an implementation, but it is strongly bound to the used device,

implementation details, and measurement equipment. For instance, a masked

hardware implementation might be secure on an FPGA once, but when running

the placement and routing process again, another placement of components on the

same FPGA could lead to an insecure design. Furthermore, when not adjusted

carefully, the lab setup could easily result in low-quality measurements, which

means that for every empirical verification, a non-negligible amount of time must

be spent on adjusting the equipment.

Formal verification tries to overcome these disadvantages by constructing a

security proof for the SCA resistance of a given masking scheme. This allows

making general security statements in a specific attacker model, clearly stating

the adversary’s abilities, and providing more independence of the concrete attack

setup. Depending on the attacker model, it is also possible to include physical

effects such as glitches and transitions. We compare and describe the most

common attacker models in Section 2.7.1. Security proofs for masked circuits

can also be automated by formal verification tools that read in the circuit and

check if it is secure against dth-order attacks. Section 2.7.2 gives an overview of

state-of-the-art tools. One possibility to implement a masking verification tool is

to use Fourier-based verification, which is also applied by several works in this

thesis [Gig+21; GPM23a; GPM24]. Therefore, we cover the necessary theoretical

background in Section 2.7.3.

2.7.1. Adversary Models

Formal adversary models define the abilities of a side-channel attacker, allowing

to argue more formally about the security of a masked implementation. They

work with a circuit-based representation of the masking scheme, where the circuit

is represented as a graph consisting of vertices and edges [CS21; ISW03]. The

vertices are either the inputs or outputs of the circuit, logic gates, or registers,

each processing elements from F2. Edges are the wires carrying elements from

one logic gate to another.

Classic/Robust Probing Model The d-probing model was introduced by Ishai et

al. [ISW03] in 2003. It is also known as the standard probing model, the classic

probing model, or simply the probing model, and is still one of the most used

models today. It states that the adversary possesses d probes that can be placed

on any set of wires in the circuit to record the information carried by that wire for

an infinite amount of time. A masked circuit provides d-th order security if the

adversary cannot learn anything about any sensitive variable by combining the

recorded observations. Later, Faust et al. [Fau+18] extended the classic probing

model and proposed the robust probing model to include glitches, transitions
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and coupling effects. In the robust probing model, the adversary works with

(g, t, c)-extended probes, which optionally also allow to capture combinations

of intermediate variables caused by glitches (g = 1), transitions (t = 1) or

coupling (c = 1).

For example, consider the circuit in Figure 5 computing (s1 ⊕ r)⊕ s2. This

circuit is 1st-order secure in the probing model using (0, 0, 0)-extended probes.

A 1st-order attacker is allowed to place one probe, which can either be placed

on an input wire or the wires o1 and o2. Probing the input wires is not useful

for the adversary. Probing o1 will record {s1 ⊕ r}, which is independent of s.

Probing o2 will record {s1⊕r⊕s2}, which is also independent of s. The situation

is different for when working with (1,0,0)-extended probes capturing glitches,

because probing o2 records {0, s1, s2, r, s1 ⊕ r, s1 ⊕ s2, r ⊕ s2, s1 ⊕ s2 ⊕ r}, and
the term s1 ⊕ s2 is not independent of s.

Noisy Leakage Model In practice, side-channel measurements are noisy. Con-

sequently, other than suggested by the classic probing model, the adversary

does not have direct access to the plain intermediates, allowing them to directly

probe an intermediate X. Instead, they probe a noisy function of X, that is,

ν(X) = X + δ, where δ follows a Gaussian distribution. This was first formalized

in the noisy leakage model by Chari et al. [Cha+99] in 1999. They formally

study the effectiveness of masking based on this model and show that the number

of traces required to recover the sensitive value increases exponentially with

the masking order d. One downside of the noisy leakage model is that formal

proofs are not straightforward to obtain as rely on complex information-theoretic

computations. Compared to the robust probing model, the noisy leakage model is

strongly based on the ILA and, therefore, does not consider physical side effects

like glitches. While the classic/robust probing model restricts the number of

probes to d, and the noisy leakage model assumes jointly leaking wires, it has been

proven that the classic probing model implies the noisy leakage model [DDF14].

Random Probing Model The random probing model states that every wire of a

circuit leaks with a given probability p [Bel+20a; DDF14; ISW03]. Hence, an

adversary placing a probe on a wire can only record the intermediate value with

probability p and will not observe any leakage otherwise. p depends on the noise

level, i.e., the higher the noise, the lower the probability that the adversary can

observe the intermediate value. This allows us to further compute the expected

number of traces required by the adversary to recover the sensitive variable s.

Security proofs in the random probing model are considered more intuitive than in

the noisy probing model due to the higher level of abstraction. It has been shown

that the noisy leakage model reduces to the random probing model, but also that

the random probing model reduces to the classic probing model [DFS15b]. Just

like the noisy probing model, the random probing model is based on the ILA

and, thus, does not consider glitches or transitions.
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Adversary Models for Masked Software The classic probing model, noisy leakage

model and random probing model are relatively high in abstraction such that

they can be used to analyze the security of masked implementations under the

assumption of independent leakage. The robust probing model captures physical

effects that might violate the ILA but is formulated in terms of masked circuits

and does not characterize the leakage of masked software implementations when

executed by CPUs very well. For example, the robust probing model assumes

that the adversary can probe a wire for an infinite amount of time, which is a

valid assumption in the case of, e.g., a pipelined masked hardware circuit. When

transferring this to a CPU, an attacker could choose to probe the read port of

the register file, allowing them to access every intermediate value that is ever

computed by the masked software. By combining these values, masked software

implementations of any order could be broken.

A first work in the direction of adversary models for masked software is

the proposal of distance-based leakage [Bal+14], which suggests that pairs of

intermediates may be leaked by software implementations to represent the register

overwrite effect. However, this does not capture transitions between internal

CPU registers or glitches. The register probing model [Bel+20b] states that since

software works by manipulating CPU registers, it is rather unrealistic that only a

single bit of an intermediate is leaked. Instead, it is more likely, that all the bits

of a register are leaked together (for example in the ALU), and can be observed

by a single adversary probe. The register probing model does not capture the

register overwrite effect or glitches. Barthe et al. [Bar+21b] suggest to build

a CPU leakage model by explicitly characterizing the leakage of every possible

instruction. While this approach yields a very accurate adversary model and

allows the inclusion of various effects like the neighbor leakage effect [PV17], it

does not consider glitches and is closely related to a specific CPU. In this thesis,

we address the issue of adversary models for masked software in [Gig+21].

2.7.2. Automated Formal Verification

Security proofs for masking schemes can be done by using a pen-and-paper

approach. With the growing circuit size and complexity, as well as the increasing

protection order d, constructing a security proof manually becomes relatively

cumbersome, especially considering glitches and transitions. Over the last years,

several tools to formally verify masked implementations in an automated fashion

have been proposed, covering a variety of adversary models. For a detailed

overview and comparison of these tools, we refer to the work of Feldtkeller et

al. [FSG23]. In the following, we want to focus on the techniques applied by

those tools that are used to verify masked hardware implementations in the

robust probing model. In general, to check whether a dth-order masked hardware

implementation is dth-order probing secure, many formal verification tools take

the gate-level netlist of the implementation as an input and either produce a

security proof or point out the respective wires that need to be probed by the
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adversary in order to recover the sensitive value.

maskVerif One of the first tools to implement an automated formal verification

approach was maskVerif [Bar+15; Bar+19], which computes symbolic leakage sets

for every operation performed by the masked circuit. The leakage set contains all

intermediate computation terms with respect to the circuit inputs, which can be

captured by an adversary by probing the gate output. To check dth-order security,

any combination of d leakage sets is investigated with respect to its dependency

on the sensitive value. maskVerif employs several optimizations to achieve better

performance, mainly targeting the complexity of symbolic expressions. Since

symbolic expressions are formulated based on the circuit inputs, the tool applies

simplifications that remove a certain circuit input from the expression as long

as the probe’s distribution is not affected. These approximations lead to non-

completeness because it might be assumed that attackers can probe more than

what is practically possible, leading to false positives. Over the years, maskVerif

was continuously improved, especially with respect to the number of supported

adversary models, and its performance [Bar+16; Bar+17; Bar+19; Bar+20].

Rebecca In 2018, Rebecca was published by Bloem et al. [Blo+18] in order

to formally verify any-order masked hardware circuits in the robust probing

model. Similar to maskVerif, the tool computes a leakage set for every gate, which

describes the arithmetic expression that can be probed by the attacker. Instead

of deriving the leakage sets symbolically, Rebecca uses estimations based on the

Fourier expansions of Boolean functions [ODo14], which allows to represent the

output of a gate as a multilinear polynomial over the circuit input variables. If the

coefficient of a linear combination of input variables in the polynomial is non-zero,

it means that the gate output correlates with the respective input combinations.

Rebecca checks for leaks by searching for gate outputs which correlate with

all shares of a sensitive variable. For higher-order masking, combinations of

leakage sets (correlation sets) need to be checked, which is accelerated by a

SAT solver. Since correlation sets are estimated, Rebecca also represents a non-

complete verification approach. In the next section, we will give more details on

Fourier-based verification because some works of this thesis make use of it.

Silver Quite a different path is followed by Silver [KSM20; Mül+22], which

computes the joint output distributions of each gate precisely and then performs

the independence check. The exhaustive computation and analysis of probability

distributions is computationally very expensive, and therefore, the tool relies on

binary decision diagrams to speed up the verification. Silver supports a variety

of different adversary models, including the classic/robust probing model, and

can also verify composability properties of masked circuits. While Silver offers

a complete verification approach (false positives are not possible), it eventually

comes at the cost of efficiency and is limited to the verification of smaller gadgets.
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IronMask In 2022, Beläıd et al. propose IronMask [Bel+22], which aims at

a complete verification approach that is still efficient. Similar to maskVerif,

the leakage sets are computed symbolically, but it offers a better algorithm for

simplifying the expressions such that no false positives can occur. Consequently,

IronMask is, in many cases, much faster than other complete verification ap-

proaches, especially when verifying higher-order security properties of masked

gadgets or when verifying gadgets with non-linear randomness (gadgets where

randomness is not added linearly, but by performing quadratic operations to mix

input shares and randomness input shares). Besides (robust) probing security

and compositional security notions, it also supports the random probing model,

which is neither addressed by Silver nor by maskVerif.

2.7.3. Fourier-Based Verification

Any formal verification method needs to perform statistical dependency checks to

determine if probing a certain expression reveals anything about the sensitive value.

Rebecca utilizes the Fourier expansions of Boolean functions [BCG13; ODo14],

which is closely related to statistical dependence. Consider a Boolean function

f(X) : {−1, 1}n → {−1, 1} over a set of input variables X = (x1, x2, ...xn), where

-1 represents true and 1 represents false. The Fourier expansion of f represents

it as a multilinear polynomial, that is, the sum of linear combinations of input

variables with respect to a specific Fourier coefficient f̂ :

f(X) =
∑
T⊆X

f̂(T )
∏
xi∈T

xi (12)

The correlation of a Boolean function with regard to its inputs can be read off

directly from the Fourier expansion. The Fourier coefficients tell the strength

and type (positive or negative) of the correlation, while the respective linear

combination includes the variables to which the linear dependency exists. More

formally, a Boolean function does not correlate with T ⊆ X iff ∀T ′ ⊆ T it holds

that f̂(T ′) = 0 [XM88]. For example, the Fourier expansion of an AND function

f(X) = a ∧ b for the input set X = (a, b) considers the linear combinations

{{a, b}, {a}, {b}, {}}, and is given by: f(X) = −0.5ab+ 0.5a+ 0.5b+ 0.5. This

means that the function correlates positively with a and b, has a constant bias,

and correlates negatively with a⊕ b.

The inputs of a first-order Boolean masked circuit are either the shares of a

sensitive variable s1 and s2, fresh random values, or any public values such as

round constants. The gates in the circuit represent Boolean functions, performing

some computations with respect to the circuit inputs. In order to formally verify

that the circuit is secure, it is necessary to check if any gate correlates to s1 ⊕ s2.

This is done by computing the Fourier expansion of each gate with respect to

the circuit inputs and verifying that the Fourier coefficient of s1s2 is non-zero.

For dth-order verification, it is necessary to test the nonlinear combination of
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any tuple of d gates.

Computing the exact value of the Fourier coefficients is computationally ex-

pensive, and also unnecessary because it is sufficient to know if correlation exists,

and not how strong it is or whether it is negative or positive. Therefore, Rebecca

does not work with the exact Fourier representations, but with correlation sets

instead, which contain all linear combinations of circuit inputs a gate correlates

to. A correlation set C of a gate g computing a function f(X) is described by

the following condition:

For T ⊆ X :
∏
xi∈T

xi ∈ C(g) if f̂(T ) ̸= 0 (13)

For instance, the correlation set of the AND gate from before is then C(g) =

{{a, b}, {a}, {b}, {}}, which refers to the variables an attacker would be able to

probe on the gate output.

Correlation sets can easily be used to create a verification approach that can

deal with glitches. To do so, the attacker’s abilities are extended such that it is

possible to replace any gate in the circuit with a gate that computes an arbitrary

Boolean function, while keeping the original gate’s inputs. Additionally, even

when assuming glitches, the correlation set of any register must only correspond

to the stable value computed in the previous cycle. For example, consider again

the circuit in Figure 5. Without glitches, the correlation set assigned to o1 is

C(o1) = {{s1, r}}, while the correlation set assigned to o2 is C(o2) = {{s1, s2, r}}.
The circuit is first-order probing secure because the set {s1, s2} cannot be

probed in any scenario. However, with glitches, the attacker may replace both

XOR gates by an AND gate, resulting in C(o1) = {{}, {s1}, {r}, {s1, r}} and

C(o2) = {{}, {s1}, {r}, {s2}, {s1, r}, {s1, s2}, {s1, s2, r}}, which contains {s1, s2},
and hence, correlates to s1 ⊕ s2 = s. To make the circuit secure, o1 needs to

be stored in a register in order to “stop” the glitch. The correlation set of o1
would then stay the same, but the correlation set of the register output would be

{{s1, r}}, which changes the correlation set of o2 to {{}, {s2}, {s1, r}, {s1, s2, r}},
which is first-order secure.
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Software Implementations on

CPUs

Publication Data. Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Man-

gard, and Roderick Bloem. “Coco: Co-Design and Co-Verification of Masked

Software Implementations on CPUs”. In: USENIX Security Symposium. 2021.

Contribution. In the context of the Ibex core, the author of this thesis con-

tributed to the identification of problems, the suggestion and integration of

fixes as well as the secure SRAM model. Furthermore, the author of this thesis

created the masked Assembly implementations, used them to evaluate the formal

verification approach, performed the empirical verification on the FPGA, and

did the area evaluations. The author of this thesis contributed to the formal

verification concept. Finally, the author of this thesis significantly contributed to

the written part of the publication.
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Coco: Co-Design and Co-Verification of Masked
Software Implementations on CPUs

Barbara Gigerl1, Vedad Hadzic1, Robert Primas1, Stefan
Mangard1,2, Roderick Bloem1

1 Graz University of Technology 2 Lamarr Security Research

Abstract The protection of cryptographic implementations against power anal-

ysis attacks is of critical importance for many applications in embedded systems.

The typical approach of protecting against these attacks is to implement algorith-

mic countermeasures, like masking. However, implementing these countermea-

sures in a secure and correct manner is challenging. Masking schemes require the

independent processing of secret shares, which is a property that is often violated

by CPU microarchitectures in practice. In order to write leakage-free code, the

typical approach in practice is to iteratively explore instruction sequences and

to empirically verify whether there is leakage caused by the hardware for this

instruction sequence or not. Clearly, this approach is neither efficient, nor does it

lead to rigorous security statements.

In this paper, we overcome the current situation and present the first approach

for co-design and co-verification of masked software implementations on CPUs.

First, we present Coco, a tool that allows us to provide security proofs at the gate-

level for the execution of a masked software implementation on a concrete CPU.

Using Coco, we analyze the popular 32-bit RISC-V Ibex core, identify all design

aspects that violate the security of our tested masked software implementations

and perform corrections, mostly in hardware. The resulting secured Ibex core

has an area overhead around 10%, the runtime of software on this core is largely

unaffected, and the formal verification with Coco of an, e.g., first-order masked

Keccak S-box running on the secured Ibex core takes around 156 seconds. To

demonstrate the effectiveness of our suggested design modifications, we perform

practical leakage assessments using an FPGA evaluation board.

1. Introduction

Since the rise of the Internet of Things (IoT), embedded devices are integrated

into a wide range of everyday services. Often, these simple devices are part of

larger software ecosystems, which makes the protection of cryptographic keys

on these devices an essential but challenging task. Physical side-channel attacks,

such as power analysis, allow attackers to extract cryptographic keys by observing

a device’s power consumption [CRR02; KJJ99; QS01]. To prevent such attacks,

embedded devices typically employ dedicated countermeasures on the algorithmic
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level. The most prominent example of such algorithmic countermeasures against

power analysis is masking, essentially a secret sharing technique that splits input

and intermediate variables of cryptographic computations into d+1 random shares

such that the observation of up to d shares does not reveal any information about

their corresponding native value [Bar+17; Bel+17; Cnu+16; GM17; GMK16;

ISW03; Rep+15].

Masking schemes typically have in common that they rely on certain assump-

tions such as independence of leakage, i.e., independent computations result in

independent leakage [Ren+11]. However, as pointed out by many academic works

in the past, such assumptions are typically not satisfied on CPUs. Coron et

al. [Cor+12] were among the first who showed that, e.g., memory transitions in

the register file or RAM can leak the Hamming distance between two shares,

thereby reducing the protection order of masking schemes on CPUs. Later

publications follow up on these observations [Gro+16a; MMT20; PV17], and

amongst others, formulate the so-called order reduction theorem [Bal+14]. This

theorem states that dth-order protection under the assumption of independent

leakage reduces to
⌊
d
2

⌋
-th protection if effects like memory transitions are taken

into account. Consequently, and without further assumptions on the hardware,

achieving second-order protection using masked software implementations can

require computations with up to 5 shares.

This is a very significant overhead, and also the reason why the goal in practice

is to find strategies to cope with the leakage caused by the underlying CPUs and

to achieve dth-order protection with d+1 random shares. In order to test if such

implementations indeed provide the desired security level in practice, research

on the verification of masked cryptographic implementations has gained a lot

of attention during the last years. The existing works can be roughly divided

into two sets: works based on empirical verification, and works based on formal

verification.

On the empirical side, authors have studied masking-related side effects of

certain microprocessors via leakage assessments and then built corresponding

hardened software implementations [Gro+16a; PV17]. While their resulting

masked implementations do in fact maintain their theoretical protection in

practice, they also come with a noticeable performance overhead (by up to a

factor of 15) that is caused by the necessary software tweaks. Since leakage

assessments are quite labor-intensive, tools like PINPAS [Har+03], or more

recently, ELMO [MOW17] have been developed that can emulate power leakage

for certain microprocessors. The authors of ROSITA [She+21] have pushed this

automation even further by also automating the software patching process after

leakage detection. A quite different take on providing side-channel protection

on CPUs is presented by Gross et al. [Gro+16b], who propose a masked CPU

design that can perform unprotected software implementations in a side-channel

protected manner. Similar work exists for RISC-V processors [MGH19], also on

instruction set architecture level [Gao+21; KS20; Reg+09].
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On the formal side, tools like Rebecca [Blo+18] and maskVerif [Bar+19] repre-

sent the first steps toward formal verification of masked implementations. Both

tools are mainly tailored to hardware implementations; maskVerif does offer

some support for software implementations but (1) can only deal with code

that is written in a special intermediate language, and (2) uses a probing model

that only considers simple CPU side-effects such as register overwrites. More

recently, Belaid et al. presented Tornado [Bel+20], a compiler that automati-

cally generates masked software implementations that are secure in the same

model. A more fine-grained software verification approach that utilizes anno-

tated assembly implementations is presented by Barthe et al. [Bar+21], while

with Silver [KSM20], Knichel et al. promise improved verification accuracy and

performance for hardware implementations.

Our Contribution So far, the verification of masked software implementations

was only done in simplified settings that require modified software implemen-

tations and do not consider a wider range of side-effects, such as glitches at

the gate level, that occur when software runs on an actual CPU. There still

exists a noticeable gap between correctness proofs and the resulting practical

protection for masked software implementations. We close this gap by providing

the following contributions:

• We present Coco, a tool inspired by Rebecca, that can formally verify

the security of (any-order) masked, RISC-V assembly implementations

that are executed on concrete CPUs defined by gate-level netlists. Coco

essentially provides hardware-level verification including glitches for software

implementations with constant control flow.

• Using Coco, we analyze the design of the popular 32-bit Ibex1 core and

identify all hardware design aspects that could prevent the leakage-free

execution of our test suite of masked software implementations on this

CPU.

• Based on this analysis, we present design strategies for CPU and memory,

that with low hardware overhead, eliminate most of our discovered flaws in

hardware, while leaving behind a few select and easy-to-check constraints

for masked software implementations.

• We show the practicality of this work by verifying a variety of masked

assembly implementations, including various types of (higher-order) masked

And-gates, a second-order masked Keccak S-box [GSM17], and a first-order

masked AES S-box implementation [BP12]. We also show examples where

Coco identifies flaws in broken masked software implementations and

reports the corresponding execution cycle, as well as the location of the

1https://github.com/lowRISC/ibex

https://github.com/lowRISC/ibex
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leakage source within the Ibex netlist. To show the effective robustness of

our secured design, we perform leakage assessments on an FPGA evaluation

board.

• We publish Coco and our secured Ibex on Github2.

Outline In Section 2, we present Coco, a tool that can formally verify the

leakage-free execution of masked software implementations directly on CPU

netlists. Section 3 explains how we analyze the popular 32-bit RISC-V Ibex

core using Coco, the discovered issues, and the resulting hardware modifications

which enable leakage-free software execution. In a similar spirit, Section 4 takes

a look at data memory and proposes solutions for how SRAM can be added

to a CPU core such that it can be included in Coco’s verification. Section 5

describes Coco’s verification workflow in detail and presents various verification

runtime benchmarks as well as the practical evaluation. We conclude our work

in Section 6.

2. Verifying Software Implementations on
Hardware

In this section, we describe how we builtCoco, a tool inspired by Rebecca [Blo+18],

for the verification of masked software implementations directly on CPU netlists.

More concretely, we show how the problem of verifying masked software im-

plementations can be mapped to a hardware verification problem by treating

software as a sequence of control signals that dictate the data/control flow within

a CPU. This approach comes with the advantage that we can directly verify

assembly implementations and observe a wider range of side-effects that could

reduce the protection order of the tested software implementations. Previous

works in this direction require modified software implementations and only con-

sider a select amount of CPU side-effects that have been discovered in empirical

evaluations [Bar+19; Bar+21].

First, we cover necessary background on masking and Rebecca. We then show

that the classical probing model [ISW03] is not suitable for hardware/software

co-verification and propose the so-called time-constrained probing model that can

be seen as a stricter version of previously used models for software verification.

We then discuss all improvements that we performed on top of Rebecca, such

that hardware/software co-verification becomes feasible, ultimately leading to

Coco. Coco’s complete verification flow is described in Section 5.

2https://github.com/IAIK/coco-alma,
https://github.com/IAIK/coco-ibex

https://github.com/IAIK/coco-alma
https://github.com/IAIK/coco-ibex
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2.1. Background on Masking

Masking is a prominent algorithmic countermeasure against power analysis

attacks [Cha+99]. In a nutshell, masking is a secret-sharing technique that

splits intermediate values of a computation into d+ 1 uniformly random shares,

such that observing up to d shares does not leak any information about the

underlying value. The used masking scheme determines the number of masks d,

and results in a dth-order masking scheme. In classical Boolean masking, the

sharing of a native variable s, when split into d+1 random shares s0 . . . sd, must

satisfy s = s0 ⊕ . . .⊕ sd. Hereby, s0 . . . sd−1 is chosen uniformly at random while

sd = s0 ⊕ . . .⊕ sd−1 ⊕ s. This ensures that each share si is uniformly distributed

and statistically independent of s. For example, in a first-order masking scheme

(d = 1), the secret variable s is split up into two shares s0 and s1, such that

s = s0 ⊕ s1. s0 is chosen runiformly at random, while s1 = s⊕ s0.

When implementing masked cryptographic algorithms, dealing with linear

functions is trivial as they can simply be computed on each share individually.

However, implementing masking for non-linear functions requires computations

on all shares of a native value, which is more challenging to implement in a secure

and correct manner, and thus the main interest in literature [Bar+17; Bel+17;

Cnu+16; GM17; GMK16; ISW03; Rep+15].

2.2. Background on REBECCA

Rebecca [Blo+18] is a tool for the formal verification of masked hardware im-

plementations. Simply speaking, given the netlist of a masked hardware circuit,

together with labels that indicate which input shares belong together, Rebecca

can determine if the separation between shares is preserved throughout the circuit.

More formally, Rebecca checks if a circuit is secure in the glitch-extended version

of the original probing model by Ishai et al. [ISW03], which we refer to as the

classical probing model. In general, the probing model defines the attacker’s

abilities in terms of the number of used probing needles, which are placed on

a wire in a circuit and allow to observe the respective value from the wire. In

the classical probing model, an attacker can place up to d probing needles in a

circuit, which allows the observation of up to d intermediate values throughout

the computation. A circuit is said to be dth-order protected if an attacker who

combines the recorded information cannot infer information about native values.

The Verification Flow of REBECCA Rebecca operates on the netlist of a

pipelined masked hardware circuit. A masked hardware circuit consists of linear

gates (xor, xnor), non-linear gates (and, or), registers and constants, that are

all connected by wires. Inputs are gates with indegree zero, such as the clock

signal or the input state of a cipher.

The circuit inputs are annotated with labels to express their purpose in the

masking scheme, which can either be a share, a mask, or public. A share represents
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a share of a secret value, a mask is a fresh uniformly-distributed random value, and

public means that it is not important for the masked implementation. These labels

are propagated through all gates of the circuit, following a list of propagation

rules. The circuit is not secure in the classical probing model if there is a gate

that correlates with a native secret, i.e., allows an attacker probing the gate to

deduce information about the native secret.

Rebecca is able to prove the glitch-resistance of masked hardware circuits.

Glitches may arise in the combinatorial logic, and are caused by various physical

hardware properties, including different wire lengths. Rebecca takes glitches

into account by modeling the stable and transient correlation of gates. Stable

correlations refer to the final values of the signals, whereas transient correlations

refer to all intermediate signal values before the circuit stabilizes.

Fourier Expansions and Leakage Checks In order to check for correlation,

Rebecca uses correlation sets. A correlation set is bound to a specific gate in

the circuit and describes which information an attacker can learn by placing

a probe on the gate. These sets are derived from the Fourier expansion of

Boolean functions [ODo14]. Fourier expansions represent Boolean functions as a

polynomial over the real domain {1,−1}. Examples of Fourier expansions are

shown in Appendix A.

A function correlates to a linear combination of its inputs if the correlation

term representing the linear combination has a non-zero correlation coefficient.

Rebecca applies a very conservative over-approximation of these coefficients and

derives correlation sets from these. Correlation sets contain terms with non-zero

correlation coefficients while omitting the exact value of the coefficients. A

first-order leakage test for a secret s checks whether a correlation set of any gate

contains a term where all shares of s are present without being masked by a

random value (a mask or an incomplete sharing of another secret). Explicitly

constructing the correlation sets and performing these checks is infeasible, which

is why Rebecca encodes everything as a pseudo-Boolean formula and checks for

satisfiability with the SMT solver Z3 [MB08].

2.3. Probing Models for Software Verification

The complexity of a power analysis attack is determined by the number of

intermediate values that an attacker needs to learn from a power trace by placing

probing needles (probes) in a circuit. The number of probes corresponds to

the order of an attack and the attack complexity grows exponentially with the

order [Cha+99]. The classical probing model for hardware allows an attacker to

observe all values and transitions at a chosen location within a hardware circuit,

and therefore does not express this increase of complexity, but corresponds to a

much more powerful attacker. For example, consider the case where an attacker

is probing the write port of a CPU register file. Then, an attacker will always

observe all intermediate values and can break masking schemes with arbitrary
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protection order. Consequently, authors have fallen back to more restrictive

probing models for the verification of masked software implementations.

Tools like maskVerif or Tornado are based on a probing model in which a

dth-order attacker on software implementations can observe up to d intermediate

values of the computation (+ transition effects). However, this implicitly excludes

the attacker from observing more than two intermediate values at one probing

location, even though CPU registers very likely contain multiple intermediate

values throughout the software execution. Even though the essence of higher-

order attacks is captured, it fails to represent that observing combinations of

more than two intermediates is possible in practice.

Time-Constrained Probing Model We introduce the Time-Constrained Probing

Model to model the capabilities of an attacker who performs power analysis

attacks of a given order. The time-constrained probing model constrains the

classical probing model such that the complexity of higher-order attacks is

represented. In addition, it captures hardware effects and leads to situations

where an attacker can observe more than two intermediate values at one probing

location. Hardware effects, like glitches, occur frequently in practice and have

been shown to be exploitable in the context of masked implementations [Fau+18;

Moo+19; NRS11].

In the time-constrained probing model, an attacker possesses d probes. Each

probe can be used to measure information in one specific clock cycle and at

one specific location. The attacker can distribute the d probes spatially and

temporally. Hence, the attacker can perform d measurements at different locations

in the same clock cycle, or probes at the same location in different clock cycles,

or a mix of both. A masked software implementation is dth-order secure in

the time-constrained probing model if an attacker cannot combine the recorded

information to learn anything about native values.

2.4. Co-Verification Methodology

While Rebecca is limited to the verification of pipelined masked hardware circuits,

Coco aims at the co-verification of software and hardware, i.e., verifying the

execution of masked software implementations directly on a processor’s netlist.

Consequently, Coco requires some knowledge about how concrete programs

influence the data/control flow within the CPU. We then need to extend Rebecca

such that the verification method is aware of the software execution.

In the following, we first briefly outline the workflow of Coco, broken into 4

steps. Steps 1-2 give intuition into how the execution of software can be combined

with an otherwise purely hardware-focused verification method. Steps 3-4 then

describe Coco’s verification method. The remainder of this section describes

Step 3 in more detail.

Step 1 We use Verilator [Sny22] to execute a masked assembly implementation
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Table 1.: Definition of the stable (St
x) and transient (T t

x) correlation sets of gate

x in cycle t. We use the operator ⊗ as the element-wise multiplication

of two correlation sets.

Gate type of x Definition of St
x Definition of T t

x

Constant {1} {1}
Negation x = ¬a St

a T t
a

Register x ⇐R a St−1
a Ŝt−1

a ⊗ Ŝt
a

xor x = a⊕ b
St
a ⊗ St

b T̂ t
a ⊗ T̂ t

bxnor x = a⊕ b

and x = a ∧ b
Ŝt
a ⊗ Ŝt

b T̂ t
a ⊗ T̂ t

bor x = a ∨ b

Multiplexer x = c ? a : b Ŝt
c ⊗ (St

a ∪ St
b) T̂ t

c ⊗ T̂ t
a ⊗ T̂ t

b

on a given CPU hardware design via a cycle-accurate simulation. From the

simulation, we extract a so-called execution trace which contains concrete values

for all CPU control signals in all execution cycles. We require implementations

with a constant control flow using Boolean masking and therefore, these control

signals are the same for all inputs to that software implementation.

Step 2 We annotate which registers or memory locations hold the shares of a

native value at the start of the software execution. Additionally, we need to

specify the masking order of the software implementation and the number of

cycles that should be verified.

Step 3 We capture the correlations of each logic gate and register in the processor

by constructing correlation sets throughout each clock cycle. For this purpose,

we improve and extend the set of stable and transient propagation rules used

by Rebecca. Most importantly, we reformulate them such that they can be

made execution-aware. Knowing the exact values of control signals at each

point during the execution allows Coco to simplify the correlation sets under

certain circumstances. In turn, we obtain a tighter over-approximation and

reduce erroneous leakage reports.

Step 4 We encode the resulting correlation sets as a propositional Boolean

formula and use a SAT-solver to check for leakage. In case the implementation

is insecure, the exact gate in the netlist and execution cycle is reported. Tracking

correlation sets naively is infeasible since their size grows exponentially with

the number of secret shares and masks. Our encoding includes the circuit

structure, correlation propagation rules and security constraints. Although

Rebecca already applies this approach, their SAT encoding is incompatible with

our execution-aware propagation rules and not efficient enough for circuits as

large as processors.
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Execution-Aware Stable Correlation Sets In Coco, we apply an

over-approximation of the Fourier expansions of Boolean functions by build-

ing execution-aware correlation sets St
x which track the non-zero correlation

terms of gate x in cycle t. For reasons of simplicity, we also define the biased

correlation set Ŝt
x = {1} ∪ St

x. In Step 2 of the verification process, we decide

on the initial correlation terms by providing labels for registers and memory

locations. For example, if we label register x as the first share s1 of the secret

s, then its initial correlation set is S0
x = {s1}. Correlation terms of consecutive

gates are derived by propagating these labels through the whole circuit, using

the definitions of stable correlation sets, until the initial registers are reached

again. The register’s labels are updated accordingly and the propagation restarts.

This process is repeated for every cycle, until the execution finishes.

Table 1 shows the definitions of stable correlation sets St
x used by Coco.

Constants only correlate to the constant term 1. Negations only change the

sign of the coefficients in the Fourier expansion, so the correlation set stays the

same. Registers inherit the stable correlation set their input had at the end of

the last cycle. The stable correlation set of linear gates (xor, xnor) is computed

as the element-wise multiplication (⊗) of the correlation set of the gate inputs.

Similarly, the definition for non-linear gates is calculated as the element-wise

multiplication of the biased correlation set of the gate inputs.

Unlike Rebecca, our verification tool supports multiplexers. Therefore, in

Equation 1, we propose the Fourier expansion of multiplexer gates.

mux F (c ? a : b) =
1

2
a+

1

2
b− 1

2
ac+

1

2
bc (1)

A detailed derivation of the coefficients is given in Appendix A2. Consequently,

the correlation set for multiplexers combines the stable correlation sets of all

inputs.

The resulting over-approximation St
x is sound but not always tight. This

means that the stable correlation set contains at least all correlation terms with

non-zero coefficients, but might also contain terms that have a zero coefficient.

In other words, all real leaks are always detected, but sometimes leaks could

falsely be reported. Unlike Rebecca, Coco tightens the over-approximation and

circumvents the necessity to apply the full sets in some cases, which reduces the

amount of false positives. The propagation rules for gates which have at least one

public input can, depending on the concrete value of the input, be simplified by

substituting correlation sets with constants. The concrete values can be obtained

from the execution trace. For example, if there exists a mulitplexer c ? a : b

and we know that c is public and has the concrete value false, the result of the

multiplexer will only correlate to terms in St
b.
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AND
xa

b

  Comb. logic

Register

Cycle n Cycle n+ 1 Cycle n+ 2

Boolean values according to trace

b 1 0 0

x a 0 0

Stable correlation sets

St
x Sn

a {1} {1}
Transient correlation sets

T t
x Tn

a Tn+1
a {1}

Figure 1.: Example of simplifications made to the propagation rule of an And

gate in three consecutive cycles, exploiting execution-awareness.

Execution-Aware Transient Correlation Sets Hardware effects like transitions

and glitches cause information leaks, which cannot be captured by stable cor-

relation sets. Therefore, we introduce transient correlation sets T t
x for a gate x

in cycle t and the biased representation T̂ t
x = {1} ∪ T t

x. T
t
x contains at least all

the correlations an attacker can observe throughout the duration of one cycle.

Additionally, it contains spurious terms that make efficient calculations easier

while still yielding an over-approximation, albeit a less tight one.

The definitions of transient correlation sets T t
x are shown in Table 1. For

constants and negations, the definition of the correlation sets is identical to

the stable case. An attacker probing a register can learn the current stable

value, the old stable value, and their linear combination due to transition leakage.

Therefore, probing a register does not reveal any transient information, as registers

synchronize the circuit and do not change throughout a clock cycle. Non-linear

and linear gates leak the same amount of information in the transient case.

Glitches can cause a linear gate to forward either of its inputs because they do

not necessarily update simultaneously. Similarly, due to the transition from the

previous stable signal value to the current transient signal value, an attacker

can observe both, as well as their linear combination. The over-approximation

in Table 1 does not state this directly. Instead, this is implied by the transient

correlation sets for registers, which make sure that an attacker probing any gate

also sees the old stable value of that gate. Therefore, as St−1
a ⊆ T t

a, gates using

a as an input observe both old and new signal values of a. In the transient

case, Coco treats multiplexers similarly to linear and non-linear gates. Our

over-approximation just assumes that a multiplexer leaks all possible linear

combinations of the transient values of all of its inputs.

Just like stable correlation sets, transient correlation sets are also affected by
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concrete signal values obtained from the execution trace. However, glitches make

simplifications due to execution awareness harder and less effective. They are still

possible, as long as we keep track whether a given signal can cause a glitch or not.

We use a method similar to what was proposed by Thompson et al. [TM04] to

track the stability of a given signal. This method is summarized by the following

rules:

• Registers that have not changed their value during a transition from cycle

t − 1 to cycle t cannot produce glitches, as their signals are inherently

stable.

• If all inputs of a logic gate are stable, the output of the logic gate cannot

cause glitches either.

• Non-linear gates and multiplexers can still produce stable signals, even if

one of its inputs is unstable. This depends on the gate’s physical properties,

which can prevent glitches, e.g. and gates with one unstable and one stable

false input, Or gates with one unstable and one stable true input.

The gate stability propagates through the circuit for any given clock cycle,

starting at registers and continuing until the stability of all gates is determined.

After computing which circuit gates produce stable signals, we use this to apply

simplifications to transient correlation sets using the same method as for stable

correlation sets.

Example of Execution-Aware Simplifications Consider an And gate x = a ∧ b,

where b is the output of a register and a is calculated by some combinatorial logic,

as shown in Figure 1. For simplicity, assume that the value of b is public, and that

the value of a, as well as the stable and transient correlation sets, do not change

throughout cycles n to n+ 2, i.e., Sn
a = Sn+1

a = Sn+2
a and Tn

a = Tn+1
a = Tn+2

a .

From the execution trace we know that b = 1 in cycle n and b = 0 in cycles

n + 1 and n + 2. Knowing b allows us to apply the simplifications Sn
x = Sn

a

and Sn+1
x = Sn+2

x = {1} . Now consider the same circuit when glitches are

present, and assume that b = 1 was a stable signal in cycle n. In cycle n + 1,

it is possible that the signal from a arrives at x before the new value b = 0.

Therefore, the simplifications due to execution awareness cannot be applied and,

Tn+1
x = Tn

x = Tn
a . However, in cycle n + 2, we can apply the simplification

because the value of b is stable and, thus, Tn+2
x = {1} .

3. Problems and Fixes in the IBEX Core

In this section, we first describe the RISC-V Ibex core, our target processor. We

analyze the RISC-V Ibex core using Coco to identify implementation details

that prevent the leakage-free execution of masked software implementations.
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Afterwards, we propose corresponding fixes, either directly in hardware, or as a

constraint for masked software implementations. The outcome of our analysis is

a secured hardware design of the Ibex core. We discuss secure options for data

memory in Section 4 and then verify the entire design in Section 5.

When executing a masked software implementation on Ibex, secret shares are

initially stored in the register file and the data memory. The instructions of

the program work on the shares by changing them and moving them through

the CPU and the memory system. All these actions cause potential leakage. In

order to analyze and detect these leakage sources, we work with a comprehensive

set of masked software implementations that includes (higher-order) masked

And-gates, a second-order masked Keccak S-box, and a first-order masked AES

S-box implementation. All test programs are written in RISC-V assembly and

then executed on the Ibex core, producing a cycle-accurate execution trace. The

execution trace in combination with the exact storage location of the secret shares

(registers or memory locations) is then processed by Coco, which automatically

runs the verification and reports leakage sources by specifying the exact cycle and

gate in the netlist. We then manually inspect the gate in the netlist, introduce

the corresponding hardware fixes and re-evaluate the design until no leaks were

dectected anymore.

Our analysis has revealed several leakages caused by the Ibex core. First, Coco

has confirmed the typical problems of masked software implementations that have

already been identified by previous works, such as overwriting or successively

accessing shares that correspond to the same native variable [Bal+14; Bar+15;

PV17; She+21]. While fixing such problems in hardware would, in principle, be

possible, it would be very costly. We decided to accept these leakages and instead

write all our masked implementations in a way such that they fulfill the following

two constraints:

C1CORE Shares of the same secret must not be accessed within two successive

instructions.

C2CORE A register or memory location which contains one share must not be

overwritten with its counterpart.

However, although these design principles prevent known leakage sources, Coco

has revealed many more leakages. In particular, it identified leakages in the

register file, the computational units (ALU, MD, and CSR) as well as in the

LSU. We now discuss all of these identified problems for the different components

of the CPU and present corresponding solutions in hardware to prevent these

leakages.
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3.1. Targeted Processor Platform

The Ibex core3 is a free and publicly available 32-bit CPU design that features a

two stage in-order single-issue pipeline that is divided into Instruction Fetch (IF)

and Instruction Decode/Execute (ID+EX). Its performance is roughly compa-

rable to the ARM Cortex-M0. The main components of Ibex are the register

file, the Arithmetic Logic Unit (ALU), the Load-Store Unit (LSU), a unit for

multiplications and divisions (MD), the Control and Status Register (CSR) block,

and several functional units for processor control, including the decoder and

controller.

For our analayis we use Ibex core commit 863fb56eb166d. We configure

Ibex to use the RV32I instruction set and the C (compressed instructions), M

(multiplication/division) and Zicsr (control and status register) extensions. Other

features like physical memory protection and the instruction cache are disabled.

We select Ibex as the target core because it has a relatively simple microarchi-

tecture, which makes it easy to demonstrate Coco and explain the hardware fixes.

Although the core complexity is rather low, it still contains the most important

components which are part of every modern processor, for example the register

file. Additionally, the Ibex core has gained a lot of attention recently as beging

part of the PULP Platform [ETH] and the OpenTitan project [low19].

However, we want to stress that Coco can be used to analyze any other

processor, as long as the netlist is available in either Verilog or System Verilog

and the masked software implementations have a constant control flow. This

includes also larger RISC-V cores, for example the 32-bit CV32E40P (formerly

RI5CY) [Opea] and the 64-bit CVA6 (formerly Ariane) [Opeb], but also other non-

RISC-V processors, for example the ARM Cortex-M4. Note that the netlist does

not necessarily have to be open source. For example, users in industry to which

the netlist of the ARM Cortex-M4 was disclosed, could use Coco to perform

verification of ARM-based masked assembly implementations. Additionally, the

problems found in the Ibex core are conceptually the same in larger cores, since

the basic building blocks are the same. Therefore, the proposed solutions can

also be easily mapped to larger cores.

3.2. Register File

The register file of the Ibex core consists of 32 32-bit registers, labeled x0-x31,

where x0 is hard-wired to the value 0. Although there exist multiple options

of how concrete register files could be constructed, on a conceptional level, the

design will be similar to the sketch shown in Figure 2a. There are two read ports

(A and B), and a write port, that are controlled by 5-bit address signals. The 32

registers are connected to a multiplexer tree of depth five, whose selection signals

are the respective bit of the read address. If an instruction writes a value to a

register, the 32-bit write data either originates from the ALU, the CSR Unit,

3https://github.com/lowRISC/ibex

https://github.com/lowRISC/ibex
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(a) Original register file. A multiplexer
tree is used to read registers based
on the 5-bit read address. Writing
is done via a multiplexer, controlled
by a 1-bit write-enable signal, which
is derived from the write address.
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(b) Secured register file. The register
output is additionally gated and the
multiplexer tree is replaced by a tree
of Or gates. The writing mech-
anism remains unchanged, except
that it is extended by an additional
And gate for the write data.

Figure 2.: Original and secured register file of the Ibex core.

or the LSU. A multiplexer before each register controls if the register content is

updated, depending on the write-enable signal, which is derived from the address.

Problem: Switching Wires in the Multiplexer Tree The transition from one

secret share to another may be observable on a wire connecting two levels of the

multiplexer tree. This happens primarily whenever two secret shares are read in

consecutive cycles, but also when accessing registers unrelated to secret shares.

For instance, assuming that the secret shares are in registers x1 and x2, reading

register x3 in the first cycle and x4 in the second cycle causes the fifth bit of the

read address to switch from one to zero. An attacker observes leakage on the

output wire of the first L0 multiplexer, which switches from x1 to x2.

Problem: Glitchy Address Signals The read and write address signals are not

guaranteed to be glitch-free since they come out of combinatorial logic. We

identify the transitions of the wires in the multiplexer tree as a source of leakage

because it can switch from the value of a secret share in the register to the data

written to any other register. Additionally, transitions from one secret share to

another can be observed on the output of the multiplexers before a register.

Problem: Unintended Reads The Ibex core reads data from the register file

in every instruction, even in cases were the current instruction does not require

any operands. For example, lw x1, 5(x20) will result in a read to registers x20
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and x5 because bits 15-19 and 20-26 of an instruction are always interpreted as

operand addresses.

Solution: Register Gating All three described problems are difficult to address in

software since their effects often depend on the concrete hardware layout. A pure

software solution could eliminate the problem of unintended reads, but becomes

more complex as the length of a program grows and is completely unfeasible for

larger implementations. Software mitigations are insufficient to solve the problem

of glitchy address signals and transition leakage in the multiplexer tree. Therefore,

we fix this problem in hardware using a gating mechanism for each register, as

shown in Figure 2b. After each register, we place an And gate, that takes the

register value as the first input operand. The second operand of this And gate is

the register read address, encoded into a 32-bit one-hot signal, where each bit

represents the gate value for a single register. Consequently, the whole multiplexer

tree can be replaced by a simpler tree of Or gates. From a verification aspect, we

discuss this solution in Figure 1. In this concrete example, the one-hot encoded

enable signal is stored in the register while the combinatorial logic represents

the CPU register. Since at most one bit is set in the one-hot signal, at most one

register gate is opened, and either the correct register value or zero can be read

from the register file. This gating mechanism prevents the problem of switching

wires in the multiplexer tree, and unintended reads because we only enable gating

when the instruction requires a read. We prevent glitches on the one-hot signal

by computing it in the IF stage, and storing it in an intermediate register so that

it is guaranteed to be stable when it reaches the ID+EX stage. We apply the

gating mechanism to both read ports. Likewise, register writes are also gated

with a separate pre-computed value in a one-hot register by placing an And gate

before the write multiplexer.

3.3. Computation Units

Computation units such as the ALU, MD, and CSR are directly connected to

read ports of the register file. The results produced by them go directly into a

multiplexer, selecting the intended computation result for the register write port.

In other words, the Ibex computation units are always active, even when they

are not required by the current instruction.

Problem: Always-Active Computation Units Assume the b-bit secret s is shared

into two shares s0 = (s0,1, ...s0,b) and s1 = (s1,1, ...s1,b), such that s = s0 ⊕ s1.

Traditionally, s0 and s1 are both stored in one register each, but there are other

ways the bits of shares can be stored. For example, in 2017, Barthe et al. [Bar+17]

proposed parallel implementations of higher-order masking schemes, where s0
and s1 are distributed over b registers r1, ...rb. In their scheme, the first bit of

r1 stores s0,1, while the second bit stores s1,1.
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The standard Ibex core does not allow leakage-free implementations of such

masking schemes since parts of ALU, MD, and CSR units are always active

and combine the bits of each read port signal. More concretely, when using a

parallelized masking scheme, the execution of a simple bit-wise and instruction

leaks since, e.g., the adder unit combines the bits from the first input operand,

and thus might leak s0,1 ⊕ s1,1.

Solution: Computation Unit Gating The problem of always-active computation

units is very hard to mitigate in software. Therefore, we use a gating mechanism

in hardware similar to the one in the register file. More concretely, we use

additional And gates at the inputs of each computation that are connected

to respective enable bits, which are precomputed in the IF stage and depend

on the next instruction. This also has the other positive side-effect that the

reduced circuit activity results in an overall lower power consumption of the

CPU, reducing the overall switching activity in the circuit.

3.4. Load/Store Operations

The LSU implements a state machine that is responsible for communicating with

the external memory. The state machine mainly handles the correct interaction

with data/instruction memory including misaligned memory accesses.

Problem: Hidden LSU State Accessing 32-bit words at addresses that are

not 32-bit aligned always results in two consecutive fetch operations of the

corresponding memory words. An internal register is then used to buffer the first

memory word until the second memory word is available. This internal buffer is

only updated once a misaligned memory access occurs. Programs can, therefore,

cause unintended leaks by loading a share into the LSU buffer. The value in this

buffer will then potentially be combined with all values that traverse the LSU

from this time on.

Solution: Clear Hidden LSU State We can avoid this leakage source in software

by performing a misaligned memory access to a non-secret value, which clears

the LSU buffer. However, we solve this problem in hardware since it does not

produce any additional overhead, and no additional software design constraints

are necessary. A memory access executed by the Ibex core requires at least two

clock cycles. In the last cycle, the read memory word is given back to the LSU.

In fact, clearing the hidden LSU buffer in the first cycle, i.e., at the beginning of

a memory access, eliminates this leakage source.

3.5. Hardware Overhead

In order to analyze the additional hardware overhead of the security fixes imple-

mented in our design, we compare the chip area in kGE as well as the maximum
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Table 2.: Area consumption of the Ibex core in kGE. The area consumption of

the whole design (Total) and parts (register file, IF stage) are reported.

The area consumption of the ID+EX stage is omitted because there is

no overhead. The total area overhead of the design with all security

fixes enabled is around 10%.

Design
Total Register File IF stage

Total Overhead Total Overhead Total Overhead

#1 Base design 20.2 - 9.8 - 3.0 -

#2 BD + secure register read 20.5 1.5% 9.4 −4.1% 3.6 29%

#3 BD + secure register write 21.9 8.4% 11.0 12.2% 3.4 13%

#4 BD + secure register read-
/write

22.1 9.4% 10.7 9.1% 4.0 33.3%

#5 BD + disabled
MD/ALU/CSR unit

20.4 0.9% 9.8 0% 3.1 3.3%

#6 Secured design 22.2 9.9% 10.7 9.1% 4.0 33.3%

operating frequency of the Ibex base design with our secured design. We use Ca-

dence Genus Synthesis Solution 19.11-s087 1 for synthesis. The used technology

is f130LL.

We disable the ungroup ok option for all modules in the core, which preserves

the hierarchy of the design. This allows us to investigate the area consumption

of every submodule on its own, although it might prevent certain optimizations.

We can also exclude the area consumed by SRAM and the instruction ROM from

the analysis since they do not belong to the Ibex core.

Table 2 shows the area consumption of the Ibex core in different configurations.

The unmodified Ibex core (design #1) requires in total 20.2 kGE. Enabling

secure register reads by gating (design #2) increases the total chip area by

1.5%. This is mainly due to the additional two 32-bit registers required in the

IF stage. The size of the register file even decreases, because Or gates replace

the multiplexer tree. However, register writes introduce more area overhead due

to the additional And gates. In design #5, main overhead comes from the four

1-bit gating-registers in the IF stage and the And gates used for gating in the

total core overhead. In summary, all our security fixes increase the total area of

the Ibex core by 9.9%.

We do not expect a major latency overhead of our modifications. In the core,

we mainly shifted the address decoding from ID to IF stage, which might slightly

increase the latency of the IF stage. The same holds for the ID stage, where the

multiplexer tree is replaced by a tree of Or gates and a layer of additional And

gates. The computation unit gating and clearing the hidden LSU state will also

affect latency in the ID stage. Latency considerations according to the SRAM

are discussed in Section 4. However, we keep a detailed investigation as an open

research question for the future.
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Figure 3.: Two options of adding SRAM to our Ibex core.

4. Problems and Fixes in Data Memory

In this section, we discuss how data memory, more specifically SRAM, can be

integrated into our secured Ibex core so we can formally prove the leakage-free

execution of masked software implementations for the entire system. Typically,

microprocessors such as ARM Cortex-M devices feature a Harvard architecture,

which means that dedicated memory modules are used for data/instruction

memory (based on SRAM/Flash technology). Especially on low-end devices,

without sophisticated branch prediction and cache architectures, this design

choice improves overall performance since simultaneous memory accesses to both

memory modules are possible. For our purposes, dealing with instruction memory

is comparably easy since instructions only dictate the data/control flow. They

are not directly involved in any computations and are thus not labeled as shares

in our verification. Hence, from a hardware perspective, we do not need to take

any special precautions when adding instruction memory to our Ibex core.

The situation becomes more complicated for data memory, as it plays an impor-

tant role for masked software implementations that cannot hold all intermediate

values of a computation in its register file. At first glance, one could consider

applying the same design strategy, as used for the register file (cf. Figure 2b),
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also to the data memory. However, one-hot encoding does not scale well with

larger address spaces and would result in impractical hardware overhead.

Consequently, we need to discuss options that keep the hardware overhead

reasonable while still allowing correctness proofs for the entire CPU design. In

the following, we discuss two such options that utilize partially one-hot encoded

address signals and result in different trade-offs between hardware overhead and

the number of rules that need to be followed by masked software implementations.

The first option utilizes one-hot encoding in the upper address bits, i.e., for

selecting SRAM blocks, and does not make any assumptions on the inner workings

of the SRAM blocks. The second option describes how one-hot encoding in the

lower address bits can be used to build “glitch-free” SRAM blocks that can then

easily be added to our Ibex core without any hardware overhead.

4.1. MSB One-hot Address Encoding

The first viable option of using partial one-hot encoding for data memory involves

using one-hot encoding for the higher bits of the address signal, as illustrated in

Figure 3a. In this example, we consider the case of a low-end 32-bit device with

32KB of RAM that can be addressed on word granularity with 13-bit address

signals (i.e., using bits 2 to 14 from the original 32-bit signal). First, we extract

13 bits from the original 32-bit address signal. This 13-bit signal is then further

split up into a 5-bit block address (later expanded to a 32-bit one-hot signal)

and an 8-bit word address for selecting a word within one SRAM block. This

design choice ensures that no glitches can occur across SRAM blocks, yet they

could still occur between the words of a single SRAM block. More concretely,

when considering a masked software implementation that operates on a secret

s, represented by the shares s = s1 ⊕ s2, then our construction results in the

following software constraints for SRAM usage:

C1SRAM Storing both, s1 and s2, in separate SRAM blocks is fine as long as they

are not accessed in immediate succession.

C2SRAM Storing s1 and s2 within the same SRAM block can result in potential

leaks and thus needs to be avoided.

The hardware overhead of utilizing one-hot encoding in the higher address bits

is mainly determined by the additionally needed one-hot encoder circuitry and

one 40-bit register. On the other side, when comparing Figure 3a to Figure 3b,

one can also see that the Mux-tree, used for selecting the SRAM output, can be

replaced by a simpler, and thus cheaper Or-tree. Overall, and when compared

to the typical area of SRAM blocks, we do not expect any noticeable hardware

overhead of this construction. From a latency perspective, there is no delay as

long as the one-hot encoding can be performed in the cycle before the actual

lookup. We expect this to hold for most designs.
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Figure 4.: Typical layout of SRAM cells. Each pair of Not gates represents a

1-bit memory cell. The one-hot encoded word line (WL) selects the

active word. The bit line BLi connects bits at location i from all words.

The negated BL signal, together with the differential sense amplifier

(SA), help achieving stable output values faster.

4.2. LSB One-hot Address Encoding

Another option of utilizing partially one-hot encoded address signals consists of

using one-hot encoding only for certain less significant bits of the address signal,

as illustrated in Figure 3b. In this case, the 13-bit address signal is divided

into an 8-bit block address (for specifying the SRAM block) and a 5-bit word

address that is later expanded to a 32-bit one-hot signal (for specifying a word

within an SRAM block). This construction will, similarly to the register file, as

discussed previously (cf. Section 3.2), eliminate glitches between words of the

same SRAM block, except for the case when they are accessed in immediate

succession. Consequently, when operating with the shares s1 and s2, masked

software implementations need to follow the following constraints:

C1SRAM Storing both, s1 and s2, within the same SRAM block is fine as long as

they are not used in immediate succession.

C2SRAM Storing s1 and s2 in different SRAM blocks can result in potential leaks

and thus needs to be avoided.

When looking at the standard design of SRAM cells in Figure 4, one can observe

that the word line (WL) needs to be a one-hot encoded signal while each bit

line (BL) is connected to one bit location of all words within one SRAM block,
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thereby essentially functioning as an OR gate. On a conceptional level, this

is similar to the construction in Figure 3b, were we use additional registers to

ensure a stable WL signal.

In other words, if a given SRAM block has a layout that already achieves

internally stable WL signals in practice then no hardware modifications are

required and an ordinary Mux-based output selector can be used. Of course, it

is generally not easy to tell if, or to what extent, an off-the-shelf SRAM block

fulfills this requirement since they are full custom and partially analog blocks.

In a typical SRAM row decoder design, an individual WL signal is derived by a

single, wide Nor gate with a fan-in that is equal to the number of bits in the

word address (see Section 2.7 in [PS08]). Roughly said, if the address signal is

stable, then the low combinatorial depth of the row decoder likely only causes

small glitches that could then be compensated with the custom circuit layout.

Besides that, stable WL signals are also desirable from a power and latency

perspective since (1) each WL signal can drive up to 64 transistors, glitches can

hence significantly impact the power profile, and (2) the time until the differential

sense amplifier (SA) output is stable strongly depends on the presence of glitches

on the WL signals, which in return reduces the maximum operating frequency.

5. Co-Verification with Coco

In this section, we discuss the details of the workflow of Coco, our verification

tool, and report the runtime effort for each step. We evaluate Coco using several

benchmarks, including first-order and higher-order masked implementations

executed by the secured Ibex processor and show that Coco can efficiently verify

those. We run all our evaluations using a 64-bit Linux Operating System on an

Intel Core i7-7600U CPU with a clock frequency of 2.70GHz and 16GB of RAM.

Additionally, we practically evaluate our design using a first-order t-test on a

SAKURA-G FPGA evaluation board.

5.1. Verification Flow

The verification flow implemented by Coco consists of four steps, as illustrated

in Appendix B. The four steps are divided into three preprocessing steps (1)-

(3), and the final verification step (4). The preprocessing steps are needed to

join the masked assembly implementation of the cipher with the Ibex System

Verilog sources into one single VCD execution trace, which is then used during

verification. For all our experiments, we use the secured Ibex processor, which

consists of the secured core and memory, as described in Sections 3 and 4. In

detail, the verification flow is as follows:

(1) The masked implementation of the target cipher is compiled using the 32-

bit RISC-V assembler. The resulting binary file is then converted into a

Verilator [Sny22] testbench.
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(2) We use Yosys [Wol16] to parse the hardware model, a set of System Verilog

files, of the secured Ibex processor. Yosys (Yosys Open SYnthesis Suite) is

an open-source framework which synthesizes and optimizes the model and

produces a netlist of the circuit in Verilog format and as a graph, with gates

as nodes and wires as edges.

(3) We run Verilator using the testbench created in (1) and the circuit netlist

created in (2). It produces an execution trace of the masked cipher executed

by the secured Ibex processor in VCD format.

(4) In the last step, the actual verification is done using a Python script. The

script’s input are the circuit graph, the VCD execution trace and the verifi-

cation configuration. The verification configuration consists of the register

label file, which specifies which registers or memory locations contain shares

of a secret and which contain fresh randomness, the verification mode (stable

or transient), the number of cycles which should be verified and the order

of the masked cipher. Finally, the verification process outputs whether the

execution is leakage-free or not, together with the cycle and gate number in

which the leakage occurred.

Since the System Verilog support of Yosys is limited, we use the Symbiotic

EDA Edition of Yosys (0.8+472), which works with a frontend of Verific in order

to support System Verilog. Verilator 4.010 is used to create the execution traces.

A Python script is used to create the SAT formulas, which are later solved by

CaDiCaL 1.0.3.

In our experiments, we cannot work with real SRAM blocks for data RAM.

Usually, one would use pre-build and pre-configured SRAM modules and instan-

tiate them with a macro in the Verilog code. However, in that case, we can

neither trace the behavior of the block during execution nor label memory cells.

Therefore, we create a Verilog hardware model according to the LSB one-hot

address encoding scheme, as described in Figure 3b, which behaves like a real

SRAM module. The module is divided into 16 blocks consisting of 8 32-bit

words each. Furthermore, we configure Ibex core to use 1 kilobyte of instruction

memory for all test cases except the DOM AES S-box, where we use 4 kilobytes.

5.2. Evaluation of Preprocessing Steps (1) - (3)

Coco’s preprocessing steps aim at preparing all resources for the verification. The

runtime of the testbench creation (1) takes about 0.04 s for all our experiments.

The runtime of the tracing part (3) is determined by the circuit size and number

of cycles it needs to execute the masked software implementation with Ibex and

takes 0.003 s per cycle. The parsing step (2) has to be run only once for the

whole secured Ibex and takes about 7min and depends mostly on the circuit

size, including the size of instruction and data memory.
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Table 3.: Verification of masked software implementations on secured Ibex using

Coco. é indicates intentionally broken implementations. Testcases

with reg. omit memory accesses and perform all computations using

registers. Runtimes stem from single-threaded executions on an Intel

Core i7 notebook CPU with 16GB of RAM.

Name
Runtime Leaking Input Fresh Verif. Runtime

(cycles) Cycle Shares Randomness Stable Transient

First-order

DOM And reg. [GMK16] 13 - 4× 32 bit 32 bit 3 s 11 s

DOM And reg.é 13 12 4× 32 bit 32 bit 2 s 12 s

DOM And [GMK16] 39 - 4× 32 bit 32 bit 9 s 32 s

ISW And reg. [ISW03] 13 - 4× 32 bit 32 bit 5 s 13 s

TI And reg. [NRR06] 17 - 6× 32 bit - 5 s 17 s

Trichina And reg. [Tri03] 19 - 4× 32 bit 32 bit 5 s 19 s

DOM Keccak S-box reg. [GSM17] 89 - 10× 32 bit 5× 32 bit 25 s 2.6m

DOM Keccak S-box reg.é 88 70 10× 32 bit 5× 32 bit 20 s 2m

DOM Keccak S-box [GSM17] 219 - 10× 32 bit 5× 32 bit 1m 3.9m

DOM AES S-box [BP12] 1900 - 16× 16 bit 34× 16 bit 18m 4.75 h

Second-order

DOM And reg. [GMK16] 34 - 6× 32 bit 3× 32 bit 9 s 43 s

DOM Keccak S-box [GSM17] 474 - 15× 32 bit 15× 32 bit 3m 1.3 h

Third-order

DOM And reg. [GMK16] 65 - 8× 32 bit 6× 32 bit 44 s 2.5m

The result of (2) is a netlist of the secured Ibex processor in graph repre-

sentation. The Ibex core, excluding data and instruction memory, consists of

almost 27 000 gates. It is important to note that our hardware design is orders

of magnitudes larger than designs considered by other verification tools. For

example, Rebecca [Blo+18] performs verification on hardware circuits consisting

of at most 200 registers and 3 000 non-linear gates, while maskVerif [Bar+19] and

Silver [KSM20] consider circuits with up to 300 and 1 000 probing positions.

5.3. Evaluation of the Verification Step (4)

The verification results of the masked software implementation run on the secured

Ibex processor, and their verification runtime are shown in Table 3. The table

states the testcase in RISC-V assembly and how many cycles the execution takes.

We report the number of labels provided by the user, divided into shares and fresh

randomness. It is very important to note that each of these shares or random

values is either 32 bit or 16 bit wide. Other verification methods often argue that

a hardware circuit computing a masked cipher treats each bit in the same way,

so it is sufficient to view a 32-bit register as one single share. However, in the

Ibex processor, this is not the case, since logic in different computation units

tends to treat each register bit differently. Therefore, we must label and check

all 32 bits individually.

The selection of masked circuits covers different masked GF (2) multipliers

(And gates), including the Domain-Oriented Masking (DOM) And, Ishai-Sahai-

Wagner (ISW) And, Threshold Implementation (TI) And and Trichina And,
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but also larger implementations like the Keccak S-box and the AES S-box.

Furthermore, we show that it is feasible to verify second-order and third-order

implementations. Our benchmarks focus on the verification of non-linear parts

of cipher implementations, similar to Rebecca, maskVerif and Silver, although

the linear parts could easily be added to the implementation. Coco verifies all

tested first-order masked multipliers in transient mode in less than 20 s. Larger

testcases, for example, the DOM AES S-box, can be verified in a few hours.

In addition, we want to point out that errors in implementations can be found

efficiently. Implementations marked with é refer to implementations which

cause side-channel leakage when executed with the secured Ibex because (1)

masking is either done incorrectly on the algorithmic level, or (2) masking is

correct on the algorithmic level but software constraints are not satisfied. DOM

And reg.é is a first-order DOM multiplier based on [GMK16], in which fresh

randomness is added to the shares too late. The stable verification reports an

error in cycle 12 in a gate belonging to the ALU. DOM Keccak S-box reg.é,

based on [GSM17], does not follow constraint C2CORE. This flaw is reported by

transient verification in cycle 70 and appears directly on the read port of the

register file. The verification runtime of an insecure implementation is similar to

that of a secure implementation because the verification terminates as soon as

the leakage check for any share fails.

The total verification runtime can be split into the construction and solving

of the SAT formula. In our experiments, solving the SAT formula requires

considerably less time than constructing the SAT formula, which is linear in the

number of gates in the netlist, i.e., the number of registers and the size of the

combinatorial logic between these registers. Hence, for moderate increases of the

problem size, for example through larger cores having multiple ALUs or additional

pipeline stages, we expect the verification time to increase linearly. Compared to

Rebecca, which is limited to the verification of pure hardware implementations,

the hardware/software co-verification approach of Coco employs more aggressive

optimization measures by simplifying correlation sets through concrete values

from the execution trace, and can therefore more easily deal with scalability

issues.

5.4. Practical Evaluation

The purpose of Coco is to verify the security of masked software implementations

at the level of gate-level netlists of the underlying hardware. The main application

for the tool are ASIC designs of processors, where Coco allows to perform a

verification of the final netlist of a design before tape-out. The fabrication of an

ASIC is clearly beyond the scope of this paper. However, in order to show that

our approach indeed leads to secure implementations in practice, in this section

we map a sample of a verified netlist to an FPGA and perform an empirical

analysis.

Several things need to be considered when doing this mapping. When syn-
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Figure 5.: T-test scores of the original (left) and the secured (right) register file

during the execution of a first-order DOM Keccak S-box using 100 000

power traces.

thesizing hardware designs for FPGAs, the resulting netlist does not contain

typical CMOS building blocks but rather, among others, lookup tables (LUTs)

that are configured to match the original hardware design on a logical level but

not on netlist-level. This is especially problematic since FPGA synthesis tools

tend to merge multiple logic gates into single, typically 3 to 6-bit LUTs. The

resulting hardware will still be equivalent from a pure logic perspective, however,

certain characteristics such as the strict separation of registers in our secured

register file can get lost in the translation process. Therefore, we manually map

the ASIC netlist of the original and the secured Ibex core to FPGA netlists

that match the ASIC netlists as closely as possible. This step involves, amongst

others, ensuring that every logic gate is represented by a single dedicated LUT.

Since this process is mostly manual, and thus very time consuming, we decided

to focus our leakage assessment only on the most important parts of the secured

Ibex which are needed to execute cryptographic implementation: the register file

and a simple ALU.

In our experiments, we compare the execution of a masked Keccak S-box

computation using (1) the basic register file as it can be found in the original

Ibex core, (2) the secured register file including (one-hot encoded) gated reads

and writes (cf. Section 3.2). Following the guidelines of Goodwill et al. [Goo+11],

we use Welch’s t-test to show practical first-order protection of first-order masked

software implementations. The basic idea is to measure the significance of the

difference of means of two distributions by constructing two trace sets, one

with random inputs and one with constant inputs. In the case of a masked

implementation it means that the secret, native inputs are fixed, while the masks

and shares are generated randomly. The null-hypothesis is that both trace sets

have equal means, i.e., they cannot be distinguished from each other. The null-

hypothesis is rejected with a confidence greater than 99.999% if the absolute

t-score t stays below 4.5.

For our experiment, we execute the register-only (reg.) variant of the DOM

first-order masked Keccak S-box, as introduced in Table 3. In order to measure
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the power consumption, we use the SAKURA-G board [GIS14] equipped with

a Xilinx Spartan-6 FPGA. We connect the board to a PicoScope 6404C at

312.5Ms/s sampling rate, the Ibex components operate at a clock frequency of

8MHz.

Figure 5 shows the results of our leakage assessment using 100 000 traces. The

left presents the t-test results for the original, unprotected register file during the

execution of the first-order DOM Keccak S-box. As expected, the t-test shows

significant peaks over the 4.5 border which indicates first-order side-channel

leakage. The right presents the t-test results for the same code when running on

our secured version of the register file. Here, the leakage assessment reveals no

significant peaks, which indicates that our secured design works as expected.

6. Conclusion

In this paper, we presented Coco, the first tool for co-design and co-verification

of masked software implementations on CPUs. Coco takes a CPU netlist,

together with a masked assembly implementation, and then formally verifies

its leakage-free execution down to the gate-level. While previously presented

software verification approaches mainly work on algorithmic level and model only

a few select CPU side-effects, Coco can detect any CPU design aspect that could

reduce the protection order of masked software implementations.

We show the practicality of our work, by analyzing the popular 32-bit RISC-V

Ibex core with Coco. We detect various design aspects that reduce the protection

order of our tested software implementations and propose respective fixes, mostly

in hardware. Our resulting secured Ibex core has an area overhead of about 10%,

the runtime of software on this processor is largely unaffected, and the formal

verification with Coco of an, e.g., first-order masked Keccak S-box running on

this core takes around 156 seconds. We demonstrate the effectiveness of the

proposed design modifications in a practical evaluation on an FPGA.
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Appendix A. Fourier Expansions of Boolean
Functions

And W (a ∧ b) =
1

2
+

1

2
a+

1

2
b− 1

2
ab

Or W (a ∨ b) = −1

2
+

1

2
a+

1

2
b+

1

2
ab

Xor W (a⊕ b) = ab

Xnor W (a⊕ b) = −ab

Not W (¬a) = −a

Mux W (c ? a : b) =
1

2
a+

1

2
b− 1

2
ac+

1

2
bc

Appendix A1. AND Gate
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Appendix A2. Multiplexers

W (c?a : b) =p0 + p1 · a+ p2 · b
+ p3 · c+ p4 · ab
+ p5 · ac+ p6 · bc
+ p7 · abc

We can build a an equation system using all possible input combinations for

the variables a, b, and c and then solve for the unknown coefficients p0 to p7 as

shown below.
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Figure 6.: Verification flow of Coco. The workflow consists of four steps, the

creation of the testbench (1), parsing (2), trace (3) and verification(4).

In the end, Coco either confirms that the execution is secure or points

out the flaw(s) in a specific gate, in a specific cycle.
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[Bel+20] Sonia Beläıd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu
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Abstract Physical side-channel attacks like power analysis pose a serious threat

to cryptographic devices in real-world applications. Consequently, devices im-

plement algorithmic countermeasures like masking. In the past, works on the

design and verification of masked software implementations have mostly focused

on simple microprocessors that find usage on smart cards. However, many other

applications such as in the automotive industry require side-channel protected

cryptographic computations on much more powerful CPUs. In such situations,

the security loss due to complex architectural side-effects, the corresponding

performance degradation, as well as discussions of suitable probing models and

verification techniques are still vastly unexplored research questions.

We answer these questions and perform a comprehensive analysis of more

complex processor architectures in the context of masking-related side effects.

First, we analyze the RISC-V SweRV core — featuring a 9-stage pipeline, two

execution units, and load/store buffers — and point out a significant gap between

security in a simple software probing model and practical security on such

CPUs. More concretely, we show that architectural side effects of complex CPU

architectures can significantly reduce the protection order of masked software,

both via formal analysis in the hardware probing model, as well as empirically

via gate-level timing simulations. We then discuss the options of fixing these

problems in hardware or leaving them as constraints to software. Based on these

software constraints, we formulate general rules for the design of masked software

on more complex CPUs. Finally, we compare several implementation strategies

for masking schemes and present in a case study that designing secure masked

software for complex CPUs is still possible with overhead as low as 13%.

1. Introduction

Cryptographic primitives are primarily designed to withstand mathematical

attacks in a black-box setting. However, as soon as these primitives are deployed

in the real world, they find themselves in a grey-box setting in which an attacker

may observe additional physical side-channel information, such as instantaneous

power consumption that can be used to extract secrets like cryptographic keys.

One particularly powerful example of such a side-channel attack, differential

power analysis (DPA), was introduced in 1999 by Kocher et al. [KJJ99]. In



1. Introduction 91

this type of attack, the adversary observes a device’s power consumption while

encrypting several known plaintexts, and can then extract sensitive information

using statistical analysis.

The typical approach of protecting against these attacks is to implement

algorithmic countermeasures, like masking [Bar+17; Bel+17; Cnu+16; GM17;

ISW03; Rep+15]. The main idea of masking is to make computations independent

from the actually processed data. For this purpose, masking schemes split input

and intermediate variables of cryptographic computations into d + 1 random

shares such that observations of up to d shares do not reveal any information

about the native (unmasked) value. The security of such dth-order protected

computations relies, amongst others, on the assumption of independent leakage,

i.e., independent computations result in independent leakage [Ren+11]. However,

many academic works in the past have shown that such assumptions are typically

not satisfied on ordinary CPUs, for example, memory transitions in the register

file or RAM can leak the Hamming distance between two shares [Bal+14; Cor+12;

Gro+16; MMT20; PV17]. In general, one can work around these problems using

two different strategies. Works like [Bar+21; Gig+21; Gro+16; PV17] show that

one can design dedicated masked software implementations that take specific

characteristics of the microprocessor into account, e.g., by never processing shares

of the same variable in immediate succession. Alternatively, one can follow the

lazy engineering approach, accept a certain loss of masking protection order due to

architecture side-effects and compensate for that by using a protection order that

is higher than theoretically required. This strategy was more formally analyzed

by Balasch et al. [Bal+14] who also formulated the so-called order reduction

theorem. This theorem states that, when considering simple register-based CPU

architectures, the security of a dth-order masked software implementation reduces

to
⌊
d
2

⌋
-th order if transition-based leakage is taken into account.

Building efficient and correct masked software implementations is generally

difficult since one either needs to (1) carefully patch implementations for specific

microprocessors [Bar+21; Gro+16; PV17], or (2) invest in masking orders that

are a lot higher than required [Bal+14]. In both cases, the runtime of the resulting

masked software implementations is significantly increased and subsequent man-

ual leakage assessments are needed to confirm that the performed modifications

have the desired effect, which is a quite labor-intensive and error-prone task. This

situation becomes only ever more difficult with increasing processor complexity.

For example, the effects of multiple ALU pipeline stages, forwarding logic, super-

scalar building blocks, caches, and complex logic for handling loads/stores on

masked software implementations have not been analyzed in this detail before.

One reason for that might be the sheer complexity of application-level processors

that usually consist of superscalar building blocks and multi-stage pipelines.

On such processors, identifying and understanding masking related side-effects

can barely be done manually anymore. Here, automated analysis methods that

can give concrete conditions under which masked software implementations can
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guarantee a certain protection order on such CPUs are more relevant then ever.

In this context, a recent work by Gigerl et al. [Gig+21] studies the simple

Ibex core with Coco, a tool that can verify the correct execution of masked

software implementations on given CPU netlists, while considering all possible

architectural side effects. Simply speaking, Coco treats an entire CPU design

as a hardware circuit and then tracks all the shares of executed masked soft-

ware implementations over several cycles using methods that are inspired by

Rebecca [Blo+18]. One result of their analysis is a slightly modified secured

Ibex core on which masked software implementations can preserve their theoretic

protection order in practice if a few simple software constraints are followed.

While this result is certainly interesting for applications like smart cards where

low computing power is sufficient, many other IoT or automotive use cases require

the usage of significantly more powerful processors. This raises a number of

questions about the performance, as well as the theoretic and practical security

of masked software on more complex CPUs.

Our contribution We answer these questions by providing the following contri-

butions:

• We generate several generic higher-order masked cryptographic software

implementations using Tornado and show with Coco that there is little

hope that such implementations can even provide 1st-order protection on

more complex CPU cores. We demonstrate this based on the dual-issue

9-stage RISC-V SweRV core.

• In addition to the formal analysis of Coco, we perform gate-level simu-

lations to demonstrate that architecture-based glitch effects are visible in

practice and reduce the security of masked software by multiple orders.

This points out a significant gap between security in the simple software

probing model and practical security, and further motivates the verification

of masked software on concrete CPU netlists in a more hardware focused

probing model.

• We then further analyze the components of SweRV that do not exist in

simpler cores, identify new problems, and discussed possible solutions in

software or hardware.

• Based on this analysis, we formulate more general rules for designing masked

software that takes into consideration properties such as the pipeline length,

the amount of execution units, or architectural buffers. We also present

arguments why relying on the lazy engineering approach alone, as proposed

by [Bal+14], does not seem viable anymore in case of more complex CPUs.

• Finally, we present a case study that compares how efficiently our derived

software constraints can be met with different implementation strategies.
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Maybe somewhat surprisingly we show that, with knowledge about a

processors netlist, one can build secure and efficient masked software for

SweRV-like cores with overhead as low as 13%.

Outline In Section 2 we cover relevant background on masking and the verifica-

tion of masking, including the basic working principles of Coco and Tornado. In

Section 3, we describe the evaluation setup for the analysis of more complex CPUs

with Coco, present some initial verification results and describe the significance

of these in a practical evaluation. In Section 4, we present a detailed analysis of

SweRV architecture, describe all hardware components that can pose problems

to masked software implementations and propose viable solutions. In Section 5,

we list the generic software constraints and evaluate their overhead in Section 6.

We conclude our work in Section 7.

Open Source We plan to publish both, our modified SweRV core, as well as the

corresponding software implementations that are used in this paper on github 1.

2. Background

2.1. Masking

Masking has become one of the first-choice measures to defeat power-analysis

attacks on algorithmic level. In general, masking is a secret-sharing technique

which splits intermediate values of a computation into d+1 shares. The shares are

uniformly random, such that an attacker who observes up to d shares cannot infer

any information about the underlying native value. A dth-order Boolean masking

scheme splits a native variable s into d + 1 random shares s0 . . . sd, such that

s = s0 ⊕ . . .⊕ sd. The values s0 . . . sd−1 are chosen uniformly at random while

sd = s0 ⊕ . . .⊕ sd−1 ⊕ s. Consequently, each share si is uniformly distributed

and statistically independent of the native value s.

Implementing linear functions when designing masked cryptographic imple-

mentations is trivial, as they can simply be computed on each share individually.

However, non-linear functions (S-boxes) are not as simple, since computations

involve multiple shares of a native value at the same time, which is more difficult

to implement in a secure and correct manner. Therefore, the main interest

in literature lays on masked implementations of non-linear functions [Bar+17;

Bel+17; Cnu+16; GM17; GMK16; ISW03; Rep+15]

2.2. Formal Verification of Masking

In general, masked implementations must ensure that each intermediate value of

a computation is statistically independent of any native values. The verification

1https://github.com/barbara-gigerl/sw-masking-swerv

https://github.com/barbara-gigerl/sw-masking-swerv
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of this property is usually done with the help of a security model that specifies the

abilities of an attacker. Typically, it is assumed that the ability of the attacker

is to place a certain amount of probes in a computation, that allow monitoring

concrete values at those locations.

Formal Verification of Hardware Implementations. The classical probing model

by Ishai et al. [ISW03] is the most commonly used security model for masked

hardware circuits and it’s accuracy in modeling real world attacks has been

confirmed by many works [Fau+10; RP10]. Here, an attacker is allowed to place

up to d probes at any location in a circuit, which can be used to observe the

corresponding gates/wires permanently. A masked hardware implementation is

considered dth-order secure if an attacker cannot learn any information about

the native values by combining all d observations. Examples of tools that can

verify classical probing security for cryptographic hardware implementations

are are Rebecca [Blo+18], Silver [KSM20], and maskVerif [Bar+19]. These

tools are mainly tailored to the verification of masked hardware (ASIC/FPGA)

implementations. maskVerif does offer some support for software implementations

but (1) can only deal with code that is written in a special intermediate language,

and (2) only considers simple CPU side-effects such as register overwrites.

Formal Verification of Software Implementations. On software side, the research

community has also published many methods and tools to automatically generate

or verify masked software implementations [Bar+15; Bar+16; Bay+13; EWS14;

Mos+12; Zha+18]. More recently, Beläıd et al. proposed Tornado [Bel+20], a

tool that takes a high-level description of an unmasked cryptographic function,

generates a corresponding (any-order) masked C implementation, and verifies

its probing security. Tornado’s verification itself is based on tightPROVE+, an

extension of tightPROVE [Bel+17]. tightPROVE+ performs the verification of

masked software in the register probing model. This model allows an attacker to

place probes on individual words of a processor’s register file, and to use them

for one cycle each during the execution of a masked software implementation.

Hereby, it is assumed that the probed registers cause independent leakage, in

other words, no additional potential side effects of a processors architecture, such

as glitches or register overwrites, are considered [Ren+11].

More precise verification tools, that e.g. also cover transition leakage have

been presented in [Ath+20; Bar+21; WSW19], while with Coco, Gigerl et al.

have recently presented a tool that can verify the correctness of masked software

implementations while considering possible architectural side effects of a given

CPU netlist [Gig+21].

2.3. Coco

Coco is a tool for the co-design and co-verification of masked software implemen-

tations on CPU netlists [Gig+21]. It formally verifies the security of (any-order)
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masked assembly implementations that are executed on concrete CPUs, defined

by gate-level netlists. Coco’s verification strategy is inspired by Rebecca but

extended in a way such that the verification of masked software, when running on

hardware, is converted into a pure hardware verification problem. This involves

not only the addition of control-flow awareness but also several performance

improvements since entire CPUs are usually significantly larger designs, when

compared to pure hardware implementations of cryptographic functions. Coco

does not only capture transition-based effects, but in principle any glitch-related

hardware side-effects that can be derived from a CPU netlist. This is also for-

malized in the so-called time-constrained probing model, in which an attacker can

use each probe to measure any specific gate/wire for the duration of one clock

cycle that can be chosen independently for each probe.

Verification Flow In the following, we briefly outline the workflow of Coco,

broken into multiple steps. Steps A and B explain how the execution of software

can be combined with an otherwise purely hardware-focused verification method.

Step C then describes the application of Coco in a bit more detail.

A. Yosys [Wol16] is used to parse the given CPU design into a gate-level netlist.

The masked assembly implementation together with the netlist is then

given to Verilator [Sny22], which produces a cycle-accurate simulation of

the execution in form of an execution trace. The execution trace contains

concrete values of all CPU control signals during the software execution.

B. Registers or memory locations in the CPU netlist receive annotations

(labels) that indicate the location of shares and randomness at the start of

the software execution.

C. The CPU netlist, execution trace, initial labeling and desired verification

order is given to the verifier, which propagates the labels through the CPU

netlist, for as many cycles as the software execution takes. In case Coco

detects that a specific gate in the netlist leaks information about a native

value (by observing a combination of shares of the same native value), e.g.

due to implementation mistakes or architectural side-effects, the exact gate

in the netlist and the execution cycle is reported as a leak. For a more

detailed description of this verification method we refer to the original

publication [Gig+21].

2.4. RISC-V SweRV Core

The SweRV processor family [Ted19] was first introduced by Western Digital

in 2019 and designed for data-intensive applications like storage controllers and

industrial IoT. As of today, there are three different variants of the processor:

the EH1, the EH2 and the EL2 [Wes19]. The EH1 features a 32-bit superscalar

9-stage pipeline, while the EH2 basically adds a second thread with a dedicated
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Figure 1.: Pipeline stages of SweRV [Wesa]

register file and instruction fetch buffer. The EL2 is a smaller version of the EH1

with only 4 pipeline stages and one execution unit.

In our experiments, we use the SweRV EH1 core2, which implements the RISC-

V RV32IMC instruction set and has nine pipeline stages [Wesa], as sketched in

Figure 1. The first three pipeline stages (Fetch1, Fetch2, Align) are responsible

for loading instructions from the instruction memory and storing them into the

fetch buffer. In the Decode stage, the instructions are decoded and prepared for

execution. The execution happens in pipeline stages 5-7, either in the Load-Store

Unit (DC1,DC2,DC3), the multiplication unit (M1, M2, M3) or the ALUs (EX1,

EX2, EX3). The EH1 core has a dual-issue pipeline, which means that in each

clock cycle, the processor can decode two instructions and send them to two

different ALUs. In the last two pipeline stages, Commit (EX4) and Writeback

(EX5), the final result is stored in the register file. There are several peripherals

attached to the core via an AXI4 bus, including the SRAM and instruction and

data closely-coupled memories. The core operates in-order, except for loads which

might get executed earlier when the value is needed in the pipeline.

According to Western Digital, the SweRV EH1 core can be operated at fre-

quencies of up to 1GHz [Wesb] and its performance can be compared to an ARM

Cortex A15, making it outperform other RISC-V processors like the Berkely

BOOM core [The]. This makes EH1 an interesting target to analyze the effects of

more complex CPU architectures on masked software implementations. Another

reason why we chose SweRV EH1 is Coco’s current requirement of CPU designs

to be written in Verilog or SystemVerilog.

2https://github.com/chipsalliance/Cores-SweRV

https://github.com/chipsalliance/Cores-SweRV
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3. Generic Masked Software on SweRV

In this section we perform an initial analysis of generic (higher-order) masked

software implementations on the SweRV EH1 core and show that, even after

applying the same hardware modifications as proposed for Ibex in [Gig+21], a

more complex CPU architecture introduces additional problems that can reduce

the protection of masked software by serveral orders. In Section 3.1, we describe

a few small hardware modifications that we carry over from Gigerl et al.’s secured

Ibex to SweRV, that would otherwise lead to identical problems on SweRV.

In Section 3.2 we describe modifications we made to Coco’s verification flow

itself so that it can better handle CPU designs that are significantly larger than

Ibex. In Section 3.3, we generate generic, up to 4th-order masked software

implementations of the Keccak S-box using Tornado, verify their execution on

the secured SweRV using Coco, and conclude that there is little hope that such

implementations can achieve even just 1st-order protection. Finally, we present

additional empirical evidence of the impact of architectural glitches on masked

software via several gate-level timing simulations in Section 3.4.

3.1. Modifications of SweRV

Gigerl et al. have analyzed the simple 32-bit RISC-V Ibex core in terms of

software masking-related side effects. As a result of their analysis, they pointed

out three hardware components that can cause unintended combinations of shares

during the execution of masked software implementations that are completely

invisible from software perspective: the register file, the Arithmetic Logic Unit

(ALU), and the Load-Store Unit (LSU). Not surprisingly, the SweRV core has

similar problems, which is why we briefly discuss how we map these proposed

hardware fixes from Ibex to the SweRV core in the following. The resulting

secured SweRV core will then serve as the base of our further analysis. We expect

that the total area overhead of the hardware modifications for the SweRV core is

very similar to the Ibex core as analyzed in [Gig+21], which was about 2 kGe.

Since the SweRV core is much larger, this overhead is insignificant.

We use SweRV core commit 499378d0c67ab11965 as the baseline for our mod-

ifications. For our analysis, we disable closely-coupled memories for instructions

and data, but enable the instruction cache. We do this since (1) the instruction

cache is large enough to hold all implementations that we intend to test, (2)

we want to analyze the “worst-case” in which the CPU can fetch instructions

without delay, thereby achieving the maximal possible amount of instructions

(and side-effects) in the pipeline stages. Hence, when running a verification

with Coco, we execute each software implementation twice, once to load it into

the instruction cache from instruction memory, and once to perform the actual

verification.
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Register File Ordinary register file implementations consist of a group of register

words (32 × 32bit for RV32IMC) plus addressing logic for reading two words

and writing one word within one clock cycle. This addressing logic is usually

implemented via multiplexer trees that select source and destination registers

depending on the currently decoded instruction. As previously shown for Ibex,

these selector signals are usually calculated by combinatorial logic within the

same cycle as the actual read/write event. Consequently, within a single clock

cycle, differences in signal propagation delays can cause glitches on these selector

signals, which in return can cause a read/write port to unreliably switch between

multiple register words until the selector signals at all multiplexers are stable3.

This is problematic for masked software implementations as they hold many

shares in the register file that must be kept strictly separated from each other.

The proposed solution for this problem is to replace multiplexer trees with OR

trees while introducing a one-hot encoded gating mechanism for each value that is

calculated in the previous clock cycle and buffered in a additional register [Gig+21].

This mechanism ensures that glitches on a read/write port can only ever happen

between the operand of two consecutive instructions. In the SweRV core, we face

the same problems and fix these by applying the same register gating concept.

The main difference here is the fact that SweRV features four read and three

write ports, compared to Ibex’s two read and one write port. Gating the read

and write ports for SweRV works almost straightforward, except for the third

write port, which is used for data from the memory, and requires a dedicated

solution (cf. subsubsection 4.2).

Concurrent ALU Computations Cores like Ibex and SweRV always concurrently

calculate simple operations like AND, XOR, ADD, SHIFT in the execution stage

and later only forward the result that is actually needed by the currently executed

instruction. This is not a problem for most masking techniques, however there do

exist some masking techniques that store individual shares of the a native value in

the same register word[Bar+17]. This is okay as long as all computations keep the

individual bits of a register word separate from another, e.g., by performing only

bit-wise operations such as AND and XOR. Operations such as ADD or SHIFT

on the other side do combine bits of individual operands and can thus create

side-channel leakage, even if the results of these computations are ultimately

discarded.

The suggested solution for the Ibex core is to implement a gating mechanism

that ensures that only the intended computation is performed. This mechanism

can also be easily carried over from Ibex to SweRV.

3Even if the selector signals were stable, e.g. by calculating and buffering them in
the previous clock cycle, there is still no guarantee that this signal arrives at all
multiplexers in stable condition in the next clock cycle due to different wire lengths.
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Data Memory Storing shares in the data memory leads to similar problems with

glitches in the addressing logic as for the register file. In theory, one could again

use the same one-hot encoded gating mechanism as discussed before, however,

this approach does not scale well for the large address ranges that are required

for data memory. Consequently, Gigerl et al. propose a trade-off that consists

of using only partially one-hot encoded addresses for data memory which can

be implemented with an area overhead that is indeed negligible when compared

to the area of SRAM blocks themselves. The downside of this trade-off is that

only memory words within certain address ranges (blocks) are properly separated

from each other. This is sufficient as long as a block is large enough to hold all

the shares that need to be kept isolated from each other during the execution of

masked software implementations.

We apply the same LSB one-hot address encoding to SweRV’s data memory.

Since the SweRV core reads 64 bit from the memory in one cycle instead of 32-bit,

we gate memory words on 64-bit granularity.

3.2. Modifications of Coco

In this section we briefly outline modifications that we have made to Coco’s

verification workflow so that it can better handle large CPU designs. These

modifications first and foremost reduce SweRV’s circuit size which in return also

significantly reduces Coco’s verification runtime.

Removal of Unused Logic As mentioned before, we ensure that instructions

can be directly loaded from the instruction cache during Coco’s verification. We

only ever use the slower instruction memory in a read-only fashion to fill the

instruction cache and can, for the pure purpose of Coco’s verification, remove

any unused logic that would allow writes to data memory, which reduces the

circuit size by about 29%.

Control Wire Tagging The initial version of Coco effectively treats each wire

of a CPU netlist equally and does not distinguish control from data wires. In

reality, only a small fraction of wires can actually affect the data that is processed

by a masked software implementation in such a way that side-channel related

problems could occur. Therefore, we adapted Coco such that it is possible to

tag wires as explicit control signals. During the verification, Coco will then

simply ignore these wires instead of applying the laborious process of constructing

empty SAT equations for them. Clearly, this tagging needs to be done carefully

such that we do not later overlook any architecture side-effects during Coco’s

verification. Since manual tagging of individual wires is infeasible for entire CPU

designs, we instead only do this in a course-grained manner and only in cases

where we can easily deduce that there will be no consequences for the processed

data of software with constant (data-independent) control flow. More precisely,
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we tag the instruction memory, instruction cache and signals depending solely on

those as control signals automatically.

3.3. Initial Analysis of the SweRV Core

In this section we present our initial analysis of several higher-order masked soft-

ware implementations on the secured SweRV core that already includes all hard-

ware modifications that were proposed in the previous analysis of Ibex [Gig+21].

First, we use Tornado to generate generic, up to 4th-order masked C implementa-

tions of the Keccak S-box that are formally verified in Tornado’s register probing

model, meaning that an attacker observing up to d intermediate values (of the

algorithm) is not allowed to learn information about native values. We then

analyze the execution of these implementations on SweRV using Coco to get an

impression of how many more issues can be detected in Coco’s time-constrained

probing model, in which an attacker, able to observe up to d wires/gates in the

CPU netlist throughout one clock cycle each, is not allowed to learn information

about native values.

Since Coco can only deal with assembly implementations by default, we create

an assembly wrapper around the Tornado-generated C functions and adapt the

work flow accordingly. We then analyze these implementations using Coco, while

targeting the verification of 1st-order protection. Unfortunately, the verification

results show that none of the tested implementations can even reach just 1st-

order protection. Upon first inspection of the reported problems, we can see that

multiple additional issues still exist within SweRV that can significantly reduce

the protection order of our tested software implementations. For example, the

forwarding logic in SweRV’s 9-stage pipline is reported by Coco as one of the

main culprits for the loss of multiple protection orders in the time-constrained

probing model.

3.4. Empirical Evaluation

In order to empirically confirm the problems identified by Coco in the SweRV core,

we perform and analyze gate-level simulations in this section. More concretely,

we perform gate-level timing simulations of the forwarding logic within SweRV’s

pipeline (see Figure 3) using multiple cell libraries to better illustrate how

problems in the time-constrained probing model can relate to practical problems.

Our evaluation reveals that glitches in the forwarding logic can lead to independent

occurrences of up to five shares on one wire within one clock cycle, and combined

occurrences of up to three shares at the same time. We note that while the exact

behaviour of glitches strongly depends on the used standard cell library, all of our

tested standard cell libraries report leaks leading to a reduction in the masking

order between three and five.
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Setup We use signal traces from the post-synthesis simulations of the SweRV

core netlist. The synthesis process maps logic gates in the netlist to suitable

cells in the standard cell library, which defines the exact behavior and delay of

each cell. We investigate and compare four different open-source cell libraries4,

osu035, osu018, osu050, and gscl45nm. The mapping process is performed by

Yosys[Wol16], before running the simulation with Modelsim to obtain an execution

trace of our test program.

The same test program is used in all four evaluation scenarios. The test

program works with a native value split into 10 shares, which corresponds

to a 9th-order masked implementation. First, the test program executes 10

instructions, each operating on exactly one share. This effectively stores each

share to its own register in a specific pipeline stage. Second, the test program

executes an instruction referring to a previously computed result, which sends

the shares in the pipeline registers to the bypass logic, which finally forwards the

correct share to the ALU. It should be noted that the program is correctly masked

on algorithmic level because exactly one share is processed per instruction.

Results Figure 2 shows what information an attacker can observe by probing

the wire fwd data in SweRV’s forwarding logic for the duration of one clock cycle

using different cell libraries. Each plot additionally shows the corresponding clock

signal and contains marks that indicate at which point in time a specific share (or

combination of shares) is visible until the value of the wire has stabilized. Since

the analyzed time window in each plot is different (due to different propagation

delays) we have applied suitable horizontal scalings to improve readability.

From these plots we can see that an attacker can always observe at least three

shares (Figure 2d), and at most five shares (Figure 2a-c) within one clock cycle

when probing the fwd data wire. Sometimes, shares do not appear independently,

but also in combination with other shares. For example, in Figure 2a, the

attacker first observes s1, and then s1 in combination with s2. Note that

both, the occurrence of multiple shares independently within one cycle, or the

occurrence of combinations of shares at any point in time breaks the assumption

of independent leakage.

Clearly, this evaluation is not exhaustive. Every technology, every cell library,

and every different placement of a design, leads to different timing properties

and differences in the exact leakage. Also concrete ASIC or FGPA prototypes

are just instances of particular configurations. The exact quantification of the

leakage, i.e. determining the number of traces that are needed for exploitation

in a particular configuration, is not in the scope of this paper. In fact, it is also

not clear if it would be possible to find a representative configuration and setup

that would allow more than making a statement on leakage for one particular

realization in one particular setup. A worst case setup would be a library with

4https://github.com/RTimothyEdwards/qflow/tree/master/tech

https://github.com/RTimothyEdwards/qflow/tree/master/tech
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delay settings that lead to the observation even all 10 shares in a single clock

cycle.

Instead of focusing on more specific instances, the focus of our analysis in this

section was on showing that problems identified using Coco actually lead to

critical signal transitions in the design. Given the empirical confirmation of critical

signal transitions, we therefore use Coco as a reference for the identification

of critical design elements in the design of SweRV. With Coco we are able

to formulate a generalized statement about the security of a masked software

implementation in the time-constrained probing model, which is independent of

a specific technology or platform.

4. Analysis of Problems on SweRV

As shown in our previous analysis of generic (higher-order) masked software

implementations, the hardware components of more complex CPUs can cause

a significant reduction in the protection order. In this section, we discuss these

problematic components in the secured SweRV core that already has the Ibex-

patches applied (cf. Section 3.1). We divide these problems into big and small

problems, based on how many shares may be combined, since, as we show later

in Section 5, one can follow different strategies to deal with them. A component

causes a big problem when more than two shares can be potentially combined.

A small problem indicates that a component can combine at most two shares.

For each potential leakage source, we discuss the options of making further

modifications in hardware or shifting this problem as a constraint to masked

software implementations.

4.1. Pipelines and Execution Units

The dual-issue SweRV EH1 core features nine pipeline stages and can process two

instructions per clock cycle. Accordingly, the fetch/decode stages (1-4) can handle

multiple instructions at the same time, the execution/writeback stages (5-9) exist

twice, while the lesser used multiply (5-7) and load/store stages (5-7) exist only

once (c.f. Figure 1). The dual issue design also requires a register file with

four read ports and three write ports. Since symmetric cryptographic software

implementations are usually implemented with constant (data independent)

control flow, which is also the case for all our tested software implementations,

only the later execution/writeback stages (5-9) get in touch with actual data and

can thus cause potential side-channel related problems.

A typical optimization in pipelined CPU designs is the usage of forwarding

logic, also known as bypass-logic, that can redirect the result of an instruction

from a later pipeline stage to a previous stage without needing to wait for the

result to be written into the register file. Forwarding significantly reduces the

occurrence of pipeline stalls in cases where one instruction uses an operand that
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Figure 3.: Pipeline stages 4-9 in SweRV. Shares reside in the register file (■), are

then sent to the ALU (■) before being buffered in pipeline registers

(■, ■, ■, ■). Forwarding values from the pipeline registers to the

ALU is possible in each stage and handled by the multiplexer M1, and

the respective select signal M1select.

was only just calculated by the previous instruction. In the context of masking,

this architectural design causes problems in two different points.

Figure 3 shows a simplified depiction of SweRV’s pipeline stages 4-9. The

multiplexer M1 is responsible for selecting which data is used as input for EX1,

the first of the execution stages. This data either comes from the register file

(GPR), the (LSU), or from any of the later execution stages due to forwarding

logic. The select signal of this multiplexer, M1select, is computed in the respective

pipeline stage from combinatorial logic and is therefore susceptible for glitches.

Consequently, an attacker probing the output of M1, fwd data, could, in the

worst case, observe all of M1’s possible inputs within one clock cycle until the

select signal stabilizes. This means that if multiple shares of the same native

value are in different pipeline registers, a combination of those can be observed at

fwd data in the same clock cycle. On top of that, since two different instructions

are executed by SweRV at the same time, fwd data can also combine data from

the other execution unit. Exactly this problem was also seen in our empirical

evaluation in Section 3.4.

In software, special care is also needed for control transfer instructions like

conditional jumps. The instructions beq, bne, blt and bge perform conditional

branches on data but are typically not used in (symmetric) cryptographic im-

plementations to avoid potential timing side channels. Still, they can be used

together with the unconditional jump instructions jal and jalr to implement
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loops or function calls. In the context of masking, these instructions can cause

problems which are invisible via e.g. the control flow graph of the software.

Since the SweRV core decodes two instructions per cycle, the jump is potentially

decoded with the instruction which comes code-wise after it. If this instruction

operates on shares, and there are still shares of the same native value in the

pipeline, a leak occurs, before the CPU realizes a change in the instruction pointer

caused by the branch two cycles later. The instructions in these two cycles must

be unrelated instructions, which requires in total four unrelated instructions.

Possible Hardware Solutions One could first consider to solve this problem in

hardware by using a trick similar to the one used to prevent unintended glitches in

the multiplexer tree of the register file. For example, one could gate the output of

each pipeline register with a bit indicating whether the respective value should be

forwarded back to the first execution stage (5) or not. This would further require

individual gate-bits to be glitch-free, i.e., to be computed in the previous clock

cycle and buffered in a register. The problem with pre-computing gate-bits is

that those values are typically only available in the same cycle like the forwarding

signal. One can overcome this problem by introducing additional pipeline stages

in between the execution stage, however, this would significantly impact the

overall performance of the core, also in cases where ordinary non-masked software

is executed. Since we do not consider such a performance degradation to be a

viable option, we next explore if those problems can better be dealt with on

software-level.

Possible Software Solutions For a masked software implementation to not be

affected by the side-effects of SweRV’s forwarding logic, it must ensure that at

no time there are two or more shares corresponding to the same native value

in any execution stage of either execution unit. For example, if we consider the

execution of two instructions, each of which uses a different share of the same

native value, then one would need to ensure that there are 2× 6 + 1 unrelated

instructions between them. Hereby, an amount of 6 instructions is needed to clear

all execution stages (5-9) of one execution unit, that then has to be doubled since

SweRV has two execution units in total. Unrelated instructions are instructions

processing data unrelated to any share (for example a nop), or shares from another

native value.

While such a software constraint can significantly decrease the performance

of masked software implementations, it is a solution that does not impact the

performance of ordinary non-masked software. Nevertheless, as we will show

later in Section 6, it is still possible to implement efficient masked software

implementations fulfilling this constraint if the right masking/implementation

techniques are used.
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Software Constraints for ALU Operations

• (Pipeline Stages and Execution Units) Two instructions using different

shares of the same native value must be separated by 6× 2 + 1 unrelated

instructions.

Combination of up to 13 shares possible (big problem).

• (Control transfer instructions) Control transfer instructions, which are

preceded by instructions processing shares, must be followed by 4 unrelated

instructions.

Combination of up to 4 shares possible (big problem).

4.2. Management Components of Data Memory

The SweRV core manages communication to the data memory via the Load-Store

Unit (LSU). The LSU is a component between the CPU and the memory to

ensure low memory latency by providing buffers and a dedicated pipeline for

store operations. Our analysis shows, that the LSU Bus Buffer, responsible for

saving values of recent loads or stores, similar to a data cache, turns out to be a

major source of leakage which potentially combines multiple shares (big problem).

Furthermore, the dedicated store pipeline, components in the data memory

interface, back-to-back memory accesses and the dedicated register file write port

for memory accesses potentially combine two shares (small problems). For each

of these problems, we discuss possible solutions in hardware and software.

LSU Bus Buffer

Since data memory is connected to the SweRV core over an AXI4 bus, which can

potentially introduce a considerable amount of latency, the LSU implements the

so-called the LSU Bus Buffer, which works in principle like a small data cache.

The LSU Bus Buffer consists of eight elements that are used to temporarily store

the values of recent load or store events. Each element additionally stores the

target address, an age, and a state, since the LSU uses a state machine to manage

the buffer entries. Initially, all element states are set to Idle, meaning that they

are ready to receive data, and their age is set to 0. While executing the memory

access, the state and age are updated accordingly, until the memory access is

finished and the element enters the Idle state again. However, the element is

not removed from the buffer until the buffer is full and the oldest element is

overwritten.

In the context of masked software implementations two problems arise in the

LSU Bus Buffer. First, it is problematic if one share of a native value in the

buffer and is overwritten with its counterpart, which might happen, e.g., when

loading two shares from the data memory. This is not only a problem for load

operations within short succession but can also occur if these operations are far

apart since buffer elements are not cleared once their state goes back to Idle.
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1 # Reset state/age of buffer elements

2 fence

3 # Load share 1 from address 0x20

4 lw x1 , 0x20

5 # Reset state/age of buffer elements

6 fence

7 # Dummy overwrite of buffer element 1

8 lw x0 , (x0)

9 # Reset state/age of buffer elements

10 fence

11 # Load share 2 from address 0x40

12 lw x2 , 0x40

Figure 4.: Example of flushing the LSU buffer to clear it from shares

Second, if multiple shares of the same native value are stored in the buffer at

the same time but at different locations, one can observe similar side-effects

as originally described for ordinary register files (c.f. Section 3.1). The second

problem could in principle be solved in hardware by applying a similar gating

mechanism as for the the register file. However, in case of the LSU buffer, such a

solution requires an additional register layer for pre-computing stable one-hot

encoded signals, which decreases the performance of all software.

Instead, we can solve this problem on software-level by ensuring that the

buffer holds at most one share per native value, which additionally prevents the

problem of overwriting shares. When doing so, we could ideally target individual

elements of the buffer such that a share can easily be overwritten with dummy

data whenever needed. However, the LSU buffer is completely invisible from a

progammer’s perspective, which is also why there is no easy way to manipulate

specific elements from software side. The choice of which buffer element is

overwritten is determined by the element age, which depends not only on time,

but also instruction dependencies, data addresses and the element state. While

one could formulate a software constraint that takes all of these factors into

consideration, we do not consider this a worthwhile solution due to complexity.

Instead, we propose a software solution utilizing RISC-V’s fence, that while

introducing a 2-5 cycle overhead for each usage, is significantly easier to use in a

correct way. In general, a fence can be used to ensure a certain order of memory

operations by stalling the CPU pipeline unless previous load/store operations

are finished. For the LSU Bus Buffer this means that all buffer elements are

set to Idle with age 0. However, the stored values are not cleared, which must

be done manually by executing load/store instructions dealing with unrelated

data. The fence ensures that these loads and stores are inserted consecutively

into the buffer, i.e., starting at the first slot and ending at the last slot, finally

overwriting all buffer elements. It is recommended to place a second fence after

this load/store sequence, before loading or storing further shares. Figure 4 shows

a short exemplary code snipped, in which a share is stored in the buffer and later

cleared.



108 Chapter 4. Software Masking on Superscalar Pipelined Processors

Store Pipeline Stages

Before being stored to memory, data values pass through three dedicated pipeline

stages in the LSU (c.f. Figure 1), which are exclusively updated when a store

happens. A share used as an operand in a store instruction will therefore hang

in the pipeline until it is overwritten by the data of the next store. This is

problematic if the data of the next store is a share from the same native value. In

order to avoid this problem, it is sufficient to ensure that at least one unrelated

store operation is performed between two stores that transfer two shares of the

same native value.

Data Memory Interface

SweRV reads 8 bytes from the external data memory module in one cycle, and

then selects the parts which are effectively needed according to the load address

and load instruction (lw, lh or lb). Glitches in the selection signal can lead

to problems if two shares of a native value are stored in the same 8-byte data

memory word. A hardware gating mechanism is again not viable since it would

increase latency, which is why we suggest to store shares of the same native value

not within the same 8-byte word.

Back-to-back Memory Accesses

SweRV is able to execute memory accesses in a back-to-back fashion, i.e., in two

consecutive cycles. Given a data memory layout that utilizes partially one-hot

encoded addresses (c.f. Section 3.1), an additional problem can occur if shares

si, sj are stored stored in block b1 at indices i, j respectively, and one accesses

unrelated data at indices i, j in another block b2 in two consecutive cycles. The

the output of b1, even though ignored, will switch from si to sj in two consecutive

cycles. Preventing this kind of leakage can be done by paying special attention

to the block indices during each memory access, or reserving one “neutral” index

within blocks that never holds any shares and thus can be used for inserting a

dummy load.

Register file gating for Data from Memory

Register file write ports of the SweRV core need to be gated by a stable gate bit

(c.f Section 3.1). Computing the gate bit is straightforward for all write ports

except for the one dedicated to data loaded from memory, since it depends on a

potentially glitching write enable signal derived from the LSU bus buffer entries.

First, we gate the write data with the stable register write address only, which

means the preliminary gate bit is set for all registers which have loads pending

in the LSU bus buffer. In the next cycle, the write enable value is then used

to select the final, correct write register. This solution requires the software to
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ensure that no other pending load in the LSU bus buffer writes to a register,

which contains another share from the same native value.

Software Constraints for Memory Operations

• (LSU Bus Buffer) Two memory accesses processing two shares must be

separated by a fence, followed by a load of unrelated data, followed by a

fence.

Combination of up to 8 shares possible (big problem).

• (Store Pipeline Stages) Two stores storing two shares must be separated by

a fence, followed by a store of unrelated data, followed by a fence.

Combination of up to 2 shares possible (small problem).

• (Data Memory Interface) Shares must be stored in the same memory block,

but not within an 8-byte word.

Combination of up to 2 shares possible (small problem).

• (Back-to-back memory accesses) Either one 8-byte region per block at index

i is not used to store shares and between any two loads, a load to this

region is performed, or if a share si is stored at index i and sj is stored at

index j in a block, no back-to-back accesses to any addresses mapping to

index i and j are performed.

Combination of up to 2 shares possible (small problem).

• (Write port 2 of the register file) If a share si is stored in register xi and sj
is stored in memory, then there must not exist another load at the same

time which writes to register xi.

Combination of up to 2 shares possible (small problem).

5. Deriving Generic Software Rules

In this section, we propose generic rules for the design of masked software

implementations that are intended to run on more complex CPUs like SweRV.

These rules take into account features like pipeline length, the number of execution

units, and the size of load/store buffers, and are based on the software constraints

defined in Section 4. We also discuss the lazy engineering approach by Balasch

et al. [Bal+14] and demonstrate that, while entirely relying on this approach in

our setting is not recommended, it can still be a worthwhile trade-off that can

eliminate many smaller problems, that would otherwise all need be dealt with in

software.

5.1. Generic Rules for Masked Software

A CPU can be described by numerous characteristics, ranging from the archi-

tecture width to register file size to cache sizes. Our analysis in Section 4 shows
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that, when considering the implementation of masked software implementations,

the following characteristics are especially important:

• The amount of pipeline stages p

• The amount of execution units e

• The size of data buffers.

Pipelines and Execution Units Forwarding logic, also known as bypass-logic,

is a common optimization in pipelined CPUs which we identify to be a big

problem for masked software implementations. In the worst case, each pipeline

stage forwards its current content to the first stage, where it can be effectively

combined with data from all stages due to glitches. Assuming a pipeline length

p = pi + pd, where pi is the number instruction fetch stages and pd is the number

of decode/execute stages (processing actual data), this problem can be avoided by

ensuring that at least pd +1 unrelated instructions are executed between any two

instructions processing the shares of the same native value. We have observed

this problem on the SweRV core (pi = 3, pd = 6) but it also affects simpler cores

such as the CV32E40P (formerly known as RI5CY) that is roughly comparable to

an ARM Cortex M4 [Ope]. This core features a 4-stage pipeline (pi = 1, pd = 3),

and would therefore still require a “padding” with four unrelated instructions.

On top of that, more powerful CPUs like SweRV often feature a superscalar

architecture, including e.g. a dual-issue pipeline, that allows executing two

instructions per clock cycle. This is achieved by having e execution units in

parallel, all of which have their own fetch/decode/execute stages. In those cases,

forwarding is not only possible between stages of the same execution unit but

also across them. This additionally increases the required amount of padding to

e× pd + 1.

Data Buffers and Caches Besides pipeline stages, another big problem for

masked software implementations is the existence of data buffers that are invisible

from a programmers perspective. Defining generic rules for these components

is somewhat harder as their exact behavior can differ quite a lot depending on

their concrete implementation. However, typically when considering SweRV’s

LSU buffer or many other cache designs, these components can cause shares

to essentially get stuck at certain locations within the CPU where they then

represent an additional source of leakage from this time onward. While such

problems can be resolved in hardware, e.g. as shown for the register file (c.f.

Section 3.1), this is only really a viable option in cases where these hardware

modifications do not increase latency, which is also why we need to deal with

SweRV’s LSU buffer side effects in software. In general one needs to ensure that,

whenever a share is transferred over an unmodified buffer, none of the other

buffer entries contain shares that correspond to the same native value. How this
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can be achieved is implementation dependent. In the easier case, a mechanism

to clear the buffer contents could be implemented in hardware, which is however

not always efficient since it would also affect unmasked data. In the harder case,

one has to make use of dummy loads/stores to clear all unwanted values.

Rules Here we summarize the most important rules for masked software on

application-level processors. As we explain in Section 5.2, many of the other

smaller problems are probably better dealt with using the “lazy engineering”

approach.

R1 Two instructions processing shares from the same native value must be

separated by e× pd + 1 unrelated instructions.

R2 Whenever a share is transferring through a buffer, none of the other buffer

entries must contain shares that correspond to the same native value.

Naturally, at this point one could also ask how these rules would look like on even

more complex CPUs with multi-level caches, out-of-order execution, or speculative

memory accesses. For example, the 64-bit out-of-order RISC-V BOOM core would

be a potential target for further analysis. However, when considering the analysis

of such CPUs we currently see quite a few problems that are not necessarily easy

to overcome. First, out-of-order execution will violate our assumption of having

software with constant control flow, meaning that verifying a program’s execution

once might not be indicative of future runs. Second, the effects of, e.g., large cache

hierarchies will likely cause problems where corresponding software constraints

would become too complex to implement with reasonable effort and overhead.

Nevertheless, we argue that physical attacks like power analysis are most relevant

only for devices in the range from microprocessors to application processors.

An attacker having physical access to a desktop/server could anyway use other

methods, like cold boot attacks, to compromise a system more efficiently.

5.2. The Cost of Lazily Engineering

Until now, the verification of masked software implementations is mostly done

using rather simple security models like the value-based or register-based leakage

model. While such models are certainly useful to detect some problems, many

other works also show that processors do emit leakage that is not captured

by these models [Bal+14; Gao+20; Gro+16; MMT20; PV17]. Balasch et al.

[Bal+14] formalize this behaviour in their order-reduction theorem, which states

that on simple CPUs, the security of dth-order masked software in the value-based

leakage model reduces to
⌊
d
2

⌋
-th order in the transition-based leakage model.

In other words, as a rule-of-thumb for a “lazy” software engineer, they suggest

to double the security-order of a masked implementation to achieve the desired

security-order in a model that more accurately reflects reality.
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While these works focus on rather simple microprocessors, our analysis has

shown that on more complex application-level processors, the reduction of se-

curity order can be significantly higher. When deriving the expected security

reduction of lazy engineering on application-level processors, the main point to

consider is the component that can potentially combine the most shares. In

the case of our modified SweRV this component would be the forwarding logic

of the CPU pipeline. According to our generic rules, a processor executing

algorithmically correct masked software, might combine up to e× pd + 1 shares

in its pipeline. Consequently, without any further assumptions, the CPU could

create all combinations of any choice of e× pd + 1 shares, which corresponds to

an order reduction of
⌊

d
e×pd+1

⌋
.

To give a concrete example, when relying entirely on lazy engineering, one

would in theory require at least a 13th-order masked implementation for actual

1st-order security on SweRV in the time-constrained probing model. While we

do not expect an easily exploitable order reduction this large when performing

physical power measurements of SweRV (c.f. Section 3.4), we also want to stress

that these architectural side effects should not be underestimated. For example,

works like [MMT20] show that, already on simple microprocessors, a generic 2nd-

order masked software implementations can very well loose both of its protection

orders in practice. If we add to that the fact that SweRV’s architecture has the

potential to unintentionally combine many more shares at many more locations,

one can expect that quite a few masking orders will also be required in case of

SweRV. Given that masking imposes a runtime overhead that is quadratic in

the masking order, such very high-order implementations might however still

not be a desirable solution, especially in automotive applications with real-time

requirements. As we show later, in such cases, we recommend utilizing lazy

engineering only for eliminating small problems while tackling big problems using

more effective implementation/masking strategies that we describe in Section 6.

6. Evaluation

In this section we demonstrate that, despite the fact that cores like SweRV can

cause significant problems for masked software implementations in general, one

can still design fine-tuned, secure versions with very small overhead. First, we

explain how one can use a parallel instead of the usual serial coding strategy to

significantly reduce the performance impact of software constraints that require a

separation between processing shares of the same native value. We then explain

how one can utilize Threshold masking schemes, and by extension also the core

idea of lazy engineering, to design masked software for SweRV that is secure,

efficient, and easy to implement. More concretely, we show that the runtime

overhead of e.g. a masked Keccak S-box implementation providing 1st-order

security on SweRV, when compared to a corresponding implementation ignoring

all software constraints, can be as little as 13%.
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Table 1.: Runtime comparison of masked software implementations on the SweRV

core. Plain implementations do not consider software constraints, and

thus lose all protection orders. Secure implementations are handcrafted

for SweRV, consider all required constraints, and can thus preserve

their claimed protection order. NOPs indicate the required amount

of nop’s or dummy loads/stores. Testcases marked with reg. do not

perform any memory accesses, i.e., all data is in the register file at the

beginning/end of the computation.

Plain Secure

Implementations Implementations

Name
Input Fresh

Cycles
Instr-

Cycles
Instr-

NOPs
Verification

Shares Randomness uctions uctions Runtime

Tornado-generated Implementations

ISW Keccak S-box 10× 32 bit 5× 32 bit 163 330 -

ISW Keccak S-box,

2nd order
15× 32 bit 15× 32 bit 1272 810 -

ISW Keccak S-box,

3rd order
20× 32 bit 30× 32 bit 2124 1121 -

ISW Keccak S-box,

4th order
25× 32 bit 50× 32 bit 4406 3309 -

AND Gate Implementations

DOM AND reg. [GMK16] 4× 32 bit 32 bit 10 8 33 48 40 1.4m

ISW AND reg. [ISW03] 4× 32 bit 32 bit 10 8 32 48 40 57 s

TI AND reg. [NRR06] 4× 32 bit - 14 15 37 54 39 1.1m

Trichina AND reg. [Tri03] 4× 32 bit 32 bit 9 8 34 46 38 1.28m

DOM AND reg.,

2nd order [GMK16]
6× 32 bit 3× 32 bit 20 21 86 148 127 3.2m

DOM AND reg.,

3rd order [GMK16]
8× 32 bit 6× 32 bit 33 42 250 295 235 9.6m

Serial/Parallel Implementations

DOM Keccak S-box reg.,

serial [GSM17]
10× 32 bit 5× 32 bit 83 95 240 418 333 8.4m

DOM Keccak S-box reg.,

parallel
10× 32 bit 5× 32 bit 36 60 81 144 79 3.7m

DOM Keccak S-box,

serial [GSM17]
10× 32 bit 5× 32 bit 174 140 550 624 464 22.38m

DOM Keccak S-box,

2nd order, serial
15× 32 bit 15× 32 bit 283 250 2050 1465 283 1.5 h

Threshold Implementations

TI Keccak S-box, reg. 15× 32 bit - 66 105 72 126 15 3.5m

TI Ascon (1 round) 15× 64 bit - 721 863 1621 1153 290 1.18 h
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Evaluation Setup All of our tested implementations are hand-written assembly

code, except for the Tornado-generated C implementations that are compiled

with the compiler flag -O1. For the verification and performance benchmarks we

used the cycle accurate simulation of SweRV’s netlist within Coco. Coco itself

was executed on a 64-bit Linux operating system on an Intel Core i7-7600U CPU

with a clock frequency of 2.70GHz and 16GB of RAM. We configure SweRV

with data memory ranging from 256 byte to 2KB, adapted as required by the

respective testcase. The instruction memory and instruction cache is configured

to be 2KB for each test case.

The SweRV configuration using 256 byte of data memory, after applying the

optimizations described in Section 3.2, results in a circuit with 420 000 gates, of

which 108 000 are registers and 97 000 are non-linear gates. A detailed breakdown

of these numbers can be found in Appendix B. This makes the hardware design

of SweRV orders of magnitudes larger than the Ibex design which was studied

in [Gig+21], and consisted of only 27 000 gates.

Software Implementation Package To measure the overhead imposed by differ-

ent software constraints, we construct a comprehensive set of masked software

implementations. First, we take a look at several examples of masked And gates,

which represent the simplest non-linear function (degree 2). More concretely, we

analyze 1st-order implementations of the Ishai-Sahai-Wagner (ISW) And [ISW03],

the Trichina And [Tri03], the Threshold Implementation (TI) And [NRR06], and

up to 3rd-order masked variants of the Domain Oriented Masking (DOM) And

[GMK16].

We then investigate masked S-box implementations which represent the non-

linear layer within symmetric cryptographic computations, and use masked

And-gates as basic building blocks. Here, we focus on 1st- and 2nd-order masked

implementations of the Keccak S-box, which has a prominent use in the SHA-3

hash function. Furthermore, we provide TI variants of the Keccak S-box [Ber+11],

as well as one complete round (linear + non-linear layer) of the Ascon cipher

[Dob+16].

In Table 1 we list plain implementations, which are correct in the value-based

leakage model, but do not consider any of SweRV’s software constraints, and are

thus also not secure on this core when verified by Coco in the time-constrained

probing model. In contrast, secure implementations fulfill all required constraints

can thus be verified successfully for their claimed protection order on SweRV. For

each implementation, we report SweRV’s execution runtime in cycles, as well as

the number of executed instructions. Additionally, for secure implementations, we

report the number of unrelated instructions (NOPs), that are needed to achieve

the required amount of time separation between the processing of shares of the

same native value, as stated by the individual software constraints.
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6.1. Serial vs. Parallel Implementations

Many modern symmetric cryptographic primitives have a mathematical de-

scription based on simple Boolean functions that can be easily mapped into

a corresponding software/hardware implementation. For example, the Keccak

S-box (as used in SHA-3) operates on a state consisting of five lanes, each of

which is combined with two other lanes using a sequence of simple And, Xor, and

Not operations to compute the corresponding output lane. The most straightfor-

ward way of implementing this S-box in software is to take a set of three lanes,

processing them, storing the resulting output lane, and repeating these steps

until the computation of all five output lanes is finished.

If we now consider a masked implementation, where each input/output lane is

represented by two (or more) shares, the same implementation strategy can be

used, except for the fact that the sequence of Boolean operations needs to be

adapted such that (1) shares of the same native value (lane) are never directly

combined, (2) the (native) output is still the same. If we further consider a soft-

ware constraint that requires a certain amount of unrelated instructions between

processing shares of the same native value, one can imagine that additional nop

instructions will need to be introduced for this purpose. Alternatively, one could

consider a parallel implementation, where one interleaves the computation of the

five output lanes such that nop’s can be replaced with computations on shares of

other lanes. We give an example that illustrates the runtime difference between

serial and parallel implementations in Appendix A. This runtime difference is

also quite visible in Table 1. For example, the parallel DOM Keccak S-box

implementation (81 cycles) is three times faster than its serial counterpart (240

cycles).

One potential downside of parallel implementations is the fact that they increase

the maximum amount of intermediate values that need to be kept track of.

Especially in case of higher-order masked implementations, a processor’s register

file might not be large enough to hold this increased amount of intermediate values.

The resulting register spilling then requires additional load/store operations that

also need to comply with software constraints and can thus eliminate any potential

gain of this approach. To illustrate the overhead of memory operations, we have

included a serial implementation of the Keccak S-box that initially loads all

shares from memory and computes the S-box. If we compare the runtime of

this implementation (550 cycles) to the serial implementation that performs

computations without intial memory operations (240 cycles), we can observe a

runtime overhead of about factor two.

6.2. Threshold Implementations

Threshold implementations (TI) [NRR06], is a provable secure masking scheme

that splits non-linear functions into multiple incomplete component functions.

More concretely, in TI, each component function fulfills the non-completeness
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property, meaning that its computation is independent of at least one of its

input shares. One consequence of incompleteness is that TI schemes require

computations with at least three shares in order to provide 1st-order security.

At the same time, this incompleteness guarantees that any combination of

intermediate values during the computation of one component function can

combine at most two out of three shares of any native value, therefore leaving

1st-order security intact.

In the context of implementing secure and efficient masked software implemen-

tations for SweRV, TI turns out to be beneficial in two ways. First, the “lazy”

characteristic of TI allows us to ignore all small problems that can combine

at most two shares. Second, a TI description of Keccak, for example as shown

in [Bil+13], also gives a description of three S-box component functions, each

of which only contain instructions that operate on an incomplete set of shares.

Hence, when implementing TI Keccak in software, one can calculate the linear

layer in sequence for each share, and the non-linear layer in sequence for each

component function. Then, one only really needs to pay attention to big problems

when switching the calculation from one component functions to another. This

significantly simplifies the software development process as big problems can

only really occur twice per Sbox computation.

In Table 1, we show a TI implementation of the Keccak S-box (72 cycles) which

has almost no overhead compared to the corresponding plain implementation (66

cycles). Compared to a plain parallel DOM implementation, the overhead of a

secure TI implementation is still only a about a factor of two, while being at lot

easier to implement. With TI Ascon, we also present runtimes of implementations

that compute an entire cipher round (linear + non-linear layer). The choice of

using Ascon for this comparison is motivated by the fact that Ascon uses a S-box

very similar to Keccak, and a linear layer that is significantly easier to implement

in assembly than in case of Keccak. From the reported numbers we can see that

only 290 additional nops are needed to make this implementation conform to the

required software constraints. While the cycle count of the secure implementation

is still about twice as large as in the plain case, we want to stress that most of

this overhead (≈ 900 cycles) is due to software constraints for data memory since

three shares of Ascon’s state do not quite fit into the register file anymore.

7. Conclusion

In this work, we have performed a comprehensive analysis of more complex CPU

architectures in the context of masking-related side effects. First, we showed

that on cores like SweRV, there exists a significant gap between security in

a simple software probing model and practical security for masked software.

We underlined this point both via a formal analysis in the hardware probing

model and via empirical analysis based on gate-level timing simulations. We

then further analyzed the components of SweRV in the hardware probing model,
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identified new problems, and discuss possible solutions in terms of software

constraints. Ultimately, while there exist many hardware components that can

reduce the security of masked software due to architectural side-effects, we show

that there only exist a few components that could reduce the security of masking

schemes by multiple orders. Hence, when considering the implementation of

efficient masked software for such CPUs, we recommend to use a combination

of TI/lazy engineering to deal with small problems while only addressing the

few large problems directly in the software implementation. In that case, the

performance overhead of software constraints can be as low as 13% while the

resulting implementation can be fully formally verified on our secured SweRV in

the hardware probing model. If 2nd-order protection is desired, one could again

rely on TI/lazy engineering for small problems, here however the additional cost

of this approach might not justify this convenience anymore. When aiming for

even higher protection orders, one likely needs to consider all software constraints

directly in the implementation to keep the runtime overhead manageable.
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Appendix A.

1 # Shares lane 0: x2 ,

2 # x3

3 # Shares lane 1: x4 ,

4 # x5

5 # ...

6 # Randomness : x12 ,

7 # x13 , x14 ,

8 # x15 , x1

9 # Lane 0

10 not x17 , x2

11 and x24 , x17 , x5

12 xor x24 , x24 , x12

13 and x25 , x3, x4

14 xor x25 , x25 , x12

15 and x27 , x17 , x4

16 xor x27 , x27 , x24

17 and x28 , x3, x5

18 xor x28 , x28 , x25

19 xor x27 , x27 , x10

20 xor x28 , x28 , x11

21 # Lane 1

22 not x17 , x4

23 and x24 , x17 , x7

24 xor x24 , x24 , x13

25 and x25 , x5, x6

26 ...

27 #Lane 2

28 ...

1 # Shares lane 0: x2 ,

2 # x3

3 # Shares lane 1: x4 ,

4 # x5

5 # ...

6 # Randomness : x12 ,

7 # x13 , x14 ,

8 # x15 , x16

9 # NOT

10 not x17 , x2

11 not x18 , x4

12 not x19 , x6

13 not x20 , x8

14 not x21 , x10

15 #DOM -AND - Instr 1

16 and x22 , x17 , x5

17 and x23 , x18 , x7

18 and x24 , x19 , x9

19 and x25 , x20 , x11

20 and x26 , x21 , x3

21 #DOM -AND - Instr 2

22 xor x22 , x22 , x12

23 xor x23 , x23 , x13

24 xor x24 , x24 , x14

25 xor x25 , x25 , x15

26 xor x26 , x26 , x16

27 #DOM -AND - Instr 3

28 ...

Figure 5.: Comparison between serial and parallel DOM Keccak S-box

Appendix B.

Table 2.: Circuit size of the SweRV core (256 byte of data memory, 2KB of

instruction memory / cache) before and after optimization (Removal of

unused instruction memory logic)

Raw circuit Optimized circuit

Registers 108 129 108 043

Linear Gates 8 828 8 708

Non-linear Gates 133 415 97 222

Not-Gates 3 518 3 248

Multiplexers 335 294 203 107

Total 589 188 420 332
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Prouff, Adrian Thillard, and Damien Vergnaud. “Private Multiplica-

tion over Finite Fields”. In: Advances in Cryptology - CRYPTO 2017

- 37th Annual International Cryptology Conference, Santa Barbara,

CA, USA, August 20-24, 2017, Proceedings, Part III. Vol. 10403.

Lecture Notes in Computer Science. Springer, 2017, pp. 397–426.
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Abstract Cryptographic software running on embedded devices requires protec-

tion against physical side-channel attacks such as power analysis. Masking is a

widely deployed countermeasure against these attacks and is directly implemented

on algorithmic level. Many works study the security of masked cryptographic soft-

ware on CPUs, pointing out potential problems on algorithmic/microarchitecture-

level, as well as corresponding solutions, and even show masked software can

be implemented efficiently and with strong (formal) security guarantees. How-

ever, these works also make the implicit assumption that software is executed

directly on the CPU without any abstraction layers in-between, i.e., they focus

exclusively on the bare-metal case. Many practical applications, including IoT

and automotive/industrial environments, require multitasking embedded OSs

on which masked software runs as one out of many concurrent tasks. For such

applications, the potential impact of events like context switches on the secure

execution of masked software has not been studied so far at all.

In this paper, we provide the first security analysis of masked cryptographic

software spanning all three layers (SW, OS, CPU). First, we apply a formal

verification approach to identify leaks within the execution of masked software

that are caused by the embedded OS itself, rather than on algorithmic or mi-

croarchitecture level. After showing that these leaks are primarily caused by

context switching, we propose several different strategies to harden a context

switching routine against such leakage, ultimately allowing masked software

from previous works to remain secure when being executed on embedded OSs.

Finally, we present a case study focusing on FreeRTOS, a popular embedded OS

for embedded devices, running on a RISC-V core, allowing us to evaluate the

practicality and ease of integration of each strategy.

1. Introduction

Embedded devices have become omnipresent in IoT, automotive, and industrial

applications and often interact with their physical environment. This raises

the need for strong cryptographic primitives to preserve private and secure

operations. Embedded devices need to be protected against both theoretical and

physical attacks. Theoretical security refers to guarantees such as the resistance of

cryptography against mathematical attacks, while physical security counteracts
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adversaries in physical proximity who observe a device’s physical properties

during computation. In 1999, Kocher et al. [KJJ99] presented Differential Power

Analysis (DPA), which allows for extracting secrets like cryptographic keys from

a device. DPA is performed by observing a device’s power consumption, which

correlates with the processed data. Since then, masking has become a very

popular and well-studied countermeasure to defeat such attacks on algorithmic

level [Bar+17; Bel+17; Cha+99; Cnu+16; GM17; GP99; ISW03; Rep+15].

With masking, each secret variable of a cryptographic computation, such as

the encryption key, is split into d+ 1 random shares. Consequently, the power

consumption of the device does not correlate with the unshared secret but with

the d+1 random shares, which exponentially increases the difficulty of recovering

the unshared secret. One particular advantage of masking is that it is provably

secure, i.e., it can be proven that an attacker cannot reveal any information about

the unshared secret by combining up to d shares.

In the past, many works have pointed out a significant gap between the

theoretical and practical security of masked implementations [Bal+12; Gig+21;

PV17], often caused by physical effects such as glitches and transitions. Masking

schemes generally assume that independent computations result in independent

leakage, which is not necessarily the case in a practical software or hardware

implementation. In other words, a masked software implementation that has

been formally proven to be d-th order secure in theory might not reach this

security level when executed on a CPU. Many works in the past have discussed to

which extent the CPU microarchitecture can compromise the security of masked

software implementations. Prominent root causes of order-reducing leakage in

masking are register or memory overwrites, which leak the Hamming distance

between two shares [Bal+14; BDV21; Cor+12; PV17]. On top of that, many

more such potential problems have been identified that essentially boil down

to implementation specifics of the register file, SRAM, load-store logic, data

caches, or bypass mechanisms in the CPU pipeline [Gig+21; GPM21; Gro+16;

MMT20]. In order to solve these problems efficiently, works like [Gig+21; GPM21]

emphasize that modifications on software level are necessary while additional

hardware changes of the CPU are advisable. Eventually, both the CPU hardware

and the masked software implementation need to fit together to obtain secure

execution that preserves the theoretical security of the masking.

In practice, with the exception of the most basic microcontrollers or IoT devices,

embedded devices execute software within an (embedded) OS alongside other

tasks which include bus or network communications, and sensor data acquisition

and processing. In the case of resource-constrained embedded devices, one often

chooses dedicated embedded OSs, including real-time operating systems (RTOS),

over fully-fledged operating systems such as Linux. FreeRTOS [Ama22] is a very

popular choice for such an embedded OS because it provides a wide range of

supported platforms, a large community, and is publicly available (open-source).

So far, works on the practical security of masked software implementations



128 Chapter 5. Secure Context Switching of Masked Software

focus on the bare-metal case and therefore assume total control over the execution

of software on a CPU [Bar+21; CGD18; Gig+21; GPM21; MOW17; MPW22;

PV17; She+21a; She+21b]. More concretely, they assume that the masked

software is not interrupted during execution. The interference of multitasking

OSs, especially context switching, that leads to a violation of this assumption

has not been considered in previous analysis efforts at all. Still, context switches

occur at high frequencies, e.g., due to periodic (timer) interrupts, and in some

cases, their occurrence can even be controlled by the attacker. Consider, for

example, the following setting, in which an attacker first requests a certain

cryptographic operation via a common communication interface and causes an

IO interrupt at a later point in time by sending an additional request. The

attacker can easily observe repeated executions of the cryptographic operation

in which context switches cause additional leakage, allowing to easily mount

straight-forward attacks like DPA on the additionally created leakage in the

power side-channel [KJJ99].

As a countermeasure, one could consider the option of disabling interrupts

during the execution of masked software; however, this option is unrealistic

in practice due to (1) the starving of other relevant tasks like sensor data

acquisition/processing or Bluetooth/UART/MQTT network communication, and

(2) the generally strict scheduling requirements of RTOS systems that allows

meeting timing constraints [AG21; BSH12; ZLG09]. There does exist one work by

Balasch et al. [Bal+15] from 2015 demonstrating successful DPA attacks on an

AES implementation executed by a Linux operating system on an ARM Cortex-

A8, and discussing the security of masked software in this setting. The authors

show that also the masked version of the AES is not leakage-free. However, it

remains unclear whether the empirically found leakage is caused by the CPU

microarchitecture, the OS, or even the masking algorithm itself. On top of that,

they also do not propose a solution that can reliably prevent the observed leakage.

Contributions. The security of masked software implementations running as

a task/process within an embedded OS has not been evaluated so far. It is

hence unclear to what extent specific OS features like interrupts, scheduling,

and context switches cause leakage in such situations and what corresponding

protection mechanisms can be put into place at what cost. We close this gap by

providing the first in-depth analysis of masked software executed by an OS on a

CPU. The main contributions of this work are as follows:

• We provide the first formal analysis of masked software which runs as a

task in an embedded OS on a CPU. Using a toy example, we show that the

main problems are caused during context switching by either overwriting

shares in memory, or transitions on memory/register file read/write ports

(Section 4).

• We propose several possible strategies to solve these problems, resulting in
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a formally verified context switching routine hardened against side-channel

leakage that requires no assumptions on the current location of shares in

the register file. This allows masked software, verified for correctness in the

bare-metal case, to preserve security when executed on an embedded OS. For

each strategy, we provide a comparison of their advantages, disadvantages,

and performance overhead (Section 5).

• We present a case study of masked software running as a task in FreeRTOS

on a RISC-V CPU. In this case study, we show that the problems identified

in our analysis also exist in FreeRTOS and that these problems can be fixed

efficiently by the proposed strategies. (Section 6).

• We make the evaluation setup and all software artifacts available on

GitHub1.

2. Background

In this section, we first give necessary background information on the masking

countermeasure. We briefly introduce Coco, a formal verification tool to prove

that the execution of (bare-metal) masked software on a given CPU netlist is

secure. For our work, we use Coco as a leakage detection mechanism, as well

as to formally verify the security of our countermeasures. Finally, we provide a

short introduction to embedded operating systems.

2.1. Masking

Power analysis attacks exploit the fact that the power consumption of a cryp-

tographic device depends on the processed data, such as a secret key [CRR02;

KJJ99]. The masking countermeasure breaks this dependency by randomizing

sensitive intermediate values processed by the device [Cha+99; GMK16; GP99;

NRR06]. Each sensitive variable used in a cryptographic computation is split

into d+ 1 random shares, such that the observation of up to d shares does not

reveal any information about the corresponding sensitive value.

In the case of a dth-order Boolean masking scheme, the shares s0 . . . sd must

satisfy s = s0 ⊕ . . .⊕ sd, where ⊕ stands for the exclusive OR (XOR) operation.

Hereby, s0 . . . sd−1 are chosen uniformly at random, while sd = s0 ⊕ . . . sd−1 ⊕
s, which ensures that each share si is uniformly distributed and statistically

independent of s. For example, a first-order masking scheme (d = 1) splits up a

sensitive variable s into two parts s0 and s1, such that s = s0 ⊕ s1, s0 is chosen

uniformly at random, and s1 = s⊕ s0.

Throughout the entire implementation, a proper separation of shares and of

the output of the component functions needs to be ensured not to violate the

1https://github.com/barbara-gigerl/sw-masking-rtos

https://github.com/barbara-gigerl/sw-masking-rtos
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dth-order independence, which is commonly expressed in the probing model of

Ishai et al. [ISW03]. In the probing model, the attacker has the ability to probe

up to d intermediate results of the masked implementation. An implementation

is said to be secure if the probing attacker cannot gain any statistical advantage

in guessing any secret variable by combining the probed results in an arbitrary

manner. While this share separation can be easily ensured for functions which

are linear over GF(2n) – for example, the masked calculation of x ⊕ y can be

performed share-wise (xi⊕yi) – the secure implementation of nonlinear functions

usually requires the introduction of fresh randomness.

The probing model can directly be applied to masked hardware circuits, in

which the attacker can place probes on individual gates and wires, which then allow

observing all values at the chosen location for an infinite amount of time. However,

the probing model is less suitable for masked software implementations executed

by a CPU. For example, the attacker could simply place one probe on the read or

write port of the register file and then observe all intermediate values (including

shares), which allows breaking masked software of arbitrary protection order.

Instead, recent works refer to the time-constrained probing model [Gig+21] for

masked software implementations, which puts a time restriction of one clock cycle

on each probe. More formally, the attacker who possesses d probes can distribute

these both spatially and temporally, allowing them to perform measurements at

different locations in the same clock cycle, the same location in different clock

cycles, or a mix of both. For example, a first-order attacker (d = 1) in the

time-constrained probing model can only probe register file read or write ports

for the duration of one clock cycle.

Besides algorithmic correctness of masking schemes in a respective probing

model, the practical security of masked cryptographic algorithms also strongly

depends on implementation specifics in hardware [AG01; Cnu+16; GMK16;

GSM17; MMT20; NRR06] and software [Bal+14; Bel+20; Gro+16; Wan+15].

We discuss the case of secure software masking in more detail in the following.

2.2. Practical security of masked software

The security of masked software implementations depends on the assumption

that independent computations result in independent leakage [Bal+14; Cha+99;

GP99]. However, many works have shown that this property is often violated

in practice when executing masked software (bare-metal) on CPUs [Bal+14;

Gig+21; GPM21; MMT20; MPW22; PV17]. The main reason for this is physical

side-effects in the CPU, for example, glitches and transitions, which lead to

unintended combinations of shares during execution. For example, Coron et al.

[Cor+12] show that when a share is overwritten by another share of the same

sensitive variable, the power consumption correlates with the combination of

both, leading to leakage. In practice, this can be observed when overwriting

shares stored in a CPU register or the SRAM. Gigerl et al. [Gig+21; GPM21]

report that glitches within the control logic used to address the read/write logic
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of the CPU register file might make leakage-free register file accesses impossible.

Additionally, they show that shares of the same sensitive variable must not be

read or written consecutively, independently whether they are stored in the

register file or memory, due to transitions on the respective read/write ports.

As a result, they construct a side-channel hardened version of the RISC-V Ibex

core (secured Ibex), which allows leakage-free execution of masked software in

bare-metal mode as long as a few simple software constraints are followed. In

our work, we exclusively work with masked software implementation following

these constraints and use the secured Ibex core as a reference platform for our

experiments.

2.3. Coco

In order to evaluate the security of masked cryptographic software, one can

either apply empirical or formal verification methods. Empirical verification

involves manually taking power measurements of CPUs during computation,

followed by statistical analysis that tries to extract sensitive information such

as cryptographic keys [CRR02; KJJ99]. The main downside of this approach

is the inability to identify the exact source of leakage in a system, i.e., there is

no possibility to determine if a leak was caused by the CPU microarchitecture

or the masked software implementation. Alternatively, one can use the recently

published tool Coco [Gig+21] to formally verify the security of masked software

executions in the time-constrained probing model on the gate-level netlist of a

CPU. Coco allows to identify concrete gates/wires/registers in the CPU netlist

as leakage sources.

In general, Coco takes as input a masked assembly implementation backed up

with some annotations and the description of a CPU as a gate-level netlist and

then reports whether the execution is leakage-free or not. The annotations (labels)

indicate which registers/memory locations contain shares or fresh randomness at

the start of the software execution. Internally, the tool then starts by simulating

the execution of the software on the CPU hardware in order to obtain an execution

trace, which contains a concrete value for each control signal in the CPU. The

verifier then propagates the annotated labels through the CPU netlist cycle by

cycle while considering the control signals of the execution trace. If Coco finds

a gate in a specific cycle that combines all shares of the same sensitive value, the

gate in the netlist and the cycle is reported as a leak. Using this information,

one can then easily find out whether the leak was caused by the software itself,

or micro-architectural side-effects of the CPU. For more details on the internal

working mechanisms of Coco, we refer to the original publication [Gig+21].

2.4. Embedded operating systems

Embedded systems requiring multitasking make use of an embedded OS, which

runs multiple tasks and manages shared resources such as execution time. Some
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scenarios additionally require real-time capabilities, i.e., that the OS guarantees

that specific tasks or events can be handled in a specific amount of time. Such

operating systems are called real-time operating systems (RTOS), on which we

focus in this work. Events occurring during the execution of an RTOS are often

called interrupts, such as the periodic timer interrupt, which happens at specific

intervals, or non-periodic interrupts caused by IO operations or other external

events. To maintain its real-time capabilities, the OS must react and handle

the interrupt appropriately. Therefore, it activates the scheduler to select the

next task to be run and performs a context switch or task switch. In order to

do so, information related to the task in the task control block (TCB) needs

to be saved, which also contains the working state (context), including general

purpose and floating point registers. During a context switch, the TCB needs to

be saved and restored from memory. The memory area which contains the TCB

is called the TCB memory slot, which is often part of the tasks’s working stack

assigned by the OS on startup. RTOSs are currently being used in all kinds of

applications, including smart watches, traffic light systems, and home energy

monitoring. FreeRTOS [Ama22] is among the most popular RTOSs, and is built

into, e.g., Amazon’s AWS IoT, Tesla’s electric cars, and Bosch’s smart home

sensors. Other famous RTOSs include the open-source systems Zephyr [Pro22],

RIOT [Bac+18], TockOS [Lev+17] KataOS [Dev22], but also many closed-source

systems like MQX [Sem22] and PikeOS [GMB22].

3. Attacker model

For our study, we consider a threat model in which an attacker has physical

access to a cryptographic device that runs masked software within an embedded

OS on a microprocessor. Examples of such devices are electronic wallets, smart

cards, or authentication tokens. The attacker’s goal is to leak the cryptographic

key stored on the device, which is used by cryptographic software that already

features sufficient protection against standard differential power analysis (DPA)

using masking countermeasures. The attacker does not need to know specific

details about the attacked device, such as the concrete source code; it is sufficient

to know which cryptographic operation is implemented. To perform the attack,

the attacker (1) connects an oscilloscope to the device such that power/EM traces

can be recorded, (2) triggers the targeted cryptographic operation by sending

an appropriate request via a communication interface, and (3) interrupts the

operation by sending some other request with a specific delay. Consequently, all

interaction with the device is purely passive , and, e.g., no direct control of the

OS runtime is required.

Given a scenario in which an attacker can force interrupts during the execution

of masked software at specific points in time, thereby causing potential masking-

related correctness problems, what remains is to record a sufficient amount of

such computations for a DPA attack to work. The concrete number of power
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traces required by the adversary highly depends on the noise level of the attacked

system, i.e., a combination of the masked software, the embedded OS, and the

microprocessor. Nevertheless, we can look at some previous works that study

the impact of unintentional combinations of shares due to overwrites of shares in

memory or the register port, which is likely to occur during context switches. For

example, as shown by Papagiannopoulos et al. [PV17], about 50 000 traces are

sufficient on an ATMega163 8-bit microcontroller to detect memory overwrites,

which are the basis of our first proposed attack. The authors also study a form

of transitions on register file read ports, the basis of our second proposed attack,

which can be exploited by only about 5 000 traces. In practice, these numbers

can be higher, e.g., if there is some variation in the timing of the execution of

the masked software and the following interrupt. This essentially has a similar

effect on the performance of DPA attacks as algorithmic hiding countermeasures

and hence generally do not increase the amount of required measurements by

more than a quadratic factor.

4. Analyzing Context switches in masked
software

In this section, we identify common problems that could arise when running

masked cryptographic software as a task on an embedded OS. As a starting point,

we use assembly implementations following all constraints from [Gig+21], as well

as their secured Ibex core for our experiments. The assembly implementations

are formally verified for correctness in bare-metal mode using Coco. We then

manually insert additional assembly instructions at certain locations to represent

a realistic context switch routine. We investigate potential leakage using Coco,

which finally reveals two major sources of leakage introduced by context switches.

In the following, we provide a more detailed description of our experiment setup

and the identified problems.

4.1. Experiment setup

We construct a toy example modeling two tasks to demonstrate the general

problem of context switches related to masked software. The first task is executing

a masked Keccak S-box (used, e.g., in SHA-3, Shake or Ascon), while the other

one is performing unrelated non-cryptographic computations. The toy example

is then verified when running on the secured Ibex core. In the following, we give

more details about the concrete software and hardware setup.

The first task (TSBOX) executes a 1st-order masked Keccak S-box implementa-

tion protected by Domain-Oriented Masking (DOM) [GMK16]. In general, the

implementation splits up the five 32-bit lanes of the implementation into two

shares and uses secure DOM multiplication gadgets to mask non-linear operations.

The second task (TCNT) executes a non-cryptographic computation which is
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lane 0 (share 0)

...

lane 1 (share 0)

lane 1 (share 1)

lane 0 (share 1)

...

Register file

x1

x3

x4

...

x17

...

spx2

RF Read port

sw x1, (sp+...)


sw x2, (sp+...)


sw x3, (sp+...)


sw x4, (sp+...)


...

clk

RF Read port lane 0 (share 0) sp lane 1 (share 0) lane 1 (share 1)

Figure 1.: Transition on register file read port during context switch

unrelated to the first task. We choose a simple function that keeps a counter in

a register that is constantly being incremented.

On startup, each task is assigned a specific memory location for the stack

and another memory location for the TCB (the TCB memory slot). In practice,

the TCB is either stored on the top or at the bottom of the task’s working

stack. We reserve register r2 (sp on a RISC-V architecture) to store a pointer

to this memory area. We then model the effect of real interrupts by manually

calling context switching routines from TSBOX and TCNT at certain points in

time. This represents a practical scenario where, e.g., an attacker first requests a

cryptographic operation via a common communication interface that is then later

interrupted by another IO request after a specific amount of time. The context

switching routine (context switch) itself is based on an existing implementation

included in the FreeRTOS RISC-V port that saves the state of the current task

to memory, changes the stack pointer, and then loads the state of the next task

from memory. We sketch this function in Appendix A and also further discuss it

later in Section 6.1.

We use Coco to investigate the security of our toy example on the secured

RISC-V Ibex core [Gig+21]. Before starting the experiment, we first verify

that the 1st-order Keccak S-box runs securely on the RISC-V Ibex core in

bare-metal mode. Consequently, any leakage we observe originates from the

context switching activity itself and not from issues with the masked software

or the micro-architecture of the Ibex core. In the following sections, we show

that the security guarantees derived from verifying bare-metal software no longer

hold when executing the masked software within a task.

4.2. Transitions on memory/register file read/write port

Whenever a context switch is performed, the register file contents of the current

task are stored to memory register by register in a sequence of store instructions.
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Hence, an attacker probing the register file read port or memory write port for

the duration of one specific cycle can observe pairs of two register values of the

current task. In the second part of the context switch, the register file contents of

the next task are loaded from memory, and the current register file contents are

overwritten. Again, an attacker probing the register file write port or memory

read port can observe pairs of register values of the next task.

If the current task is executing masked software, the register file potentially

contains shares of the same secret distributed over several registers. For example,

in our toy scenario, the five 32-bit lanes of the Keccak S-box are stored in ten

registers, each register containing one share. In Figure 1, we sketch the register

file contents of TSBOX at some point during the execution right before a context

switch. The timing diagram illustrates the information an attacker can observe by

proving the register file read port cycle per cycle. While no critical information

can be deduced from the transitions x1 → x2 and x2 → x3, the transition

x3 → x4 leaks the Hamming distance between shares 0 and 1 of lane 1, which

refers to the unshared value of lane 1.

4.3. Overwriting shares in memory

The exact memory location of the TCB memory slot is defined when the task is

created and usually remains unchanged throughout the lifetime of the task on the

bottom of the stack. With the general purpose registers being part of the TCB,

every context switch during the execution will overwrite the old register contents

in memory with the new ones. An attacker probing the respective TCB memory

location can therefore observe a transition of the old register value to the new

register value. If the memory location previously contained a certain share and

is then updated with its counterpart, the attacker can probe the unshared value.

We give an illustration of this scenario using our toy example in Figure 2, in

which TSBOX starts execution, is then exchanged by TCNT, until TSBOX resumes.

After TSBOX’s second execution, shares stored to memory in the previous context

switch might get overwritten by their counterparts. In detail, the following steps

occur:

1○ TSBOX starts execution until it gets interrupted, and the context switch routine

is triggered, which saves the register values to the respective TCB memory

slot.

2○ The register file of TCNT is restored, and the task continues execution until

the next interrupt.

3○ In the context switch, the register values of TCNT are saved to the TCB

memory slot of TCNT.

4○ The register values of TSBOX are restored from the TCB.



136 Chapter 5. Secure Context Switching of Masked Software

lan
e 0 (sh

are 0
)

...

lan
e 1 (sh

are 0
)

lan
e 1 (sh

are 1
)

lan
e 0 (sh

are 1
)

...

R
eg

ister fi
le

x1x3x4...

x1
7

...

sp
x2

lane 0 (share 0)

lane 0 (share 1)
...

...
lane 1 (share 1)
lane 1 (share 0)

sp

...

T
C
B

 T
E
N

C

10

T
C
B

 T
C
N

T

...

...

...

1
0...

...

R
egister fi

le

x1x3x4...

x17

...

...
x2

lane 0 (share 0)

lane 0 (share 1)
...

...
lane 1 (share 1)
lane 1 (share 0)

sp

...

T
C
B

 T
E
N

C

10   19

T
C
B

 T
C
N

T

...

...

...

19...

...

R
egister fi

le

x1x3x4...

x17

...

...
x2

lan
e 0 (sh

are 0)

...

lan
e 1 (sh

are 0)

lan
e 1 (sh

are 1)

lan
e 0 (sh

are 1)

...

R
eg

ister fi
le

x1x3x4...

x1
7

...

sp
x2

lan
e 0

 (
s
h
a
r
e
 1

)

...

lan
e 1

 (sh
are 0)

lan
e 1

 (sh
are 1)

lan
e 0

 (
s
h
a
r
e
 0

)

...

R
egister fi

le

x1x3x4...

x1
7

...

sp
x2

lane 0 (share 0) (share 1)

lane 0 (share 1)   (share 0)
...

...
lane 1 (share 1)
lane 1 (share 0)

sp

...

T
C
B

 T
E
N

C

19

T
C
B

 T
C
N

T

C
o
m

p
u
tatio

n
s

C
om

p
u
tation

s
C
o
n
text


S
w

itch
C
o
n
text


S
w

itch

1

2

3
4

5

6

F
ig
u
re

2
.:
O
v
erw

ritin
g
sh
a
res

in
m
em

o
ry

d
u
rin

g
co
n
tex

t
sw

itch



4. Analyzing Context switches in masked software 137

5○ TSBOX continues the computation. In our case, the Keccak S-Box implementa-

tion exchanges registers x17 and x1 (due to implementation-specific reasons),

i.e., the locations of the two shares of lane 0 are swapped in the register file.

Note that this can indeed be done securely in an implementation, e.g., with

the help of intermediate register clearings.

6○ During the context switch, the registers are saved, and the old TCB contents

of TSBOX are overwritten. More precisely, the memory location storing the

old content of register x1 still refers to share 0 of lane 1. The new content

of register x1 is now - after the computation - the other share, which will,

however, be stored in the same memory location. Consequently, share 0 is

overwritten with share 1 in memory. The attacker can again observe the

Hamming Distance between the old and the new register value, which refers

to the unshared lane 1.

4.4. Discussion

Whether the stated problems occur in a practical implementation is still deter-

mined by many different parameters, including the frequency of context switches

(influenced by the timer interrupt frequency and the attacker’s ability to trigger

such), the exact point at which the context switch occurs and the exact location

of shares in the register file. All these parameters make it infeasible to fix these

problems by just adapting the masked software implementation because one

would need to take into account the behavior of the embedded OS (such as the

sequence in which the registers are spilled) and consider a possible context switch

after every instruction. In the next section, we hence aim for more general con-

cepts for secure context switch routines (realized either is software or hardware)

that allows masked software, verified in bare-metal scenarios, to preserve security

when executed on embedded OSs.

A masked software implementation emits leakage if two shares are combined,

e.g., by overwrites and transitions, independently of the concrete masking scheme

used. In our case, TSBOX is protected by DOM [GMK16] as an example, but for

the analysis, it would be irrelevant which masking scheme is used. In general,

DOM has been used both in hardware [GMK16; Gru+21; GSM17; Kni+22;

low19], but also in software [Gig+21; GPM21]. Threshold Implementations (TI)

[NRR06], Ishai-Sahai-Wagner (ISW) [ISW03], and the Unified Masking Approach

(UMA) [GM18] are other examples of masking schemes which have been applied to

both hardware and software implementations. Several works on masked software

implementations following no specific schemes exist, which are usually optimized

for a concrete cryptographic algorithm [Gou+18; GR17; Gro+16; OS05; RP10].

Which scheme to follow depends on the optimization constraints (for example,

speed, code size, register sizes, available RNG) of the design. The security of

a masked software implementation is, however, not influenced by the concrete

technique used because, in any masking scheme, combining two shares will lead
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Table 1.: Comparison of basic strategies

Basic strategy Protection against Modifications Overhead

Transitions

on RW

port

TCB

memory

overwrites

OS CPU Memory

(TCB)

Runtime

(context

switch)

No protection
✖ ✖

- - 128 byte 125 cycles

Dummy operations after

every load/store ✔ ✖
yes no 128 byte

(+0%)

183 cycles

(+46%)

Interleaved context

switch ✔ ✖
yes no 128 byte

(+0%)

125 cycles

(+0%)

TCB clearing
✖ ✔

yes no 128 byte

(+0%)

183 cycles

(+46%)

Rotating TCB memory

slots ✖ ✔
yes no 128 byte +

128 byte
Number of tasks

145 cycles

(+16%)

Randomness-refreshed

loads and stores (SW) ✖ ✔
yes no 132 byte

(+3%)

201 cycles

(+61%)

Randomness-refreshed

loads and stores (HW) ✖ ✔
yes yes 132 byte

(+3%)

143 cycles

(+14%)

to leakage.

5. SCA-secure context switching

In this section, we discuss basic strategies to prevent the problems identified in

Section 4 and obtain a context switching mechanism that allows masked software,

verified in bare-metal scenarios, to preserve security when executed on embedded

OSs. The strategies are not specific to a particular embedded OS implementation

but should rather give generic concepts which can be integrated into any embedded

OS. We provide an in-depth comparison of the different basic strategies, discuss

the overhead in terms of memory and runtime, and evaluate their advantages

and disadvantages. We formally prove that each strategy allows leakage-free

context switching using Coco by integrating each strategy into the toy example

introduced in Section 4. The given basic strategies are divided into two categories,

either helping against transitions or memory overwrites. Additionally, we discuss

why solving these problems on software level (by increasing the masking order)

is neither efficient nor feasible in practice.

In Table 1, we give an overview of the strategies, which we will in the following

describe more in detail. The table shows for each strategy which problem is

addressed, whether modifications are necessary on OS- or CPU-level, and states

the overhead compared to the plain, unprotected context switch, which takes 125

cycles to execute on the secured Ibex core. To determine the memory overhead,

we compare the size of the (potentially modified) TCB to the original TCB

(128 byte).
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5.1. Basic strategies against transitions

In Section 4, we identified the problem of transitions on memory/register file

read/write ports. In the following, we discuss two strategies to prohibit this prob-

lem, dummy operations after every load/store and interleaved context switches.

In addition to verification of these strategies in the toy example, we add a second

verification scenario to strengthen the proposed security guarantees. In the second

scenario, we label all 28 registers as shares of the same native value, perform

the hardened context switch with these registers and then check if the execution

provides 27th-order security. By that, we can show that the constructed secure

context switch is indeed SCA-secure independently of the concrete location of

shares in the register file.

Dummy operations after every load/store

The most simple solution to prevent transitions between shares on read/write

ports is to insert dummy operations, such as nop instructions, after every load or

store in the context switch. This ensures that the read/write port is always pulled

to zero between two memory accesses, preventing direct transitions between shares.

While this solution is very simple in terms of integration, its effectiveness and

runtime overhead is strongly determined by the underlying CPU microarchitecture.

On the secured Ibex core, it suffices to put a single nop instruction between

two memory accesses, yielding a runtime overhead of 46%. However, as shown

in works like [GPM21], more complex architectures might require more dummy

operations to prevent such leakages.

Instead of using nop instructions, one could try to use instructions of the

interrupt handling logic which is executed after storing the register contents to

the TCB. While this solution would make the context switching more efficient,

the feasibility of integrating this is into an embedded OS is highly dependent on

the existing context switching/scheduling logic.

Interleaved context switch

A context switch first stores the TCB of the current task selects the next task,

and then loads the TCB of the next task. We alter the sequence of these three

events to perform an interleaved context switch, which first selects the new

task, and then loads/stores the contents of the two involved TCB blocks in an

alternating (interleaved) manner. The interleaved context switch essentially uses

the load operations as dummy operations mentioned in the previous paragraph.

On assembly level, this boils down to alternating store and load instructions, as

sketched in Appendix B.

While this solution requires no additional runtime or memory overhead, it is

very restrictive on the task selection logic, i.e., the scheduler, since all registers

used there must not be used during the task’s execution. For example, consider

a task getting executed, which stores some data into register x10. When it gets
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interrupted, the scheduler is triggered to select the next task, and if it uses register

x10 to do so, the task’s data in the register will inevitably be overwritten and

therefore lost. Therefore, we consider this solution suitable for our toy example

where the task selection works in a very simple round-robin fashion but show in

Section 6 that it is infeasible for most embedded OS due to the complexity of

the scheduling logic.

5.2. Basic strategies against overwrites

In Section 4, we identified the problem of overwriting shares in memory. In the

following, we suggest strategies to prohibit this problem.

TCB clearing

The most naive method to protect against TCB memory overwrites is to clear

the TCB of a task executing masked software before saving the registers, i.e.,

overwriting the memory locations with zeros. For each general-purpose register

that is saved during the context switch, this requires one additional store operation.

The clearing operations can either be executed in one block before storing the

register values or alternating with the actual register store operations, as shown

in Appendix C. If the alternating order is used, it also prevents transitions on

the register file read port. However, transitions on the register file write port are

not prevented. The runtime overhead of a context switch that clears the TCB is

46 %.

Rotating TCB memory slots

On startup, every task is statically assigned a TCB memory slot which is not

changed during execution. In order to prevent overwriting shares in memory,

one must ensure that the task executing the masked software implementation

does not overwrite its own saved registers, which can be done by dynamically

changing the TCB memory slot with every context switch. Since physical memory

is limited on such constraint devices, allocating a new TCB memory slot with

each and every context switch is not feasible. Instead, we need to make sure that

TCB memory slots are reused over time. A TCB memory slot can be reused if

it does not store the most recent TCB of any currently suspended task (older

copies are fine). Consequently, after a task gets interrupted, it must not use its

own current TCB memory slot and no memory slot of any other suspended task.

We ensure this by adding one additional TCB memory slot such that there is

always at least one TCB memory slot that can be reused, and further using a

rotating assignment of TCB memory slots.

In Figure 3, we sketch this concept using our toy example. In the beginning

( 1○), the two tasks use TCB memory locations TCB #1 and TCB #2 to store

their data. We add TCB #3 to ensure one TCB memory location is always
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Figure 3.: Rotating TCB memory slots

reusable. After TSBOX has been scheduled once ( 2○), it uses the currently

unoccupied TCB #3. It cannot use TCB #1 because it belongs to TCNT, which

is currently suspended, and it cannot (re-)use TCB #2 because it contains its own

old data, and overwriting might lead to leakage. After TCNT has been executed,

it uses TCB #2, which previously belonged to TSBOX, and overwrites the old

saved TCB of TSBOX, thus clearing all shares stored to memory. In the next step,

TCNT uses TCB #1 to store its TCB after execution, and TSBOX uses TCB #3

( 3○), leading to a rotating assignment of TCB memory slots.

Although this method comes with almost no time overhead, one additional

TCB memory location (128 byte) must be reserved in memory such that the tasks

do not overwrite each other’s contexts. Additionally, there must be at least one

other task running which can overwrite the old saved TCB of the task executing

the masked software. If this cannot be ensured, one can either insert a dummy

task serving this purpose or extend the kernel in a way such that it clears the

old context on purpose, i.e., if no other task was scheduled. It is important to

note that the overwrite problem persists even though the task executing the

masked software implementation is the only one running in the operating system.

Assume that only TSBOX is actively running, and TCNT is sleeping. Whenever

TSBOX is interrupted, the working registers will be stored in the TCB. Then,

the scheduler will be run and decides that no other task should be scheduled, and

loads the register values of TSBOX again. That is, the registers of a task will

always be stored to memory when an interrupt occurs, independently of whether
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another task will finally be scheduled or not.

Randomness-refreshed loads and stores

TCB memory overwrites can also be counteracted by not storing the plain task

context but by adding 32 bits of randomness to each register before storing it

to memory. The same randomness can be used for all registers saved in the

context switch but must be renewed with every occurring context switch. The

randomness must be removed when restoring the context. A task executing

masked software will therefore overwrite its old context protected with a different

mask. Randomness-refreshed loads and stores can be either implemented in

software, by modifying the context switch routine of the OS, or in hardware, by

extending the respective CPU core.

We construct a software implementation of this method using our toy example.

We assume that there is a certain memory region supplying fresh randomness

upon request, which may be connected to an RNG in practice. When a context

switch occurs, we first fetch 32 bits of randomness from the location using a load

instruction and store it to one of the general-purpose registers. Next, we add

the randomness to every register in the register file using a bitwise XOR before

saving the register to memory. The used random value is then stored to the TCB

of the respective process. When restoring the registers for the process in the next

context switch, the previously used random value needs to first be obtained from

the TCB again. After issuing the load instruction, which restores a specific GPR

value, the random value needs to be added to the GPR register value again in

order to obtain the previous value. We sketch this process in Appendix D. The

memory overhead of this strategy is around 3% because we need to store the

most recently used value of the fresh randomness in the respective TCB, such

that it can be fetched before the next load of registers of the respective task.

The runtime overhead mostly caused by the additional XOR instructions when

storing and restoring the context is 61%. When applying this strategy, at least

one register needs to be reserved for storing the randomness, which must not be

used in the task’s code. Similar to clearing the TCB slot, only tasks executing

masked software, such as TSBOX, need to refresh loads and stores in context

switches, but all other tasks can stick to the original routine. In practice, the OS

usually has a notion about the purpose of each task and can, therefore, easily

decide if randomness-refreshing is necessary or not.

Additionally, we provide a hardware implementation of this method, which

eliminates most of the runtime overhead by performing the XOR implicitly in

the load-store unit of the secured Ibex core instead of having to issue a dedicated

XOR instruction every time. For this purpose, we extend the core’s CSR unit by

a 32-bit register which contains the randomness to refresh loads and stores, and

a 1-bit register which indicates whether randomness-refreshed loads and stores

are enabled. We leave the management of the fresh randomness in memory to

the OS, i.e., the OS needs to load fresh randomness from memory to the CSR
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register itself. In the context switch routine, one, therefore, needs two additional

CSRW instructions, one for enabling the countermeasure and one for loading the

randomness to the respective CSR register. Therefore, the runtime overhead of

such a modified context switch is 14%, as shown in Table 1, of which the most

accounts to the management of fresh randomness for both tasks.

5.3. Lazy engineering

In 2015, Balasch et al. [Bal+14] discuss the “lazy engineering” approach of

implementing masked software with a protection order that is higher than the-

oretically required to compensate for a certain loss in practical security due to

micro-architectural side-effects. Assuming that a certain masked software imple-

mentation is (bare-metal) d-th order secure, a standard context switch routine

can generally reduce the security down to ⌊d/2⌋. For example, a transition on a

register file read/write port essentially creates leakage that combines values of

registers that are loaded/stored in immediate succession. This can, in our case,

cut the number of probes required to observe all shares in half, for which one

compensates with a higher masking order on level of the masked software.

To achieve a first-order secure masked Keccak S-box, we construct a second-

order variant, which provides 1st-order security when using the unprotected

context switch. However, the 2nd-order implementation requires much more

runtime and randomness: While the 1st-order masked Keccak S-Box needs 174

cycles (without context switches) and 160 bits of fresh randomness, the 2nd-

order implementation requires 283 cycles (without context switches), which is an

increase of 63%, and 480 bit of fresh randomness (+300%).

Therefore, we do not consider this solution feasible in practice due to the

exponential overhead for more complex microarchitectures [GPM21]. Especially

for higher masking orders, the overhead caused by lazy engineering grows with

the masking order, while the overhead of the other suggested solutions is the

same independently of the order.

6. Case Study

In this section, we investigate the security of masked software running as a

task in FreeRTOS. In Section 6.1, we introduce our evaluation environment.

In Section 6.2, we discuss that the problems identified in Section 4 can indeed

be found in practice in FreeRTOS using Coco, and how the context switch in

FreeRTOS can eventually be fixed against these problems. In Section 6.3, we

provide combinations of the basic strategies which defend against both transitions

and overwrites and evaluate their performance overhead. While a single hardened

context switch comes with some overhead, the overall system overhead is rather

negligible, given that the frequency of context switches is usually low in practice.

To the best of our knowledge, this is the first analysis of masked software within an
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OS, especially on such a level of detail. This is likely due to the considerable effort

of creating a suitable analysis environment, which we describe in the beginning of

this section. In our case, for example, this involves porting the entire FreeRTOS

to the RISC-V Ibex core, adding peripherals to trigger timer interrupts, and

simulating the synthesized processor netlist when executing the OS in a suitable

simulator for formally verifying it with Coco. We plan to make our evaluation

setup, along with all software artifacts, available in a public repository.

FreeRTOS FreeRTOS is a popular open-source embedded OS used in many

different IoT projects supported by a large community, which makes it the

third most used OS in 2019 [Asp19]. It has been ported to different hardware

architectures and platforms, including ARM, RISC-V, and x86-32 [Ser22a], and

targets small single-core microprocessors in embedded systems. In order to

provide multitasking, the FreeRTOS kernel uses the scheduler to assign processing

time to tasks. The scheduler is usually triggered by a (timer) interrupt or

the yield system call and selects the next task according to a certain policy

that takes into account task priorities and deadlines. For our case study, we

use the standard preemptive scheduling policy (configUSE PREEMPTION = 1 and

configUSE TIMESLICING = 0 ), which means that the task with the highest

priority will be selected by the scheduler [Ser22b].

6.1. Evaluation setup

Ultimately, our evaluation environment should allow both formal verification and

cycle-accurate performance evaluations. Hence, we need to simulate FreeRTOS,

including tasks when running on the secured Ibex core in order to obtain a cycle-

accurate execution trace. Unfortunately, there exists no exact demo allowing such

a simulation, which is why we first need to port FreeRTOS to run on the secured

Ibex core. We base our port on the existing 32-bit RISC-V Spike simulator demo

and make several adaptions, such as changing the addresses of the mtime and

mtimecmp registers. FreeRTOS can only be executed properly in the presence of a

periodic timer interrupt. We use a dedicated hardware module for creating these

interrupts, which is connected to the secured Ibex core. This hardware module

provides access to the mtime and mtimecmp control registers. From a verification

perspective, and compared to the bare-metal case, the interrupt signals provide

just another set of control signals beside the executed software. Our complete

workflow can be sketched as follows:

1. We synthesize the secured Ibex core with Yosys [Wol16] to obtain a gate-level

netlist in Verilog format.

2. We compile FreeRTOS, including all tasks which are later executed.

3. We wrap the synthesized Ibex netlist into a testbench which includes a timer

and a memory model.
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4. We simulate the testbench with Verilator [Sny22], which produces a cycle-

accurate execution trace. This execution trace contains a concrete value

for each control signal in the netlist and can, therefore, directly be used for

performance evaluations.

5. In order to do formal verification with Coco, we additionally create the respec-

tive annotations (labels) indicating the location of shares/fresh randomness at

the beginning of the execution and give these annotations, the netlist of the

secured Ibex, and the execution trace to Coco.

Besides the execution environment, another central part of the evaluation is the

tasks that are executed by FreeRTOS. In order to demonstrate that the identified

problems occur, we focus on the same scenario as in the previous sections, i.e.,

that the OS runs one task executing a masked 1st-order Keccak S-box (TSBOX),

and one task which increments a counter (TCNT).

In order to perform a meaningful performance evaluation of our solution, we,

however, stick to a larger scenario including a complete Ascon round (TENC)

[Dob+16], which uses the Keccak’s S-box core, running beside TCNT. A complete

Ascon round is likely to be interrupted more often than a single Keccak S-box by

a periodic timer interrupt or external interrupts. Since the performance overhead

of our countermeasures stems purely from the context switching, the results

become more significant. Similar to our toy example, both TSBOX and TENC

load the input data (shares) from a predefined memory location, compute the

S-box/Ascon round, and then stores the input data back to the memory.

6.2. Hardening the FreeRTOS context switch

In this section, we describe the challenges of integrating the basic strategies into

FreeRTOS. Protection against both leakage sources in FreeRTOS is achieved by

combining the basic strategies against transitions with those against overwrites.

Preventing transitions Besides the problem discussed in Section 4, we could

identify a second leakage source caused by transitions in the FreeRTOS scheduler.

A context switch can generally be divided into three phases: (1) storing the

TCB of the current task, (2) selecting the next task, and (3) loading the TCB

of the next task. FreeRTOS uses the same code for phases (1) and (3) as

we used in our toy example but has a slightly more complex scheduler, which

potentially creates another source of transition-induced leakage between shares

on the register file write port. For example, our implementation of the Keccak

S-Box was interrupted at a point where registers x20 and x24 each contained

a share of the same native value. The scheduling logic (phase (2)) contains a

section of code that first overwrites x20, and in the next cycle, overwrites x24,

causing a leaking transition on the register file write port. Whether these leaks

occur is, however, highly dependent on both the concrete scheduler logic and
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Saved register values

Working stack of task

TCB control data

Saved register values

Working stack of task

TCB control data

Figure 4.: Original (left) vs adapted (right) memory layout of FreeRTOS to

support rotating TCB memory slots

the masked software implementation. A generic solution can only be achieved

when ensuring that the general purpose register values of the task are not used

anymore in the scheduling logic, which is why we clear the registers after storing

them to memory.

In Section 5, we discuss interleaved context switches as one possible counter-

measure against transition leakage, which requires selecting the new task (phase

2) before performing storing and loading register values in an interleaved manner.

It is not feasible to integrate this strategy into FreeRTOS because the scheduling

logic would inevitably overwrite many unsaved task registers when running it

before phase (1). Therefore, we instead focus on dummy operations and clearing

registers to defend against transition leakage.

Preventing overwrites We include all four basic strategies to prevent overwrites

of shares in the TCB. Including rotating TCB memory slot requires the most

changes, as the original version of FreeRTOS stores the TCB control data and

the values of the general-purpose registers separately. That is, the control data is

stored on the bottom of the user stack, and the registers on top. We sketch this

in the left part of Figure 4. Hence, the memory location where the registers are

stored possibly changes with every context switch, depending on the height of

the user stack. This makes it impossible to implement TCB memory slot rotation

because when a task uses its stack, e.g., during a function call, it potentially

overwrites another task’s saved registers which were stored there. Instead, we

adapt the layout such that the saved register values are also stored below the

working stack of the task and can, therefore, not be overwritten by a task’s stack

usage (c.f. right of Figure 4). Another challenge is constructing a function find

to the next free TCB memory slot before saving any general-purpose registers of

the task. The function must not use any general-purpose registers, which still

contain the task’s data, because overwriting them would inevitably destroy the

task’s state. Thankfully, we can use registers x3 and x4, which are never saved

during a context switch and are generally unused in FreeRTOS. The original

purpose of these registers is to store the thread pointer and global pointer for

optimizations, which is, however, not supported by FreeRTOS.

Fewer system changes are needed to implement randomness-refreshed loads

and stores, as we simply extend the TCB struct of the OS by a new variable



6. Case Study 147

Table 2.: Evaluation of variants of SCA-hardened context switching in FreeRTOS

Runtime in cycles Number of

context

switches

Cycles per

context

switch

Total TENC TCNT
Context

switching

No protection 4149 1359 1221 1569 4 393

Basic strategies

Dummy operations + clear

registers

5810 1366 1564 2880 6 480 (+22%)

TCB clearing 5729 1364 1648 2717 6 453 (+15%)

Rotating TCB memory

slots

4203 1353 1154 1696 4 424 (+7%)

Randomness-refreshed

loads and stores (SW)

5836 1395 1587 2854 6 475 (+20%)

Randomness-refreshed

loads and stores (HW)

4263 1411 1152 1700 4 425 (+8%)

Combined strategies

Dummy operations + clear

registers + TCB clearing

5978 1376 1395 3207 6 534 (+36%)

Dummy operations + clear

registers + rotating TCB

memory slots

5880 1349 1478 3053 6 508 (+29%)

Dummy operations + clear

registers +

Randomness-refreshed

loads and stores (SW)

7651 1416 1782 4453 8 557 (+41%)

Dummy operations + clear

registers +

Randomness-refreshed

loads and stores (HW)

5940 1410 1476 3054 6 509 (+29%)
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task rand which is updated during the context switch with the used randomness.

Also in this case we make use of x3 and x4 to load, store and xor the respective

random value.

6.3. Discussion

Table 2 shows the overhead of an SCA-hardened context switch when used in

FreeRTOS. To measure the performance overhead, we stick to a complete Ascon

round (TENC), scheduled alternating with TCNT . The execution is interrupted

by a periodic timer, which frequency can be controlled from software using the

configTICK RATE HZ-define in FreeRTOS. The original configuration of FreeRTOS

specifies a timer interrupt every 100 000 cycles which seems plausible considering

that in a real system, context switches will not only be triggered by timers but

also by many more (non-periodic) external interrupts. As there are no external

interrupt sources in our evaluation environment we configure the timer interrupt

to occur every 1000 cycles, which however represents an extremely-high-load

scenario for the system. Given these numbers, one can then easily extrapolate

overheads for scenarios with less frequent context switches.

For each evaluated scenario, we give the total number of cycles needed to

compute a full Ascon round, which is the sum of cycles consumed by TENC and

TCNT , and cycles spent on context switching. Note that the number of cycles

between two timer interrupts is always constant (1000 cycles), and as the context

switching requires more time, less execution time will be available for the tasks,

and therefore, more context switches will be necessary in total. We also give

the number of cycles required per context switch and the runtime overhead in

percent w.r.t. to the basic scenario (no protection).

Which combination to choose depends on the concrete use case. If OS and

hardware modifications should be kept minimal and low runtime is not so critical,

one should stick to the first option (TCB clearing) because it is very simple to

integrate into any OS. If performance is more critical, rotating TCB memory

slots are the best option, although they require more OS changes and require at

least one other actively running task. Randomness-refreshed loads and stores are

more efficient when implemented with hardware support. In software, there is no

clear advantage compared to TCB clearing or rotating TCB memory slots. As

discussed above, in practice, interrupts are, however, expected to occur much less

frequent than in this case study. We argue that therefore, all of the four suggested

combinations would be suitable because the amount the total runtime of an Ascon

round is increased by applying a secure context switch when interrupted only

once is negligible.

Optimizations Further optimization of the runtime of the individual basic

strategies is most likely not possible on software level, since they are already

written in Assembly language. However, hardware support for clearing the TCB

and all registers could be added and would likely result in a performance gain,
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although the hardware changes are expected to be much larger than the ones

suggested for randomness-refreshed loads and stores. Instead, one could aim

for further optimizations on OS level. In fact, the suggested protections must

only be applied when a task executing masked software is involved in a context

switch. Otherwise, the unprotected (and comparably cheap) context switch can

be executed. An additional flag in the task’s TCB can be used to distinguish

tasks executing masked software from other unrelated tasks.

6.4. Other RTOS

In the following we briefly discuss other open-source RTOS and the possible

security implications on masked software running in a task.

Zephyr, RIOT Zephyr [Pro22] is an RTOS maintained by the Linux Foundation

for resource-constrained devices with a strong focus on security. RIOT [Bac+18]

is similar to Zephyr but comes with different scheduling strategies and supported

platforms. The Zephyr and RIOT context switching routines apply a different

register order compared to FreeRTOS when storing and loading the register

values, which shows why one could never make assumptions about such aspects

when designing masked software. We expect both OS are vulnerable to the

problems discussed in Section 4, and that our countermeasures can be integrated

in a similar way.

TockOS, KataOS TockOS [Lev+17] and the recently announced KataOS

[Dev22] are written almost completely in Rust, and both are used for Google’s

OpenTitan project, which runs the RISC-V Ibex core. The nature of the TockOS

context switch suggests the same problems as identified above, which can be

solved using the basic strategies except for rotating TCB memory slots. TockOS

keeps all processes isolated from each other using a hardware Memory Protection

Unit (MPU). Rotating TCB memory slots requires the existence of a common

memory region which stores data (register values) of multiple processes, which

hurts the principle of isolation, while the other suggested countermeasures are

compatible with such isolation techniques.

7. Conclusion

In this paper, we provide the first security analysis of context switches for masked

cryptographic software. After showing the fundamental problems created by

context switches on embedded OSs, we propose several different mitigation

strategies in hardware or software. Ultimately, our hardened context switching

routines allow masked software from previous works, verified for security in bare-

metal execution, to remain secure when being executed on embedded OSs. We

present a case study focusing on FreeRTOS, a popular embedded OS for embedded
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devices, running on a RISC-V core, allowing us to evaluate the practicality, ease

of integration, and performance of each strategy. While the runtime of hardened

context switches is certainly noticeable, we expect the overall impact on system

performance to be rather negligible unless the frequency of context switches is

very high.
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Appendix A. Unprotected context switch

1 task_switch:

2 sw x1 , (sp)

3 sw x2 , 4(sp)

4 sw x3 , 8(sp)

5 sw x4 , 12(sp)

6 # ...

7 # Select next task

8 # ...

9 lw x1 , (sp)

10 lw x2 , 4(sp)

11 lw x3 , 8(sp)

12 ...

13 ret

Appendix B. Interleaved context switch

1 task_switch_interleaved:

2 mv sp , x30 # Reserve x30 , never use in code

3 # ...

4 # Select next task

5 # ...

6 sw x1 , (x30)

7 lw x1 , (sp)

8 sw x2 , 4(x30)

9 lw x2 , 4(sp)

10 sw x3 , 8(x30)

11 lw x3 , 8(sp)

12 sw x4 , 12( x30)

13 lw x4 , 12(sp)

14 ...

15 ret

16

Appendix C. TCB clearing
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1 task_switch_clear_tcb:

2 sw x0 , (sp) #x0 is constantly tied to 0

3 sw x1 , (sp)

4 sw x0 , 4(sp)

5 sw x2 , 4(sp)

6 sw x0 , 8(sp)

7 sw x3 , 8(sp)

8 sw x0 , 12(sp)

9 sw x4 , 12(sp)

10 # ...

11 # Select next task

12 # ...

13 lw x1 , (sp)

14 lw x2 , 4(sp)

15 lw x3 , 8(sp)

16 ...

17 ret

18

Appendix D. Randomness-refreshed loads and
stores (SW)

1 task_switch_rand_refresh_sw:

2 li x30 , addr_prng

3 # Reserve x30 , never use in code

4 lw x30 , (x30)

5 # x30 now contains fresh randomness

6 xor x1, x1, x30

7 sw x1 , (sp)

8 xor x2, x2, x30

9 sw x2 , 4(sp)

10 xor x3, x3, x30

11 sw x3 , 8(sp)

12 xor x4, x4, x30

13 sw x4 , 12(sp)

14 # Store x30 to TCB

15 # ...

16 # Select next task

17 # ...

18 # Load randomness used in previous store from TCB to x30

19 lw x1 , (sp)

20 xor x1, x1, x30

21 lw x2 , 4(sp)

22 xor x2, x2, x30

23 lw x3 , 8(sp)

24 xor x3, x3, x30

25 ...

26 ret

27
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Abstract Cryptographic devices in hostile environments can be vulnerable to

physical attacks such as power analysis. Masking is a popular countermeasure

against such attacks, which works by splitting every sensitive variable into d+ 1

randomized shares. The implementation cost of the masking countermeasure

in hardware increases significantly with the masking order d, and protecting

designs often results in a large overhead. One of the main drivers of the cost is

the required amount of fresh randomness for masking the non-linear parts of a

cipher. In the case of AES, first-order designs have been built without the need

for any fresh randomness, but state-of-the-art higher-order designs still require

a significant number of random bits per encryption. Attempts to reduce the

randomness however often result in a considerable latency overhead, which is

not favorable in practice. This raises the need for AES designs offering a decent

performance tradeoff, which are efficient both in terms of required randomness

and latency.

In this work, we present a second-order AES design with the minimal number

of three shares, requiring only 3 200 random bits per encryption at a latency of

5 cycles per round. Our design represents a significant improvement compared

to state-of-the-art designs that require more randomness and/or have a higher

latency. The core of the design is an optimized 5-cycle AES S-box which needs

78 bits of fresh randomness. We use this S-box to construct a round-based AES

design, for which we present a concept for sharing randomness across the S-boxes

based on the changing of the guards (COTG) technique. We assess the security

of our design in the probing model using a formal verification tool. Furthermore,

we evaluate the practical side-channel resistance on an FPGA.

1. Introduction

Embedded devices running cryptographic hardware implementations need to be

protected against physical attacks, such as differential power analysis [KJJ99], in

which an attacker observes the power consumption of the device and uses the

information to learn about secret values, e.g., the cryptographic key. Masking
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is a popular approach to protect against these attacks on implementation level,

aiming at making the power consumption independent of the processed sensitive

value [Cha+99]. To protect against a d-th order DPA attack, masking splits each

sensitive value into d + 1 shares such that an attacker probing up to d shares

cannot recover the sensitive value.

Applying the masking countermeasure to a cryptographic hardware implemen-

tation comes with a considerable area overhead, which increases significantly with

the masking order d [GIB18; ISW03; MRB18; Nag+22; SP06]. This overhead

is not only caused by an increased area for the handling of the shares but also

by the increased demand for fresh randomness that needs to be generated and

distributed for masking the non-linear parts of the cipher. While the linear parts

can be computed by evaluating them for each share individually, the non-linear

parts, such as S-boxes, need to operate on several shares at once and, therefore,

require randomness for refreshing to prevent unmasking of intermediate compu-

tation results, especially in the presence of glitches [Bar+17; Bel+17; GMK16;

ISW03; Rep+15]. The need for fresh randomness usually goes hand-in-hand with

an increased design area caused by the required random number generator (RNG)

instances.

Methods to reduce randomness for a masked design have been studied exten-

sively, especially focusing on AES. Since its selection by NIST in 2000, the AES

[Nat01] has become an essential component for many cryptographic applications

in industry. While the first proposed first-order sharings of the AES required

about 3 000 to 5 000 random bits per encryption, there by now exist several

works suggesting how to perform the computation without any fresh randomness

[SM21; Sug19; WM18]. Compared to that, higher-order masked AES designs

still require a significant amount of fresh randomness and area. While first works

on second-order masking of the AES in hardware require more than three shares

[Bey+21; Cnu+15], in 2016, De Cnudde et al. [Cnu+16] propose an S-box design

with three shares which needs 162 fresh random bits and has a latency of five

cycles, resulting in 19 440 random bits and 276 cycles per encryption. Gross

et al. [GMK16] improve this situation by proposing a 5-cycle S-box protected

by DOM (Domain-Oriented Masking) with only 84 random bits, resulting in

16 800 random bits and 200 cycles per encryption. Reducing the amount of

randomness for a design however comes at the price of latency. Naturally, less

randomness implies fewer capabilities to control the effect of glitches in a circuit,

which in turn needs to be compensated for with more register stages, leading to

a higher latency. For example, Dhooghe et al. [DSM22] recently show how to

construct a second-order masking of the AES with only 1 012 fresh random bits

per encryption, which however result in an S-box latency of 9 cycles per round.

In recent years, low-latency has been generally identified as an important design

goal for masked designs. Several works construct masked designs optimized for

extremely low cycle counts [GIB18; Nag+22; Sas+20; Sim+22]. For example,

Gross et al. [GIB18] propose a second-order masked low-latency DOM-AES
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S-box, which only needs two cycles per round but requires almost 900 000 random

bits per encryption.

On architectural level, the performance of AES designs can be improved by

employing a parallel or round-based design, in which the S-box is instantiated

once per key/state byte, and all instances operate in parallel. By contrast, serial

designs instantiate the S-box once, which is fed with a new key/state byte in

every clock cycle. In parallel designs, the number of pipeline stages in the S-box

determines the latency of an encryption round, and therefore, an S-box with a

low latency is preferable. While most works in literature focus on serial designs,

parallel designs have only been marginally addressed despite their clear practical

relevance. For example, Google’s OpenTitan project [low19], which aims at

building an open root of trust (ROT) chip, includes a parallel AES architecture

protected by DOM. They use a first-order version of the 5-cycle DOM AES S-box,

which leads to an encryption latency of about 50 cycles per 128-bit block. One

of the main challenges when constructing such designs is the high amount of

randomness required per cycle, and in practice, it is not trivial to come up with

RNGs allowing for such high demands of bandwidth yet keeping the required

amount of randomness somewhat balanced per cycle.

Given that first-order protection often does not provide the required security

level in practice, and serial designs are often not suitable for the desired perfor-

mance, the goal is to build second-order designs targeting both low-randomness

and low-latency.

Contributions In practice, second-order masked AES designs should be efficient

and provide a suitable tradeoff between area and latency, which clearly presumes

a three-share design. However, state-of-the-art three-share designs are either

optimized for low-latency or for low-randomness. Additionally, given the need

for parallel designs, the demands of fresh randomness per cycle of these designs

are unevenly distributed and often simply too high. We improve the situation by

providing the following contributions:

• We present a second-order masked AES S-box based on DOM, which works

with the minimum number of three shares, has a latency of only five cycles,

and requires 78 bits of fresh randomness. In order to construct this S-box,

we take the original DOM design as a starting point and demonstrate

that fixing the flaw in higher-order DOM-dep multipliers, as identified by

[Moo+19], is possible using more randomness. However, we also show that

all DOM-dep multipliers can be replaced by more area-efficient adapted

DOM-indep multipliers, which allows to perform one S-Box computation

with 78 bits of fresh randomness. (Section 3)

• We propose an efficient parallel AES architecture similar to the one used

in OpenTitan with an encryption latency of 51 cycles. We show how one

encryption can be computed with only 3 200 bits by applying a special

COTG-based concept for reusing randomness across all S-box instances
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for the key and plaintext. The 3 200 bits can smoothly be delivered by

an RNG with a bandwidth of 64 fresh random bits per cycle. Given the

5-cycle latency per round, our design currently requires the least amount

of fresh randomness in literature. (Section 4)

• We evaluate our AES design in terms of area and randomness and compare

it to other state-of-the-art designs. (Section 5)

• Using a formal verification tool, we show the second-order security of our S-

box design and investigate the security of our COTG-based sharing concept

for key and plaintext for one round. We deploy our design on an FPGA

and show that no leakage can be detected with up to 100 million traces.

(Section 6)

• We provide access to the complete HDL code on GitHub1.

2. Preliminaries

2.1. Notation

We denote the sharing of a sensitive variable X with X = (X0, X1, X2), i.e.,

the subscript index denotes a specific share. Every state byte in the AES is

described as s(i,j), where i refers to the row index and j refers to the column

index, according to the convention introduced in the AES specification [Nat01].

For example, s
(0,2)
0 refers to the first share (share domain 0) of the state byte in

row 0, column 2. Every key byte in the AES is described as k(i,j) accordingly

with the sharing k(i,j) = (k
(i,j)
0 , k

(i,j)
1 , k

(i,j)
2 ).

2.2. Masking

Masking [Cha+99; GP99; ISW03] aims at defeating side-channel attacks that work

by randomizing sensitive values by splitting them into d+ 1 uniformly random

shares. An adversary observing (probing) up to d shares cannot deduce any

information about the sensitive value. In classical Boolean masking, the sharing

of a sensitive variable s given by (s0, s1, ...sd) must satisfy s = s0⊕s1...⊕sd. The

shares s0, s1, ...sd−1 are randomly sampled from a uniform distribution, while

sd = s ⊕ s0 ⊕ s1... ⊕ sd−1. For example, in a second-order masking scheme

(d = 2), s is represented by the sharing (s0, s1, s2) such that s = s0 ⊕ s1 ⊕ s2. s0
and s1 are chosen uniformly at random and s2 = s0 ⊕ s1.

Implementing the masking countermeasure for non-linear functions such as the

AES S-box, which computes the inversion in GF (28), is especially challenging

because they require combining all shares of a sensitive value in a secure and

correct way. Hardware-related side-effects such as glitches and transitions need to

be considered, which could reveal secret information in an otherwise secure masked

1https://github.com/barbara-gigerl/aes-secondorder-guards

https://github.com/barbara-gigerl/aes-secondorder-guards


166 Chapter 6. Second-Order Hardware Masking of the AES

implementation [ISW03; MPG05; MPO05]. Masking schemes for the AES S-box

have been addressed frequently in literature [Bey+21; Cnu+16; DSM22; GMK16;

Mor+11; Osw+05; RP10; SP06]. Canright [Can05] presents a decomposition into

GF (24) and GF (22) field elements to perform the inversion more efficiently, which

has since then been the basis for many works on masking the AES, including

DOM by Gross et al. [GMK16].

2.3. Security Verification of Masking

Empirical measurements are generally an important indicator for the practical

security of a masked implementation. However, collecting power traces is usually

cumbersome and error-prone, and the results heavily depend on the platform

and measurement setup. Formal verification tools represent a complementary

approach that allows the analysis of a masked implementation within a specific

attacker model, such as the classic probing model [ISW03].

Rebecca [Blo+18] is a formal verification tool to prove the security of masked

hardware implementations at any order. It examines the leakage of a given circuit

by investigating each gate and determining whether the gate output correlates

directly with the unshared sensitive value. Rebecca approximates this correlation

using Fourier expansions of Boolean functions [ODo14] and checks for leaks using

a SAT solver, making it feasible to verify larger constructions at the cost of

accuracy. However, it has been shown that the rate of false positives (tool falsely

reports leak) is very low, and false negatives (tool falsely reports no leak) are

not possible at all [GPM23]. Other tools like SILVER [KSM20] determine this

correlation by exhaustively computing the probability distribution of each gate,

which allows a very accurate analysis, but it hardly applies to more complex

circuits such as higher-order AES S-boxes [DSM22]. In this work, we will use

Coco [Gig+21], a tool based on Rebecca. Coco applies the time-constrained

probing model, allowing an adversary to place d probes on an arbitrary wire in

the circuit. Each probe allows observing the value of the wire for one specific clock

cycle, including transitions and glitches. A masked hardware implementation is

considered dth-order secure if the adversary cannot learn any information about

the sensitive value by combining the values of these probes.

2.4. Changing of the Guards (COTG)

Masked designs based on TI (Threshold Implementation) require non-completeness

and uniformity to be first-order secure [NRR06], but obtaining a uniform output

sharing of a masked S-box often requires explicit remasking with fresh randomness.

The changing of the guards (COTG) concept was introduced by Daemen [Dae17]

to achieve uniformity more efficiently by replacing this fresh randomness with

unrelated parts of the cipher state. For example, considering a TI S-box function

S and the respective component functions S0, S1, S2 arranged in an S-box layer

that maps the shared inputs a, b, c to the shared outputs A,B,C as follows (for
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0 ≤ i ≤ 2):

Ai = S0(bi, ci) Bi = S1(ai, ci) Ci = S2(ai, bi)

If the sharings of A,B,C are not uniform one needs to perform resharing,

which can either be done with fresh randomness or, as suggested by COTG,

with another unrelated input share such as the one of the neighbor S-box (for

0 ≤ i ≤ 2):

Ai = S0(bi, ci)⊕ bi−1 ⊕ ci−1 Bi = S1(ai, ci)⊕ ci−1 Ci = S2(ai, bi)⊕ bi−1

The values of b−1 and c−1 need to be instantiated with fresh random values.

COTG has been applied to several TI implementations including AES [Ask+22;

Bey+21; DSM22; SBM21; Sug19; WM18], KETJE [ANR19], Ascon and Keyak

[SD17], ARX ciphers [JPS18], and PRINCE [MMM21]. The original idea of

COTG is to use the input bytes of the right neighbor S-box as guards and use

fresh randomness for the last S-box that does not have a right neighbor. In

our work, we propose a more complex selection of guards by precisely analyzing

which other state bytes are unrelated and which are not, eliminating the explicit

need for fresh randomness for the last S-box.

3. Efficiently Masking the AES S-box

In this section, we present a 5-stage pipelined AES S-box with three shares

requiring only 78 bits of fresh randomness, which is currently the lowest amount

of randomness required for 5-cycle latency. The second-order S-box design DOM

[GMK16], which serves as the basis for our design, requires 104 random bits,

while the 5-cycle TI-design of De Cnudde et al. [Cnu+16] needs 162 random bits.

In Section 3.1, we describe DOM and the basic structure of their proposed

S-box, which uses the Canright decomposition and performs the multiplications

in GF (22) and GF (24) with DOM-dep and DOM-indep multipliers. In 2019,

[Moo+19] pointed out a flaw in higher-order DOM-dep multipliers, which we

revisit Section 3.2, and discuss a possible fix for this. Unfortunately, including this

fix into the second-order S-box requires an additional 20 bits of fresh randomness,

resulting in 104 bits in total. Therefore, in Section 3.3, we show how one can

optimize the S-box design such that the DOM-dep multipliers are not needed

anymore at all and can be replaced by three types of adapted versions of DOM-

indep multipliers, resulting in a randomness-optimized S-box design. We check

the second-order security of our S-box design with Coco and give details on the

verification in Section 6.
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3.1. DOM-based Masking of the AES S-box

In 2016, Gross et al. [GMK16] introduce DOM as a low-cost method to protect

circuits against SCA at arbitrary protection orders. DOM is based on the idea

of separating shares into independent domains and adding fresh randomness

whenever terms from different domains are combined. They introduce a five-cycle

variant of the AES S-box intended for high-speed encryption, which serves as the

basis of our work and is also used in the OpenTitan project. The S-box design

follows Canright’s propositions [Can05].
For both the subfield multiplications, Gross et al. propose two masked multi-

plication gadgets. The second-order DOM-indep multiplier, which we will refer
to DOM-indep multiplier (Type A), is used to multiply two independently shared
field elements A with sharing (A0, A1, A2), and B with sharing (B0, B1, B2)
using the random variables z0, z1, z2. The resulting output sharing (C0, C1, C2),
with registers indicated by parenthesis, is:

C0 = (A0 ×B0)⊕ (A0 ×B1 ⊕ z0)⊕ (A0 ×B2 ⊕ z1) (1)

C1 = (A1 ×B0 ⊕ z0)⊕ (A1 ×B1)⊕ (A1 ×B2 ⊕ z2) (2)

C2 = (A2 ×B0 ⊕ z1)⊕ (A2 ×B1 ⊕ z2)⊕ (A2 ×B2) (3)

The multiplication works in three phases. First, in the calculation phase, shares

of different domains (cross-domain multiplication) and shares of the same domain

(inner-domain multiplication) are multiplied in the respective field. Cross-domain

multiplication terms are then refreshed with three fresh random values in the

resharing phase and stored into a register, while inner-domain terms do not

need to be refreshed. In the integration phase, the multiplication terms of each

component function are accumulated.

In case the multiplier inputs are not shared independently, e.g., when mul-

tiplying A × A, one could simply use a DOM-indep multiplier and reshare

one of its inputs, which however comes at the cost of additional randomness

and a register stage. Therefore, Gross et al. propose the DOM-dep multiplier

that uses a random blinding variable p with the sharing (p0, p1, p2) to compute

A× B = A× (B + p) + (A× p). A DOM-indep multiplier is used to compute

(A× p), and therefore, the complete second-order DOM-dep multiplier requires

six fresh random values.

Given these two multiplication gadgets, the 5-cycle S-box first converts the

8-bit input shares from the polynomial basis to the normal basis, inverts them in

GF (28) by decomposition into GF (24) and GF (22) field elements, and converts

them back. More precisely, in Stage 1, the 8-bit input shares are converted using

a linear mapping, which linearly combines the bits of a share within one domain

each. Due to glitches, the output of the linear mapping might temporarily result

in a related sharing, and therefore, a GF (24) DOM-dep multiplier is used. In

Stage 2, the resulting GF (24) field elements are combined with the outputs

of the square scalers, and glitches could temporarily produce a related input

sharing, therefore requiring the use of a GF (22) DOM-dep multiplier. In Stage
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3, a similar situation occurs, and consequently, both GF (22) multipliers must

be DOM-dep multipliers. The last multipliers in Stage 4 take as an input the

pipelined S-box inputs and the output of Stage 3, which are clearly independent

of each other, and therefore, GF (24) DOM-indep multipliers can be used. In

Stage 5, the output shares are converted back to the polynomial basis using the

inverse linear mapping.

3.2. Fixing the second-order DOM-dep multiplier

In a follow-up work, Moos et al. [Moo+19] point out a flaw in the DOM-dep

multiplier for d ≥ 2. Recall from the previous section that a DOM-dep multiplier

computes A×B = A× (B + p) + (A× p). They show that DOM-dep multipliers

are not secure in the presence of glitches by combining information about the

individual shares of A × (B + p), and multiplication terms in the DOM-indep

multiplier (Type A) computing (A× p). A second-order adversary possesses two

probes. One probe is used to access the individual shares of A× (B + p), which

includes A2 × (B0 ⊕ p0). The other probe is placed in the DOM-indep multiplier

to access the shared subproducts of (A × p), which includes the cross-domain

term A1 × p0. By combining these two probed values and considering that the

sharings of A and B are related, the adversary can derive information about the

sensitive value A.

We propose a way to fix this issue by preventing the adversary from accessing

B0⊕p0 directly by adding more randomness to it. More concretely, we refresh the

term B+p with a sharing of the zero-bit vector (q0, q1, q0⊕q1) and store that value

to a register. The computation performed is now A×B = A×(B+p+0)+(A×p)

with 0 being a shared into q0 and q1 such that 0 = q0 ⊕ q1. Hence, the first

probe will only allow access to A2 × (B0 ⊕ p0 ⊕ q0), and no information about

A can be inferred due to the random value q0. The advantage of this solution

compared to refreshing B and using a DOM-indep multiplier afterward is that

no additional register stage is required. Nevertheless, for the fixed second-order

DOM-dep GF (22) multiplier, 16 instead of 12 random bits are needed, or 32

instead of 24 in the case of GF (24).

We successfully verify with Coco that our proposed solution indeed solves the

issue and is second-order probing-secure in the presence of glitches. Furthermore,

we apply the formal verification tool SILVER [KSM20] to prove that our con-

struction is secure under the 2nd-order PINI (Probe Isolating Non-Interference)

[CS20] notion and can, therefore, trivially be composed.

3.3. Optimized second-order DOM S-box

Integrating the proposed fix directly into the S-box design requires 104 bits of

fresh randomness instead of the originally proposed 84 bits. For a complete

AES encryption, this results in 20 800 required random bits instead of 16 800.

Therefore, we propose a way to optimize this construction by replacing all
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Figure 1.: Our second-order AES DOM S-box with three shares and five register

stages, requiring 78 bits of randomness. For simplicity, we draw a

single line for all three shares. The indicates that a signal is split

into a lower and upper part. The indicates that the lower and upper

parts of a signal are concatenated. Register stages are sketched by

gray dotted lines. The respective type of each DOM-indep multiplier

is indicated by a letter in the yellow box in the upper left corner, that

is either Type A (Equations (1-3)), Type B (Equations (4-6)) or Type

C (Equations (7-9)).

DOM-dep multipliers with three types (Type A, B, C) of adapted DOM-indep

multipliers, which are more efficient in both area and randomness. The resulting

78 bits of required fresh randomness are even less than in the originally proposed

design. While the Type A multiplier refers to the original DOM-indep multiplier,

the Type B and C multipliers work by additionally refreshing inner-domain

multiplication terms besides cross-domain multiplication terms, which leads to

an independent output sharing of a multiplier, and therefore allows the use of a

DOM-indep multiplier in the next pipeline stage. Figure 1 gives an overview of

the complete S-box design. Using Coco, we successfully verify the second-order

security of our S-box. Now we describe the design considerations made in each

stage in detail.

Linear mapping of input. Our goal is to replace the DOM-dep multiplier in

Stage 1 with a DOM-indep multiplier. DOM-indep multipliers require that their

inputs (the outputs of the linear map in our case) are shared independently. In

general, glitches may temporarily cause a related sharing at the output of the

linear map, and therefore, we need to store the output of the linear map in a

register. Since our goal is a considerably low latency, we do not add an additional

pipeline stage but move the computation of the linear map to the pipeline stage

before. Considering the entire AES design, the complete linear layer (including

the inverse linear map, ShiftRows, MixColumns, and AddRoundKey) is already

computed in Stage 5 (c.f. Section 4), where we now also move the linear map
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of the SubBytes computation of the next round. Hence, the state registers in

the design will not store the field elements in the polynomial base but the field

elements in the normal base. From a security perspective, it is valid to do so

because in Stage 5, only linear functions are computed, and adding the linear

map to the end will not cause any additional leakage.

Multiplier in Stage 1 (Type B). We want to replace the DOM-dep multiplier

in Stage 2 with a DOM-indep multiplier. The DOM-indep multiplier in Stage 2

only supports independent inputs, so the DOM-indep multiplier in Stage 1 needs

to be modified such that it generates an independent output sharing. To do so,

we need to perform the addition of the square scaler already in Stage 1, protect

the inner-domain multiplication terms and use additional randomness on the

cross-domain multiplication terms. The modified DOM-indep multiplier, which

will be referred to as the Type B multiplier, used in Stage 1 with parenthesis

again indicating registers, is given by:

C0 = (A0 ×B0 ⊕ Sq0 ⊕ y0 ⊕ y1)⊕ (A0 ×B1 ⊕ z0 ⊕ z3)⊕ (A0 ×B2 ⊕ z1) (4)

C1 = (A1 ×B0 ⊕ z0)⊕ (A1 ×B1 ⊕ Sq1 ⊕ y1)⊕ (A1 ×B2 ⊕ z2) (5)

C2 = (A2 ×B0 ⊕ z1 ⊕ z3)⊕ (A2 ×B1 ⊕ z2)⊕ (A2 ×B2 ⊕ Sq2 ⊕ y0) (6)

Note that this multiplier does not support dependent inputs, but independent

inputs are obtained by storing the output of the linear map in a register. In

the original design, the square scaler terms (Sq0, Sq1, Sq2) were added to the

output of the Stage 1 DOM-dep multiplier in the second pipeline stage. This

can potentially cause a related input sharing to the multiplier in Stage 2 due

to glitches. Therefore, we perform the addition of these terms already in Stage

1 by adding them to the inner-domain multiplication terms before the register

layer. As a nice benefit, this saves registers to store the square scaler output in

the original design.

Another issue is that the Stage 1 multiplier might temporarily only output the

same-domain terms due to glitches if, e.g., the wire length of cross-domain terms

is significantly longer. In that case, the Stage 2 multiplier, which multiplies the

lower and higher two bits of the Stage 1 multiplier, might temporarily operate

on related inputs. Therefore, we use 2× 4 random bits y0 and y1 to also refresh

the inner-domain terms. In order to maintain second-order probing security,

the cross-domain terms need to be refreshed with an additional z3 in this case.

Otherwise, an attacker can place a probe in the calculation phase of the Stage 2

multiplier to get a combination of masks, which is used to protect the integration

phase of the Stage 1 multiplier.

Multiplier in Stage 2 (Type C). We want to replace the DOM-dep multipliers in

Stage 3 by a DOM-indep multiplier. The DOM-indep multiplier in Stage 3 only

supports independent inputs, so the DOM-indep multiplier in this stage needs
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Table 1.: Comparison of the amount of fresh randomness required for the insecure

and fixed second-order DOM-dep multipliers, and the resulting insecure,

fixed and optimized second-order DOM AES S-boxes. For the S-box

constructions we give in brackets the amount of required random bits

per stage.

Construction Fresh randomness Area

Insecure second-order DOM-dep [GMK16]
GF (22) 12 bit

N/A
GF (24) 24 bit

Fixed second-order DOM-dep
GF (22) 16 bit

GF (24) 32 bit

Insecure second-order DOM AES S-box [GMK16] 84 bit (24/12/24/24) N/A

Fixed second-order DOM AES S-box 104 bit (32/16/32/24) 4.37 kGE

Optimized second-order DOM AES S-box 78 bit (24/18/12/24) 4.29 kGE

to be modified such that it generates an independent output sharing. To do so,

we need to perform changes similar to Stage 1, including shifting the addition of

square scaler terms and additional protection for inner-domain and cross-domain

terms. In summary, the modified DOM-indep multiplier, which will be referred

to as the Type C multiplier, used in Stage 2, with parenthesis indicating registers,

is given by:

C0 = (A0 ×B0 ⊕ Sq0 ⊕ y0 ⊕ y1)⊕ (A0 ×B1 ⊕ z0 ⊕ z3)⊕ (A0 ×B2 ⊕ z1 ⊕ z5)
(7)

C1 = (A1 ×B0 ⊕ z0 ⊕ z4)⊕ (A1 ×B1 ⊕ Sq1 ⊕ y1 ⊕ y2)⊕ (A1 ×B2 ⊕ z2 ⊕ z5)
(8)

C2 = (A2 ×B0 ⊕ z1 ⊕ z3)⊕ (A2 ×B1 ⊕ z2 ⊕ z4)⊕ (A2 ×B2 ⊕ Sq2 ⊕ y0 ⊕ y2)
(9)

Note that, also this multiplier does not support dependent inputs, but indepen-

dent inputs are obtained by appropriate refreshing in the stage before. Compared

to the multiplier in Stage 1 (Type B), we need more randomness for refreshing

the multiplication terms. In total, 3× 2 bits are needed for inner-domain terms

(y0, y1, y2), and 6×2 bits are needed for cross-domain terms (z0, z1, z2, z3, z4, z5).

Multipliers in stages 3 and 4 (Type A). After performing these changes, the

DOM-dep multiplier in Stage 3 can simply be replaced by the original DOM-indep

multiplier (Type A) because independent inputs are obtained by refreshing in

Stage 2. The multiplier in Stage 4 has originally been a DOM-indep multiplier

and therefore, no further modifications are required there.

3.4. Discussion

In Table 1 we compare the randomness properties of the different constructions. As

stated by [GMK16], it requires 6/12 bits of fresh randomness for aGF (22)/GF (24)
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DOM-indep multiplier. The insecure DOM-dep multiplier requires 12/24 bits

of fresh randomness for GF (22)/GF (24). The fixed version of the DOM-dep

multiplier, which works with our fix, requires 16/32 bits of fresh randomness.

The amount of 84 bits for the whole insecure S-box denotes to 24 bits in Stage

1, 12 bits in Stage 2, 2 × 12 = 24 bits in Stage 3, and 2 × 12 bits in Stage

4. When exchanging the DOM-dep multipliers in that design with our fixed

multipliers, the final construction leads to a randomness consumption of 104 bits,

implying an increase of 24%. More precisely, 32 bits of fresh randomness are now

needed in Stage 1, 16 bits in Stage 2, 32 bits in Stage 3 and 24 bits in Stage

4. Our optimized second-order S-box design, which does not use any DOM-dep

multipliers, has a lower randomness consumption of 78 bits and also a slightly

lower area (4.29 kGE) compared to the originally proposed version.

4. COTG-based Design of AES

Using the S-box design described in Section 3 directly in a masked AES imple-

mentation requires 15 600 bits of fresh randomness per encryption. In this section,

we show how a COTG-based concept inspired by [Dae17] can be used to reduce

this number to only 3 200. In general, each S-box requires 78 bits for refreshing

the multiplication terms in the multipliers. Our main goal is to replace as many

of these 78 bits by guards, i.e., shares of state bytes of another unrelated S-box,

and use fresh randomness produced by an RNG where necessary, such that in

total, connecting an RNG producing 64 bits of fresh randomness per cycle to the

design is sufficient.

We give a general overview of our concept in Section 4.1. In Section 4.2, we

give more details on the exact COTG-based SubBytes operation for the shared

plaintext. In Section 4.3, we show how a similar concept applies to the key

schedule. We verify the basic assumptions made for our concept with Coco, as

described in more detail in Section 6.

4.1. Overview

The AES round function can be divided into four smaller super boxes, mapping a

32-bit input to a 32-bit output by applying SubBytes, MixColumns, AddRound-

Key, and the second SubBytes function. The four input bytes of a super box are

the columns of the state when viewed after ShiftRows. From a masking point of

view, the non-linear SubBytes operation processes each state byte individually

but combines the share domains. In contrast, the linear MixColumns operation

combines the four state bytes of a super box but does this for each share domain

individually.

These considerations suggest some general constraints regarding a COTG-based

AES design. First, without COTG, the state bytes are kept isolated from each

other until MixColumns, while with COTG, other state bytes are mixed in during
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Figure 2.: Overview of the proposed COTG concept. The squares represent the

4x4 AES state grouped in four super boxes (=the state after ShiftRows).

For a specific state byte (indicated by · ), the red arrow illustrates

the other state bytes used as guards. In the last stage, we sketch the

MixColumns operation combining all bytes of a super box.

the SubBytes operation in terms of randomness required by the multipliers. As

noted by [BDZ20], this could change the diffusion properties of the masked cipher

in an unfavorable way, for which we account with super box-wise resharing using

fresh randomness before MixColumns similar to [DSM22]. Second, on the level

of a single S-box, we need to choose guards for refreshing the multipliers such

that they are always independent of the multipliers’ inputs. This becomes even

more complex considering that a multiplier input is usually just the output of

another multiplier from the previous stage, which again directly relates to the

guards used there.

Therefore, from the view of a single S-box (located in super box i) in our design

we make the following decisions regarding which other state bytes can be used as

guards for refreshing (we sketch this in Figure 2):

• MixColumns combines all state bytes of a super box, i.e., all guards used in

all Stage 4 multipliers of the super box bytes are combined. Therefore, the

guards need to be chosen from the three foreign super boxes i+1, i+2, i+3.

To avoid changing diffusion properties, we refresh the inner-domain terms

with fresh randomness.

• Taking the guards for Stage 4 from the three foreign super boxes leaves us

with no choice but to ensure that the multiplier inputs are related to the

domestic super box. The inputs are (a) the plain shares after the linear

map (by default related to domestic super box i) and (b) the output of

the Stage 3 multiplier. By choosing guards from the domestic super box i

in combination with fresh randomness, we get independence here as well.

In order to obtain the independence even in the presence of glitches, the

inner-domain terms in Stage 3 are again refreshed with fresh randomness.

• The inputs of the Stage 3 multiplier are the outputs of stages 1 and 2.

However, the guards of the Stage 3 multiplier are independent of any

unmasked state byte because they are combined with fresh randomness.
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Table 2.: Assignment of guards and fresh randomness to refresh the inner- and

cross-domain terms of the DOM-indep multipliers in our design. The

operator X[a : b] extracts the bits in range from b to (including) a from

a given binary word X. The 64 bits of fresh randomness R given to the

design in every cycle is arranged in rows R0, R1, R2, R3 of 16 bits each.

DOM-indep multiplier

1 2 3/1 3/2 4/1 4/2

z0
s
(i+1,j+1)
0

Ri[7:0]

s
(i+2,j+2)
2 [5:0]

⊕ Ri[5:0]

s
(i+3,j+3)
0 [5:0]

⊕ Ri[13:8]

s
(i,j+1)
0 [3:0] s

(i,j+2)
1 [7:4]

z1 s
(i,j+1)
0 [7:4] s

(i,j+3)
2 [3:0]

z2
Ri[7:0]

s
(i,j+2)
1 [3:0] s

(i,j+3)
2 [7:4]

z3 - - - -

z4 s
(i+2,j+2)
1

⊕ Ri[15:8] s
(i+1,j+2)
0

⊕ Ri[15:8]

- - - -

z5 - - - -

y0 - Ri[7:6] Ri[7:6] Ri[3:0] Ri[11:8]

y1 - Ri[15:14] Ri[15:14] Ri[7:4] Ri[15:12]

y2 - s
(i+2,j+3)
1 [1:0] - - - -

Hence, we can simply choose guards from the domestic super box for Stage

1 and guards from the neighbor super box for stage 2.

4.2. COTG for SubBytes of Plaintext

Choice of guards for Stage 4. Stage 5 of our design computes the complete
linear layer, i.e., the inverse linear map, ShiftRows, MixColumns, AddRoundKey,
and the linear map of SubBytes of the next round. Each operation is applied
exactly once per share and does not combine shares of different domains. The
linear mappings of the S-box mix the bits of a share byte, and AddRoundKey
combines the state bytes bitwise with unrelated key material. MixColumns
however combines the bytes of each super box in the design, or, when viewed
from a masking perspective, combines the refreshed multiplication terms of the
Stage 4 multipliers of the four super box bytes. Due to glitches, every masked
multiplication term can be observed individually, and thus, all their combinations.
In order to refresh these multiplication terms, which is done in the two DOM-
indep multipliers using z0, z1, and z2, we instantiate 24 bits of guards. As shown
in Table 2, we use guards of three different foreign super boxes with rotating share
domains for this purpose. For example, the Stage 4 multipliers of the first two
super boxes use the following state bytes as guards:

s(0,0) : s
(0,1)
0 , s

(0,2)
1 , s

(0,3)
2 s(0,1) : s

(0,2)
0 , s

(0,3)
1 , s

(0,0)
2

s(1,1) : s
(1,2)
0 , s

(1,3)
1 , s

(1,0)
2 s(1,2) : s

(1,3)
0 , s

(1,0)
1 , s

(1,1)
2

s(2,2) : s
(2,3)
0 , s

(2,0)
1 , s

(2,1)
2 s(2,3) : s

(2,0)
0 , s

(2,1)
1 , s

(2,2)
2

s(3,3) : s
(3,0)
0 , s

(3,1)
1 , s

(3,2)
2 s(3,0) : s

(3,1)
0 , s

(3,2)
1 , s

(3,3)
2
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Rotating share domains means that we use share domain 0 for the first guard,

share domain 1 for the second, and share domain 2 for the third. We cannot use

the same guard domain, e.g., domain 0, for all guards because that would lead

to many Stage 4 multiplication terms being refreshed with the same guard. By

rotating the domains, every state byte share is used exactly once in the Stage 4

multipliers. Assume that the guards for an S-box are not distributed across super

boxes, but that for super box i, we use state bytes of the same domestic super

box i. That implies that s(0,0) uses s
(3,3)
2 , s(1,1) uses s

(3,3)
1 and s(2,2) uses s

(3,3)
0

as a guard, and hence, in MixColumns, state byte s(3,3) is unmasked. The same

holds when super box i uses state bytes of the same foreign super box. Therefore,

the guards need to originate from three different foreign superboxes. At the same

time, it is important to note that every MixColumns operation combines shares

of exactly one share domain of each super box. For example, super box 0 uses

guards from super box 1, but all of share domain 0. That is important to prevent

an attacker from placing two probes in the MixColumns operations of different

super boxes. Additionally, we use the 64 bits of fresh randomness produced by

the RNG to refresh the inner-domain terms with y0 and y1.

Similar to [DSM22], instead of refreshing the complete state (which would

require 256 bits of fresh randomness), we align the 64 bits of fresh randomness

into four rows R0, R1, R2, R3 of 16 bits each such that the randomness is reused

in every super box.

Choice of guards for Stage 3. The Stage 4 DOM-indep multipliers multiply (a)

the plain input shares of the S-box after the linear map, with (b) the output of

the Stage 3 multipliers. The guards used in Stage 4 must be independent of both

(a) and (b). In the case of (a), independence between the plain input shares of

a specific S-box and state bytes of other super boxes is naturally given. In the

case of (b), the independence is determined by the output of the multipliers in

Stage 3 and, therefore, by the guards used in Stage 3. In Stage 3, 2 × 6 = 12

bits are required for refreshing cross-domain multiplication terms (z0, z1, z2 in

multipliers 3/1 and 3/2), and additionally, 2× 4 bit are required for refreshing

inner-domain multiplication terms (y0, y1) to achieve that even in the presence

of glitches, the inputs to Stage 4 are independent. In total, this makes 20 bits,

which can however be reduced to 16 bits because, in the multiplier 3/1 and the

multiplier 3/2, the same values for y0 and y1 can be used.

In summary, we therefore need to come up with 16 bits of randomness per S-box.

Similar to Stage 4, we again arrange the 64 bits of fresh randomness generated

in this cycle by the RNG in four rows of 16 bits and re-use this randomness

in every super box. Verification with Coco reveals that while this is valid for

inner-domain terms (y0, y1), the cross-domain terms must be refreshed with

unique randomness (z0, z1, z2).As shown in Table 2, we use a trick to generate

unique terms by combining the fresh randomness from the RNG with guards

taken from the domestic super box. For example, the multiplier 3/1 of the first
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two super boxes uses the following values for z0, z1, z2:

s(0,0) : s
(2,2)
2 [5:0]⊕R0[5:0] s(0,1) : s

(2,3)
2 [5:0]⊕R0[5:0]

s(1,1) : s
(0,0)
2 [5:0]⊕R1[5:0] s(1,2) : s

(3,0)
2 [5:0]⊕R1[5:0]

s(2,2) : s
(1,1)
2 [5:0]⊕R2[5:0] s(2,3) : s

(0,1)
2 [5:0]⊕R2[5:0]

s(3,3) : s
(2,2)
2 [5:0]⊕R3[5:0] s(3,0) : s

(1,2)
2 [5:0]⊕R3[5:0]

By doing so, the uniqueness of the term is given by Ri within the super box,

and by the guards across super boxes, and every Stage 3 multiplier in all S-boxes

uses unique values to refresh the multiplication terms. Similar to Stage 4, we

perform share domain rotation by using share 2 for the 3/1 multipliers and share

0 for the 3/2 multipliers in order to achieve that within a super box, two different

shares of a state byte are used as guards.

Choice of guards for Stage 2. The Stage 3 DOM-indep multipliers multiply

the output of the Stage 2 multiplier with the output of the Stage 1 multiplier.

The guards used in Stage 3 are inherently independent of these because the

randomness generated by the RNG in Stage 3, which is used to mask the guards,

is only used in that cycle. Therefore, the choice of guards for stages 1 and 2 is

relatively unconstrained as long as they are independent of each other (otherwise,

a DOM-dep multiplier would need to be used). In Stage 2, 18 bits are required

for refreshing cross-domain multiplication terms (z0, z1, z2, z3, z4, z5) and inner-

domain multiplication terms (y0, y1, y2). Using an analysis with Coco, we find

out that for second-order probing security, z0, z1, z2, z3 can be re-used across

super boxes, while the rest of the values need to be unique. As shown in Table 2,

we apply a similar trick as in Stage 3 to generate this uniqueness: We use the

fresh randomness generated by the RNG, distribute it over the columns of the

state, and re-mask it with guards as necessary to obtain a unique random value.

For example, the values used for refreshing in the Stage 2 multipliers are:

s(0,0) : R0[7:0], s
(1,2)
0 ⊕ R0[15:8], s

(2,3)
1 [1:0] s(0,1) : R0[7:0], s

(1,3)
0 ⊕ R0[15:8], s

(2,0)
1 [1:0]

s(1,1) : R1[7:0], s
(2,3)
0 ⊕ R1[15:8], s

(3,0)
1 [1:0] s(1,2) : R1[7:0], s

(2,0)
0 ⊕ R1[15:8], s

(3,1)
1 [1:0]

s(2,2) : R2[7:0], s
(3,0)
0 ⊕ R2[15:8], s

(0,1)
1 [1:0] s(2,3) : R2[7:0], s

(3,1)
0 ⊕ R2[15:8], s

(0,2)
1 [1:0]

s(3,3) : R3[7:0], s
(0,1)
0 ⊕ R3[15:8], s

(1,2)
1 [1:0] s(3,0) : R3[7:0], s

(0,2)
0 ⊕ R3[15:8], s

(1,3)
1 [1:0]

Note that we again perform share domain rotation, i.e., every byte in a superbox

uses guards from two different domains.
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Choice of guards for Stage 1. The Stage 2 DOM-indep multiplier multiplies

the four most significant bits of the Stage 1 multiplier output with the four least

significant bits. The 24 bits required for refreshing in the Stage 1 multiplier hence

need to be chosen independently of the guards in Stage 2. Analysis with Coco

reveals that in this situation, the values for z0, z1, z4 and z5 need to be unique,

while z2 and z3 can again be re-used across super boxes. As shown in Table 2, for

z2 and z3 we use a byte of fresh randomness from the RNG, which is re-used once

per super box. For z4 and z5 we use another byte of fresh randomness from the

RNG, which is also re-used once per super box, but made unique by re-masking

with a guard from the domestic super box. For z0 and z1 we need a unique value

as well, however, the 16 bits of randomness available are already used up, and

therefore, we directly use as a guard a state byte from the same domestic super

box. For example, the values used for refreshing in the Stage 1 multipliers are:

s(0,0) : s
(1,1)
0 , R0[7:0], s

(2,2)
1 ⊕R0[15:8] s(0,1) : s

(1,2)
0 , R0[7:0], s

(2,3)
1 ⊕R0[15:8]

s(1,1) : s
(2,2)
0 , R1[7:0], s

(3,3)
1 ⊕R1[15:8] s(1,2) : s

(2,3)
0 , R1[7:0], s

(3,0)
1 ⊕R1[15:8]

s(2,2) : s
(3,3)
0 , R2[7:0], s

(0,0)
1 ⊕R2[15:8] s(2,3) : s

(3,0)
0 , R2[7:0], s

(0,1)
1 ⊕R2[15:8]

s(3,3) : s
(0,0)
0 , R3[7:0], s

(1,1)
1 ⊕R3[15:8] s(3,0) : s

(0,1)
0 , R3[7:0], s

(1,2)
1 ⊕R3[15:8]

4.3. COTG for SubWord of Key Schedule

In our AES design, we use the same shared S-box design for the key as for the

plaintext. Masking the key schedule using COTG is however much simpler than

for the plaintext because only four key bytes are transformed using SubWord,

which is comprised of four S-boxes, and no MixColumns operation is performed

during the key schedule (c.f. Figure 3). Therefore, we first identify key state bytes

that cannot be used in a straightforward way as guards in the SubWord operation

of the key schedule, that are, the set of key bytes combined with each SubWord

input byte. This set includes the SubWord input bytes k(0,3), k(1,3), k(2,3), k3,3

themselves, and then for each byte, the three other key bytes added to the

S-box output later in the key schedule. For example, for k(0,3) we do not use

k(3,0), k(3,1), k(3,2) as guards. In Figure 3, we mark the key bytes not used as

guards for a specific S-box with stripes of the respective color.

For each of the four input bytes, we can then simply assign the remaining key

state bytes as guards for the respective S-box and perform share-domain rotation

on that. Using this technique, we can obtain the second-order probing security

of the construction. An adversary placing two probes in the same S-box of the

key schedule cannot probe a complete sharing of a guard byte because per S-box,

at most one share of a guard is used. With two probes in two different S-boxes,

an adversary can therefore at most probe two out of three shares.

The RNG connected to the AES design produces 64 bits of fresh randomness
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Figure 3.: (a) The AES key schedule. We mark the input bytes of SubWord with

colors, and hatch the key state bytes which are later combined with a

specific input byte.

(b) The assignment of guards for the S-boxes of the key schedule.
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Figure 4.: Architecture of our second-order AES implementation. Pipeline stages

are sketched with gray lines, inputs and outputs are marked in

turquoise, and terms used for refreshing the S-box multipliers (guards

and fresh randomness) are printed in purple.

per cycle for encrypting the plaintext. However, in Stage 5 of computing the S-box

for the plaintext, no fresh randomness is required because only linear operations

are performed, and we can use the 64 bits of fresh randomness produced in that

cycle for refreshing the key schedule. We distribute the 64 bits over the four

S-boxes, such that we add 16 distinct bits per S-box. By that, we can keep

the refreshing of plaintext and key completely independent of each other, which

is also important for probing security across multiple rounds, as discussed in

Section 6.

5. Architecture

Masked AES hardware implementations either follow a serial or a parallel design

paradigm. Serial AES designs instantiate the S-box once, which is fed with a

new state or key byte every clock cycle. Most existing masked AES designs in

literature focus on serial designs, including [Ask+22; Bil+14; Bil+15; DSM22;

GMK16; Mor+11; Sug19], which is suitable for low-area, low-power purposes,

but less for high throughput or low latency [Uen+16]. Super box-serial designs

instantiate four S-boxes that are fed with a new super box every clock cycle and

therefore provide a higher performance at the cost of area. Parallel or round-based

AES designs instantiate the S-box 20 times, 16 inside SubBytes and 4 inside

KeyExpand, which enables even higher performance at the cost of area. Our

design follows a parallel architecture, as we use the AES implementation of the

OpenTitan project as a basis. OpenTitan includes a first-order masked AES
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with a fully-parallel data path in order to achieve higher performance, but also

because parallel architectures increase the noise in a system, which makes SCA

harder [low23].

We give a sketch of our design in Figure 4. It takes 50+1 cycles to encrypt a

block of 16 plaintext bytes. One cycle in the beginning is needed because the

key schedule is started 1 cycle earlier than the processing of the plaintext in our

design, such that the round key used in AddRoundKey for a specific round always

comes from the key state registers. The linear map of our S-box design is now

computed in the fifth stage of a round, which means the state registers of our

implementation do not store the plain AES state but the state in the normal basis.

We connect a Trivium RNG [Can06] to our design in order to further analyze

the area overhead caused by utilizing multiple RNGs. We choose Trivium only

as an example that can, in practice, be replaced by any other RNG producing

randomness at a sufficient quality. Our Trivium implementation provides 64 bits

of fresh randomness per clock cycle. The randomness produced in the first four

cycles of a round is consumed by the plaintext encryption (256 bits), and the

randomness produced in the fifth cycle is consumed by the key schedule (64 bits).

Our design requires 320 bits of fresh randomness per round, or 3 200 bits for 10

rounds.

5.1. Implementation and Comparison

We implement our design and obtain area measures using Cadence Genus Syn-

thesis Solution 19.11-s087 1 for synthesis. All data is collected for a UMC 64 nm

process and is expressed in 2-input NAND gate equivalents. The area of one

NAND gate is 1.44µm2. In Table 3a, we give details about the area consumption

of our AES design, which is in total 102 kGE. Two-thirds of the total area is

attributed to the S-box instances for the plaintext/data, followed by the S-box

instances for the key schedule. Since, to the best of our knowledge, our design

is currently the only second-order parallel AES design, any direct comparison

on cipher-level to related work is not possible. [Ask+22] provide a first-order

parallel AES design with a 5-cycle S-box requiring 102.4 kGE, which is about the

same as our second-order design. However, the comparison is not fair because

the design does not use any online randomness at all, and the gate libraries as

well as design compilers do not match.

On S-box level, we compare our design to related work in literature, as shown

in Table 3b. However, it must be noted that these implementations use different

CMOS libraries and design compilers, and therefore, the comparison only serves

as a rough point of reference. Our optimized S-box design requires 4.3 kGE,

which is slightly less (-0.1 kGE) than the fixed version of [GMK16], in which

we include the fixed DOM-dep multipliers. Compared to the original versions

of [GMK16], the area consumption of our design has not changed significantly.

[Sim+22] and [Nag+22] propose S-box designs with a much lower latency than

ours (1 cycle) but also with a higher area consumption. Gross et al. [GIB18]
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Table 3.: Evaluation and comparison of our design in terms of area (* including

control logic for COTG)

Module Area
[%] [kGE]

DOM-AES with COTG
Data SubBytes 62% 63.7
Key SubWord 15% 15.7
MixColumns 3% 2.8
Control logic, state registers, etc 20% 19.8
Total AES 100% 102

(a)

2nd-order AES
S-box

Area
[kGE]

Latency
[cycles]

Rand.
[bits]

CMOS
library

[Cnu+15] 7.8 6 126 NanGate 45nm
[Cnu+16] 3.8 5 162 NanGate 45nm
[GIB18] 57.1 2 4446 UMC 90nm
[Nag+22] 14.8 1 51 UMC 65nm
[Sim+22] 11.4 1 108 N/A (40nm)
[GMK16] 5.3 8 54 UMC 180nm
[GMK16] (insecure) 5.7 5 84 UMC 180nm

[GMK16] (fixed) 4.4 5 104 UMC 65nm
This work 4.3 5 78 UMC 65nm

(b)

Module Area

[%] [kGE]

DOM-AES with COTG,
1 Trivium instance

AES* 87% 102
Trivium instance 5% 5.2
Outer control logic 8% 9.4
Total 100% 116.6

DOM-AES without COTG,
7.5 Trivium instances

AES 68% 96.9
Trivium instances 25% 35.7
Outer control logic 7% 10.4
Total 100% 142.1

DOM-AES with fixed DOM-dep,
10 Trivium instances

AES 65% 115.1
Trivium instances 30% 51.7
Outer control logic 5% 9.4
Total 100% 176.2

(c)
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construct another DOM-S-box design focused on low-latency (2 cycles) without

dual-rail logic, which however has a higher overhead in area and randomness

than our design. The five-cycle S-box proposed by [Cnu+16] has a slightly lower

area than our design but requires more than twice as much randomness.

In Table 3c, we compare our design with COTG to two versions of the design

without COTG, connected to multiple instances of the Trivium RNG. This

comparison highlights how important the reduction of randomness in a masked

design is to achieve area efficiency. We evaluate our DOM-AES design using

COTG, to which we connect a single Trivium instance, providing 64 bits of fresh

randomness per clock cycle. The whole design requires 116.6 kGE, and the RNG

makes 5% of the total area. We compare this to a version of our design where

we do not use COTG but exclusively use fresh randomness for refreshing in the

S-boxes, which consequently requires 7.5 Trivium instances. The total design area

is 142.1 kGE, thus, represents an overhead of 22%. In a third scenario, we analyze

the area consumption of the original DOM-AES design using our fixed DOM-dep

multipliers. Here, 10 Trivium instances necessary, which consume 30% of the

total design area, which is 176.2 kGE and represents an overhead of about 50%

compared to our design using COTG. The area of the AES core has an overhead

of 13% by using the DOM-dep multipliers instead of the smaller DOM-indep

multipliers. Note that our AES design provides plenty of further possibilities for

optimization, which would eventually reduce the area even more, including the

elimination of the extensively used control logic for COTG. Additionally, instead

of placing multiple Trivium instances, the Trivium state update function can

further be unrolled to save area, as described in [Cas+23].

5.2. Application to other use-cases

Despite our decision to follow a parallel (round-based) design concept, the

proposed concept for COTG can easily be carried over to serial and super box-

serial architectures. The choice of guards stays the same; only the distribution of

the randomness supplied by the RNG slightly changes. In a parallel design, all

four super boxes are computationally in the same pipeline stage p in a specific

cycle, and the 64 bits of fresh randomness are sent to that stage. In a super

box-serial design, super box 0 would be in stage p, but super box 1 would be

in stage p− 1. Hence, one can send the 64 bits of fresh randomness to stage p

for super box 0 and to stage p− 1 for super box 1. Similar considerations are

possible for a serial design, although an RNG supplying less than 64 bits would

be sufficient.

While we focus on the second-order case, the proposed techniques can the-

oretically also be applied to higher-order (d > 2) DOM-protected AES imple-

mentations. To do so, one needs first to replace the DOM-dep multipliers in

the S-box with DOM-indep multipliers, which requires adding even more fresh

randomness per DOM-indep multiplier. Next, independent state bytes need to

be identified, which can be used as guards in each S-box stage, similar to what is
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done in this work. We expect that this analysis, which is not trivial and becomes

harder the higher the masking order, needs to be done individually for every

order, while some knowledge, e.g., about the general dependency of state bytes,

can be re-used from the second-order case.

The applicability of the concept to other ciphers, potentially protected by

techniques other than DOM, highly depends on the concrete construction and

requires a more in-depth individual analysis. For example, we expect that a similar

technique can be applied to Ascon [Dob+21], and obtaining a COTG-based

concept might be even less complex since DOM-masked Ascon implementations

are available without using DOM-dep multipliers [GM17].

6. Security Evaluation

In this section, we elaborate on the security of our second-order DOM-AES

implementation using COTG. First, we provide a formal security analysis of the

design for which we use the formal verification tool Coco [Gig+21]. Second,

we provide a practical security analysis by porting the circuit to an FPGA and

showing that no leakage could be detected using TVLA with up to 100 million

traces.

6.1. Formal verification setup

In this work, we use Coco [Gig+21] for formally verifying our design in the time-

constrained probing model. The original purpose of Coco is to verify masked

software implementations directly on the CPU netlist by incorporating control

signals originating from the software execution. Given that Coco operates on

gate-level netlists, it can also be used directly to verify masked hardware circuits

with control logic, as demonstrated in [HB21]. To apply Coco, our design is

first synthesized with Yosys [Wol16] to obtain such a gate-level netlist. We

simulate the design to obtain values for control signals generated by the state

machine in our design for the verification. Additionally, labels are assigned to

the circuit inputs in order to indicate their purpose (share of a sensitive variable,

fresh randomness, or unimportant/control signal). We further add some small

modifications to Coco for our needs. For example, the original version of Coco

constructs one SAT equation per sensitive bit in the circuit and then uses the

incremental CaDiCaL SAT solver [Bie+20] to solve the equations in a sequential

order. More precisely, the solver first checks the equation of the first sensitive

bit and then uses the learned clauses for the remaining ones. Incremental SAT

solving however comes with a certain overhead, e.g., for storing the learned

clauses, and we found out that for our second-order hardware designs, the amount

of re-usable learned clauses is so small that incremental solving does not pay off.

Therefore, we use a parallel solver that solves all SAT equations individually but

at the same time in parallel. We therefore adapt the Coco backend such that it
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uses the Kissat [Bie+20] solver. All experiments are executed on a machine with

88 CPU cores with 500GB of RAM, such that approximately one CPU core is

available per SAT formula.

6.2. Formal security of the design

In order to evaluate the security of our design, we follow a multi-step approach.

First, we formally verify the second-order security of the S-box, treating the

78 input bits for refreshing the multipliers as fresh randomness first. Second,

we take a look at the security of the design for one round on super box-level,

including the usage of guards for refreshing, and formally verify it for both the

key schedule and plaintext using Coco. Finally, we comment on the situation

for the later rounds.

Formal verification of the S-box. As a first step, we formally verify with Coco

that our proposed fix for the second-order DOM-dep multipliers is secure. For

that, we create a GF (22) and a GF (24) DOM-dep multiplier implementation in

System Verilog and verify the security in the time-constrained probing model

for both implementations, which takes a few seconds. We then focus on the

S-box construction proposed in Section 3.3, which does however not use the

fixed DOM-dep multipliers to save randomness, which we verify for six cycles.

We mark the three input shares (eight bits each) as sensitive values and the

78 bits of randomness for refreshing, which we all mark as uniformly random.

Coco confirms the second-order security of our S-box implementation in the

time-constrained probing model after running for approximately 1.5 days.

Formal verification of COTG for SubWord of key schedule. In order to formally

verify one round of the key schedule using COTG, we label the three shares of

the complete 128-bit key state as sensitive variables. During the computation of

SubWord, these will be used as guards for refreshing. Additionally, we mark the

64 bits of fresh randomness required by the key schedule in Stage 4 of the S-boxes.

With Coco, we can confirm the probing security of the construction computing

four S-boxes in parallel over one round in 2 days and 18 h. This involves solving

one SAT formula per unshared key bit, i.e., 128 SAT formulas in parallel. Not

every SAT formula needs the same amount of time to solve, for example, the

formulas of key bits that are not processed by SubWord are solved very quickly

(in 2 s), while it takes up to the indicated 2 days and 18 h to check the security

of key bits processed by the S-box.

One of the goals when constructing our design was to keep the refreshing terms

used in the key schedule and plaintext isolated from each other to allow for easier

security analysis. That is, no randomness or guards for refreshing are used in both

the key schedule and the processing of the plaintext, and the only meeting point

is AddRoundKey. Processing of the plaintext does not require fresh randomness
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in Stage 5 where the linear operations are done, but still, the RNG produces 64

bits of fresh randomness in that cycle, which we use for refreshing the key state

after SubWords, impeding to probe key bytes in two different rounds.

Formal verification of COTG for SubBytes of plaintext. Compared to verification

of the key schedule, verification of the COTG-based concept for the plaintext is

much harder due to more complex dependencies between the state bytes. First,

16 S-boxes are computed in parallel instead of only four, and the guards used

for these S-boxes are at the same time sent through their own S-box, where

other guards are used. Second, we are using a combination of guards and fresh

randomness for refreshing the multipliers connected by the ⊕ operation. Due

to these two aspects, verifying a complete round for the complete 128-bit state

becomes computationally infeasible.

Therefore, we constrain the verification to super boxes 0 and the first byte of

super box 1 (s(0,1)), i.e., we mark the whole 128-bit state of the AES as sensitive

but disable the S-box computation for (s(1,2), s(2,3), s(3,0)) and the bytes of the

super boxes 2 and 3. This should not affect the verification of super box 0 since,

in the first three stages, every super box uses guards only from the same or

neighbor super box. Using this setup, we verify the construction for the first

three stages, including the resharing phase of Stage 4. In Section 4.2, we discuss

that inputs to Stage 4 are independent of each other, which allows to start the

verification after Stage 3, assuming independent input shares. We verify the

design beginning with the integration phase in Stage 3 until the end of Stage 5,

including MixColumns, which is completed successfully.

An attempt to verify a complete round at once was not conclusive, as the

verification has been running for 55 days, and no leak has been found yet, but

the security for all bits could not be confirmed either. The formula for the 88

bits not sent through S-boxes, which are only used as guards, could be solved

within seconds, for further five bits we could confirm probing security after 37,

40, 41, 47, and 48 days respectively, but the confirmation for the remaining bits

is still open.

Security across several rounds. As described above, our COTG-based design is

considered to be probing secure for one round. Although we do not make any

security claim beyond one round, our practical evaluations indicate that multiple

rounds of our implementation are also secure due to the refreshing performed

at two points in the design at the end of every round. First, we add 64 bits

of fresh randomness before MixColumns by performing column-wise resharing.

Second, AddRoundKey refreshes the complete 128-bit state of the cipher with

state-independent key material. The key is completely independent of the state

because of the strict separation of guards and fresh randomness for the key

schedule and plaintext. However, after two rounds, the key shares and the state

cannot be considered completely independent anymore because of the AES key
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Figure 5.: Experimental analysis of our masked AES using 100 million traces.

schedule. More concretely, the key bytes are initially completely independent

of each other. After executing one round of the key schedule, every key byte

will at least depend on one other key byte, the guards used in the S-box, and

some randomness. Even though this might lead to a small bias, our practical

evaluations using TVLA confirm that this bias is not observable nor exploitable

in practice.

6.3. Experimental Verification

In the last section, we discuss the outcome of the formal analysis, which indicates

that our design is also second-order secure in the presence of glitches. Since formal

verification is limited to less than one round of the design, we show practical

evidence for the proposed statements for multiple rounds by porting the design

to an FPGA in this section.

Evaluation setup. We perform practical evaluations using a first-, second- and

third-order t-test on the NewAE CW305 Artix-7 FPGA evaluation board con-

nected to a PicoScope 6404C at 625 Ms/s sampling rate (1.6 ns sampling interval).

The hardware design operates at a clock frequency of 1.5625MHz, which was

chosen as a fraction of the sampling rate. To reduce the noise level, we synchronize

the clocks between the FPGA and the oscilloscope and apply a preprocessing step

to provide the equal alignment of traces. We implement our complete AES design,

including the Trivium RNG as shown in Figure 4, along with some outer control

logic used to send and receive data via the USB interface. The implementation

receives three shares for the 128-bit plaintext, three shares of the 128-bit key, and

a key-IV-pair to initialize the Trivium RNG. The Trivium RNG is initialized once

in the beginning and produces 64 bits of fresh randomness per cycle during the

encryption. In order to show whether or not a masked implementation exhibits

first-order leakage, we follow the standard method and perform Welch’s t-test
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Figure 6.: 1st-order t-test with RNG off and no initial sharing (two shares of

plaintext and two shares of key are zeros) using 100 000 traces.

following the guidelines of Goodwill et al. [Goo+11]. The basic idea of the test

is to create a random and a fixed set of measurements, one representing the

power consumption of the design when processing a random input and one when

processing a fixed (constant) input. In order to determine if there are statistically

significant differences in the mean power consumption of the two trace sets, one

can compute Welch’s t-score. The null hypothesis is that both trace sets have

equal means, which can be rejected with a confidence greater than 99.999% if

the t-score exceeds ±4.5. This implies that the trace sets can be distinguished

from each other. A first-order univariate t-test investigates distinguishably on

the basis of the mean (first statistical moment) of the trace sets, a second-order

univariate t-test uses the variance (second statistical moment) and a third-order

univariate t-test uses the third statistical moment.

Discussion. To conduct a first-order, second-order, and third-order t-test, we

choose a constant key, for which we generate a new valid sharing for every trace.

For the fixed trace set, we set the input plaintext to zero and generate a new

valid sharing for every trace of the fixed set. For the random set, we choose

all three plaintext shares randomly for every trace. The fixed and random sets

are recorded in an interleaved manner, and the RNG is enabled during our

measurements. We measured the complete AES encryption, i.e., 10 rounds, as

shown in a sample power trace in Figure 5a. The results of the first-order and

second-order t-test are given in Figure 5b and Figure 5c. We did not observe

evidence for first- or second-order leakage with up to 100million traces, as the

t-score never crosses the ±4.5 threshold. As shown in Figure 5d, we recorded

third-order leakage as expected. The t-score exceeded the ±4.5 threshold during

the initial AddRoundKey, where the overall noise level is expected to be very low.

Since the key schedule starts one cycle before the processing of the plaintext,

during the initial AddRoundKey, the processing of the data has not yet started,

and the SubWord of the key schedule is only computing the linear mapping. No

significant other computations are performed, leading to a low noise level.
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To verify the soundness of our setup and to demonstrate that our counter-

measure is effective, we show the t-test results of the design without supplying

fresh randomness in Figure 6. This means we disable the RNG and the initial

sharing of plaintext and key, i.e., two shares of the plaintext and two shares of

the key are all zeros. As expected, after 100 000 traces, the design clearly showed

first-order leakage.

7. Conclusion

In this work, we presented a second-order masked hardware design of the AES with

an improved latency-randomness tradeoff. The resulting round-based (parallel)

DOM-masked AES design works with three shares, has a latency of 5 cycles

per round, and requires 3 200 random bits per encryption, which can smoothly

be delivered by an RNG producing 64 bits of fresh randomness per cycle. The

core of our AES design is a masked 5-cycle S-box which requires 78 bits of fresh

randomness. We show how randomness can be reused across S-box instances

using the COTG technique. We give formal security proofs, conduct an empirical

evaluation using TVLA on an FPGA, and compare the implementation cost in

terms of area consumption.
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Abstract Masking is a popular countermeasure to protect cryptographic im-

plementations against physical attacks like differential power analysis. So far,

research focused on Boolean masking for symmetric algorithms like AES and

Keccak. With the advent of post-quantum cryptography (PQC), arithmetic

masking has received increasing attention because many PQC algorithms require

a combination of arithmetic and Boolean masking and respective conversion

algorithms (A2B/B2A), which represent an interesting but very challenging re-

search topic. While there already exist formal verification concepts for Boolean

masked implementations, the same cannot be said about arithmetic masking and

accompanying mask conversion algorithms.

In this work, we demonstrate the first formal verification approach for (any-

order) Boolean and arithmetic masking which can be applied to both hardware

and software, while considering side-effects such as glitches and transitions.

First, we show how a formal verification approach for Boolean masking can be

used in the context of arithmetic masking such that we can verify A2B/B2A

conversions for arbitrary masking orders. We investigate various conversion

algorithms in hardware and software, and point out several new findings such as

glitch-based issues for straightforward implementations of Coron et al.-A2B in

hardware, transition-based leakage in Goubin-A2B in software, and more general

implementation pitfalls when utilizing common optimization techniques in PQC.

We provide the first formal analysis of table-based A2Bs from a probing security

perspective and point out that they might not be easy to implement securely on

processors that use of memory buffers or caches.

1. Introduction

Passive side-channel attacks, including power or electromagnetic analysis, are

among the most relevant attack vectors against cryptographic devices like smart

cards, that are physically accessible by an attacker [KJJ99; QS01]. A commonly

used approach to protect against these attacks is to implement algorithmic coun-

termeasures, for example masking [Cnu+16; GIB18; GMK16; ISW03; Rep+15].

Masking schemes split input and intermediate values of cryptographic computa-

tions into d+ 1 random shares such that observations of up to d shares do not

reveal any information about the native (unmasked) value. Boolean masking,
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where native values correspond to the XOR-sum over its shares, have received

much attention since such schemes are applicable to almost all symmetric crypto-

graphic algorithms. On the other hand, arithmetic masking schemes have also

gained increased importance, especially with the advent of PQC, for which they

generally represent a better fit. In arithmetic masking, native values correspond

to the arithmetic addition over their shares which allows to express operations

like addition and subtraction much more efficiently than with Boolean masking.

Since PQC algorithms often use symmetric building blocks, e.g. to achieve

CCA2-security or for sampling random numbers, arithmetic masking often has

to be combined with Boolean masking [Bos+21; FO99; Sch+19], which requires

efficient and secure A2B/B2A conversion techniques. Many works have shown

that hardware side-effects like glitches or transitions can violate the security of

masking schemes in practice. Hence, the design of masked cryptography requires

a detailed understanding of the targeted hardware platform, and is therefore a

notoriously error-prone and time consuming task. Consequently, there is strong

need for verification tooling that supports this effort to the highest possible

extend.

While there already exists a vast amount of literature on the verification of

Boolean masking, including formal verification approaches like Rebecca[Blo+18],

maskVerif [Bar+19], Coco (Alma) [Gig+21; HB21], SILVER [KSM20], or

scVerif [Bar+21], the same cannot be said about arithmetic masking.

Limitations of Existing Approaches The first works on formal verification of

arithmetic masking schemes were published withQMVerif by Gao et al. [Gao+19a]

and LeakageVerif by Meunier et al. [MPH21]. These works already form a good

foundation, but are limited in several ways.

QMVerif was published in 2019 by Gao et al. [Gao20] for the verification

of first-order Boolean and arithmetically masked software. QMVerif uses type

inference to determine the distribution of every variable in the masked software,

which is either uniform, independent of private inputs or dependent on private

inputs. Due to the lack of completeness guarantees of type inference, deducing

the distribution might not always be possible and might lead to false positives

[MPH21]. In that case, QMVerif uses model-counting to compute the exact

distributions using a SAT solver, which is complete, but does not scale and

consequently often requires significant computational resources such as GPU

acceleration [Gao+20]. This scalability issue leads to the conclusion that model-

counting-based masking verification is generally infeasible in the context of

arithmetic masking. Besides that, QMVerif does not support masked hardware

and heavily restricts supported masked software, e.g. by requiring a specific

high-level syntax, not allowing branches, loops or functions and limiting variables

to 8 bit. The leakage model of QMVerif hence also does not consider hardware

side-effects like glitches and transitions, and it is unclear wether QMVerif can

be applied to A2B/B2A conversions without a power-of-two-modulus. The same
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authors later propose HOME for higher orders following the same approach, but

do not evaluate it for higher-order arithmetic masking. Since the tool is not (yet)

open-source, it is not possible to investigate its further functionality.

Meunier et al. [MPH21] propose LeakageVerif, a Python verification library

based on substitution [Bar+15], which tries to show that an expression is leakage-

free if it can be divided into sub-expresions, which can iteratively be substituted by

fresh random variables. The evaluation shows that LeakageVerif is more efficient

than QMVerif, but it is not complete and fails to verify common A2B/B2A

conversions such as Goubin-A2B [Gou01] and Coron et al.-B2A. LeakageVerif

works for first-order implementations only, does not consider glitches, table

lookups, or moduli which are not a power of two.

In general, both QMVerif and LeakageVerif are sound (leakages are never

missed), but can sometimes only achieve completeness (leaks are only reported if

they really exist) if they fall back to expensive and inefficient model-counting.

Other existing verification tools focus exclusively on Boolean masking and

often perform exact model-counting, which are therefore unlikely to be applicable

to arithmetic masking. For example, maskVerif has been shown infeasible in this

context by several works [Gao+19b; Gao+20; MPH21]. In 2021, Bos et al. present

scVerif [Bar+21], which was later modified for the verification of a first-order

arithmetically masked software implementation of Kyber [Bos+21]. However,

scVerif was not evaluated for other arithmetically masked programs, so no general

statement about its efficiency or accuracy can be made. It does consider hardware

side-effects but only if they have been identified in prior empirical experiments,

which means the method is not sound and binds the evaluation stronger to the

microarchitecture, while leaving no potential for masked hardware. We expect

SILVER [KSM20] to also not be able to deal with the complexity of arithmetic

expressions since it exclusively tracks exact distributions with the help of binary

decision diagrams.

In 2018, Bloem et al. suggest to approximate Fourier coefficients of Boolean

functions [Blo+18] as a way to perform cheaper model counting that achieves

soundness but not completeness. The resulting approach was evaluated for

Boolean masked hardware (Rebecca), and later for software on CPU netlists

(Coco) [Gig+21; HB21], and has shown to be efficient with a relatively low rate

of false positives. However, it was not evaluated for arithmetic masking in terms

of efficiency, accuracy, and general applicability for PQC-relevant use cases.

Our Contribution We improve this situation by demonstrating that the security

of arithmetically masked software/hardware can be efficiently verified using

verification approaches tailored to Boolean masking. More concretely, we provide

the following contributions:

• We show how verification methods based on approximated Fourier coeffi-

cients of Boolean functions (as used by Rebecca/Coco) can be efficiently

applied in the context of arithmetic masking. The resulting verification
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approach can successfully be applied to both masked hardware and soft-

ware written in Assembly language. Its soundness is sufficient for many

PQC/ARX applications. This approach is also the first to consider physical

defaults (glitches, transitions) and the first to be evaluated for higher orders

in the context of arithmetic masking (Section 3).

• In case of hardware implementations, we analyze different versions of

the Coron et al.-A2B/B2A [CGV14] conversion algorithms and identify

potential weaknesses caused by glitches. We then present a proof-of-concept

implementation that is secured against glitches and can be fully verified

using our approach (Section 4).

• In the context of software implementations, we analyze various popular

A2B/B2A conversion algorithms using power of two or prime moduli and

provide new insights on implementation aspects that can reduce their

protection order. More concretely, we report new findings of transition

leakages in Goubin-A2B [Gou01] and point out more general pitfalls when

using lazy-reduction techniques in the context of masking. Additionally, we

are the first to investigate architecture side-effects of table-based A2Bs and

discuss why they might not be easy to implement securely on processors

that make use of memory buffers or caches. Last but not least, we also show

applicability of this approach in the context of symmetric cryptographic

schemes by verifying the security of masked software implementations of

one round of Speck and the ARX-box Alzette(Section 5).

• We plan to publish the software and hardware implementations on Github1.

2. Background

In this section, we cover necessary background on masking, and A2B/B2A

conversion techniques. Since our approach is based on Rebecca/Coco, we briefly

describe the verification concept and the applied adversary model.

2.1. Masking Schemes and Applications

Masking is a prominent algorithmic countermeasure against Differential Power

Analysis [KJJ99] that splits intermediate values of a computation into d + 1

uniformly random shares [Cnu+16; GIB18; GMK16; ISW03], such that an

attacker who observes up to d shares cannot deduce information about native

(unshared) intermediate values. Boolean masking is commonly used for symmetric

cryptography, and uses the exclusive or (⊕) operation to split a value b into

d + 1 uniformly random shares b0 . . . bd such that b =
⊕

i bi = b0 ⊕ · · · ⊕ bd.

In arithmetic masking schemes, the relation between shares of a value a is the

1https://github.com/barbara-gigerl/arithmetic-masking-hw-sw

https://github.com/barbara-gigerl/arithmetic-masking-hw-sw
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modular addition, yielding a =
∑

i ai = a0 + · · · + ad mod q. In both cases,

masking linear functions is trivial since they can simply be computed for each

share individually. Masking non-linear functions is more challenging since these

functions operate on all shares of a native value and thus usually require additional

fresh randomness to avoid unintended direct combination of shares. The concrete

technique (Boolean or arithmetic) determines which operations are (non-)linear.

PQC algorithms often perform operations like matric/polynomial multiplica-

tion, which can be efficiently masked in the arithmetic domain when broken down

into coefficient-wise modular addition/multiplications using e.g. the number

theoretic transform (NTT). In practice, arithmetic masking often has to be com-

bined with Boolean masking since building blocks including Gaussian samplers

and lattice decoding, or constructions like the Fujisaki-Okamoto transform for

achieving CCA2-security are more efficiently masked in the Boolean domain.

Therefore, many masked implementations use dedicated conversion algorithms

to transform shares from the arithmetic to the Boolean domain (A2B) and vice

versa (B2A). Besides PQC, arithmetic masking is also applied to ARX-based

implementations like SHA-256 or ChaCha, but comes with a significantly higher

runtime overhead compared to Boolean masked variants of non-ARX symmetric

algorithms.

2.2. Mask Conversion Techniques

Many cryptographic schemes require to switch between the Boolean and the

arithmetic domain when respective masking techniques are applied. The per-

formance of the protected scheme is mainly determined by the A2B and B2A

conversions used, which is why there has been a lot of research in this direction

[CGV14; Cor+12; Cor+15; Cor+22; Cor17; Sch+19; SMG15]. Existing conver-

sion algorithms either follow an algebraic or a table-based approach. An algebraic

conversion algorithm performs the whole conversion at once, while table-based

approaches first pre-compute a table which is later used during the actual con-

version. B2A conversions can be done very efficiently following the algebraic

approach, while A2B is less efficient, and therefore often apply a table-based

approach.

In 2001, the first algebraic conversion algorithms were proposed by Goubin

[Gou01], and by Coron et al. [CGV14] for higher orders. They propose the

SecAdd algorithm, which allows to securely add Boolean shares at any order using

a power-of-two modulus. Many follow-up works use Coron et al.-A2B/B2A as a

basis, and suggest several performance improvements [BCZ18; Cor+15; Cor17;

HT19]. Since PQC applications often require a prime modulus, Barthe et al.

[Bar+18], and later Schneider et al. [Sch+19] suggest how to adapt Coron et

al.-B2A to work with prime moduli.

Table-based A2B conversion algorithms use pre-computed tables to reduce the

computation effort during the actual conversion. In general, A2B conversions

transform the shares together with the carry which is produced in an arithmetic



2. Background 205

addition. The pre-computed tables are used to handle the conversion of the

carry, and prevent unintended unmasking of native values. The first table-based

A2Bs were suggested by Coron-Tchulkine [CT03] and Neiße-Pulkus [NP04]. They

were however shown to be incorrect and insecure by Debraize [Deb12], who

suggests several corrected and optimized versions of their algorithms. Recently,

Beirendonck et al. [BDV21] show that Debraize-A2B does also not fulfill its

security claims, and propose two further table-based A2Bs.

A2B/B2A conversions are applied to masked implementations of various PQC

and ARX schemes against side-channel attacks. For example, the SecAdd algo-

rithm by Coron et al. [CGV14] has been used as a cryptographic primitive in

several software [AFM17; Bar+18; Bos+21; Cor+15; GR19; Sch+19] and hard-

ware implementations [Che+15; Fri+22]. Debraize-A2B has also been applied

recently in works on masking PQC [Bos+21; Ode+18].

2.3. Masking Verification with Rebecca/Coco

Rebecca [Blo+18] is a tool to formally verify Boolean-masked hardware implemen-

tations defined by gate-level netlists. In order to verify a circuit, a label is assigned

to each circuit input. The label is either a share, fresh randomness or unimportant.

During the verification process, these labels are propagated through the circuit

and each gate is assigned a correlation set according to the propagation rules. In

general, a correlation set contains information about the statistical dependence

of the respective gate on the circuit inputs. Tools like Silver [KSM20] compute

these dependencies accurately, while Rebecca approximates statistical dependence

with non-zero Fourier coefficients [Blo+18]. In general, the Fourier or Walsh

expansion of a boolean function refers to the representation of the function as a

multilinear polynomial [ODo14]. A term in the polynomial, which is either a label

or a combination of labels, with a non-zero Fourier coefficient indicates statistical

dependence on the respective circuit input. The approximation is performed by

not tracking the exact Fourier coefficient, but only whether a term has a non-zero

coefficient or not. A correlation set contains all terms with non-zero coefficients.

Later, an optimized variant of this approach was implemented in Coco, a tool

for the formal verification of (any-order) Boolean masked software implementa-

tions on concrete CPUs [Gig+21; GPM21]. The main purpose of Coco is to

analyze the potential implications of hardware side-effects like glitches within a

CPU on masked software implementations. Coco can additionally incorporate

control flow logic, which is required for the verification of software and iterative

hardware circuits. Before the verification, the CPU netlist is simulated together

with a masked assembly implementation, in order to obtain a trace of the (con-

stant) data-independent control signals like memory/register access patterns and

branches. Next, similar to Rebecca, initial labels are assigned to registers and

memory locations, which are further propagated through the netlist for multiple

cycles to construct correlation sets, while considering software-specific control

signals. The verification fails if there exists a gate in the netlist which directly
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correlates with a native value. In that case, Rebecca reports the leaking gate,

while Coco additionally reports the exact clock cycle.

2.4. Adversary Model

The robust probing model for hardware [Fau+18; ISW03] allows an attacker to

observe the values of up to d wires in a masked circuit using (g, t, c)-extended

probing needles to optionally include glitches (g = 1), transitions (t = 1) or

coupling (c = 1). The circuit is dth-order secure if the adversary is not able to learn

anything about the native value by combining these observations. Accordingly, the

standard probing model for software allows the adversary to probe intermediate

program variables.

In this work we use the so-called time-constrained probing model [Gig+21],

which is currently adopted by Coco for masked software implementations. The

main difference to the robust probing model is the time restriction of each probe

to one clock cycle, which is necessary to correctly model the execution of masked

software on netlist level. More concretely, in the time-constrained probing model

the attacker uses (g, t, 0)-extended probes to observe the value of any specific

gate/wire in the CPU netlist for the duration of one clock cycle. The gate/wire

and cycle can be chosen independently for each probe.

The time-constrained probing model can be applied to masked hardware

circuits and allows to handle iterative circuits directly without the need to

perform unrolling thanks to its time-awareness. In Appendix A we give an

example of an iterative circuit and its unrolled version based on the suggestion

of [Bha+10]. Verification approaches adopting the classic/robust probing model

usually unroll the processed iterative circuit, which works well for simple circuits,

but is more difficult for circuits with more complex control logic, such as state

machines. Iterative circuits can be seen as a reduced version of a CPU, and

therefore allows the direct application of the time-constrained probing model.

The original version of Coco provides two different verification modes in the

time-constrained probing model. Stable verification focuses on pure algorithmic

security. Transient verification uses (g, t, 0)-extended probes, and therefore

considers algorithmic security and wire/register transitions and glitches within

the hardware. For the purpose of this work, we add a third mode, the Transitions

verification mode, working with (0, t, 0)-extended probes, which is convenient

since it reports stable and transition leaks, but without the runtime overhead of

the transient mode.

3. Verification of Arithmetic Masking in the
Boolean Domain

In this section, we explain how one can perform verification of arithmetic masking

using a method based on approximating Fourier coefficients of Boolean functions
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that was previously used by the tools Rebecca/Coco in the context of Boolean

masking. In Section 3.1 we recall how arithmetic expressions can directly be

broken down into equivalent Boolean expressions on bit-granularity. In Section 3.2

we discuss optimization strategies that can be used to reduce the complexity of

the derived Boolean expressions for the initial labeling and to more efficiently

propagate expressions through dedicated arithmetic addition circuits. We also

comment on the soundness and completeness of our approach. Finally, we give a

small self-contained example in Section 3.3.

Notation

We denote with a(i) the i-th bit of variable a, with a0 being the least significant

bit (LSB). The j-th share of a native variable x is identified as xj . Similar

to Bloem et al. [Blo+18], we denote the correlation set of a gate/wire w by

C(w) = {...}. As introduced in [Gig+21], the ⊗-operator computes the element-

wise multiplication of two correlation sets. We use small letters for symbolic

expressions, while capital letters are used for wires in a circuit.

3.1. Modeling Arithmetic Expressions using Boolean Logic

A netlist represents a circuit design after logic synthesis that models gates as

Boolean functions mapping 1-bit inputs to a 1-bit output, and indicates their

interconnection. We aim at performing netlist-level verification of a circuit on bit

granularity. In the end, a bitwise view on all terms computed by the circuit must

still valid in the context of masking. This implies that the dependencies between

the shares must be described using Boolean equations on bit granularity. Such

a mapping can be obtained based on the definition of the Ripple-carry adder,

which represents a cascade of 1-bit full adders, where each carry bit ripples to the

next full adder. Each full adder takes two 1-bit summands and a 1-bit carry-in,

and computes the arithmetic sum and respective carry-out [Man82].

Consider a sum s, which is computed from the summands u and v such that

s = u+ v. If u and v are n-bit values, s is represented by n+ 1 bits, and hence,

n+ 1 full adders are needed to compute s. Each full adder takes two summand

bits u(i) and v(i) together with the carry-in c(i), and computes s(i) as:

s(i) = u(i) ⊕ v(i) ⊕ c(i) with c(0)=0 (1)

The carry-out bit c(i+1) is then computed based on the carry-in c(i) by the

following recursive formula:

c(i+1) = (u(i) ⊕ v(i)) ∧ c(i) ∨ (u(i) ∧ v(i)) (2)

Equation 1 already gives a valid first-order Boolean sharing for s using the two

shares x1 = u and x2 = v ⊕ c.
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If a sum t is split into three summands u, v and w such that t = u+ v + w,

basically the same equations apply, and t can be computed in two steps. In the

first step, the partial sum s = u+ v is computed, which yields the carry c. In the

second step, t is computed by adding the partial sum to the remaining summand:

t = s+ w, which produces the carry e:

t(i) = s(i) ⊕ w(i) ⊕ e(i) (3)

= u(i) ⊕ v(i) ⊕ c(i) ⊕ w(i) ⊕ e(i) (4)

Equation 4 gives a valid second-order Boolean sharing for t using three shares

x1 = u, x2 = v and x3 = w⊕ c⊕ e. Formulas for more than three summands can

be derived in a similar way, each resulting in a valid higher-order sharing. When

working with d+ 1 shares, the first d Boolean shares would always be equal to

the first d arithmetic shares, while the last Boolean share needs to additionally

include the carry.

3.2. Tailoring the Verification Approach

Arithmetically masked circuits process arithmetic input shares, while Rebecca/Coco

expects Boolean input shares. The derived Boolean equations for arithmetic

expressions in Section 3.1 can now be used to translate arithmetic shares to the

Boolean domain, such that Rebecca/Coco could work with it. In the following,

we describe how one can obtain such a translation in a correct and efficient way,

how the resulting expressions can be propagated efficiently, and comment on

soundness, completeness and scalability of the resulting approach.

Initial Labeling

Tools for the formal verification of masking require a set of initial labels that

specify the location/dependency of shares on circuit inputs, registers or memory

cells that are then further tracked throughout a circuit. In the case of (first-order)

Boolean masking, each bit of a native value a(i) is initially masked with a random

mask r(i). Therefore, the native value a(i) can simply be expressed as the XOR

between the two shares a(i) ⊕ r(i) and r(i). As shown in Figure 1, the labels

assigned prior to the verification would then be b
(i)
0 = a(i) ⊕ r(i) and b

(i)
1 = r(i).

In the case of (first-order) arithmetic masking, each bit of a native value a(i)

is initially masked with a random mask r(i) using modular additions. According

to Equation 1, the native value a(i) can be expressed as the XOR between the

two shares a(i) ⊕ r(i) ⊕ c(i) and r(i). In contrast to Boolean masking, we also

need to include the carry of the addition c(i), which depends on lower bits of

a(i) and r(i). The first option to obtain a valid labeling for arithmetic shares is

thus to resolve c(i) recursively according to Equation 2. The initial labels would
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Boolean sharing

a(i) ⊕ r(i) ⊕ r(i)

b
(i)
0 b

(i)
1

Arithmetic sharing

a(i) ⊕ r(i) ⊕ c(i) ⊕ r(i)

b
(i)
0 b

(i)
1

Figure 1.: Initial labeling for Boolean and arithmetic masking as given to the

verifier

then be given by b
(i)
0 = (a(i) ⊕ r(i))⊕ c(i), and b

(i)
1 = r(i). Here, the carry c(i)

is computed recursively for each bit position, which adds already quite complex

terms to the correlation set at the beginning of the verification, especially for the

more significant bits of the arithmetic shares since the depend in a non-linear

way on all lower bits.

It is however also possible to use a different initial labeling that incorporates

additional information that is available at the beginning of the verification and

significantly simplifies the resulting Boolean expressions. More concretely, with

each c(i) being a non-linear combination of all lower bits (including their masks),

this expression alone must never be observable by an attacker. Put differently,

each bit of a fresh arithmetic share is only independent of any native values

because the term r(i) is added in a linear way and does not occur in any of the

lower bits (and thus also not c(i)). It is hence sufficient to verify if the linear term

r(i) in a certain bit of one arithmetic share ever gets in contact with the same r(i)

in the corresponding bit of the other share, similarly as in the case of Boolean

masking (c.f. Figure 1). This simplification leads to simpler expressions for the

initial labels and thus improves verification runtime. Note that this simplification

is only used for deriving initial labels but not during mask refresh operations

throughout the masked computation where our assumptions on unique usage of

fresh randomness does not necessarily hold anymore. This simplification also

applies to initial labels of higher order arithmetic masking in a similar manner.

Fourier Expansion of Arithmetic Addition

One particularly challenging aspect of verifying arithmetic masking is scalability

due to complex dependencies between shares on bit-level, introduced by the carry

when an arithmetic addition is computed. In hardware, arithmetic additions

are often performed by dedicated sub-circuits. For example, CPUs usually have

such an adder circuit in their ALU (Arithmetic Logic Unit). In Equation 5 we

propose the Fourier expansion W of arithmetic additions, which allows to directly

obtain correlation sets for the result of an adder circuit, instead of computing

an individual correlation set for every gate within the adder, and thus speeds

up the verification runtime. The expansion of the sum is based on the Fourier

expansion of the carry given in Equation 6.
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W (s(j)) =
1

2
u(j) · v(j) · c(j) + 1

2
u(j) +

1

2
v(j) − 1

2
W (c(j)) (5)

W (c(j)) =
1

2
W (c(j−1)) +

1

2
v(j) +

1

2
u(j) − 1

2
u(j) · v(j) ·W (c(j−1)) (6)

In Section 5.1 we give more details about how this can be used to increase

the performance of software verification. More details on how we derived both

expansions are given in Appendix B.

Soundness and Completeness

While masking verification based on approximated Fourier coefficients of Boolean

functions is sound (leakages are never missed), it is not complete (leaks might

be reported although the implementation is secure). Throughout a masked com-

putation it might happen that certain terms in the exact Fourier representation

cancel out or evaluate to constants. Our verification approach might miss such

situations since it only keeps track of whether a term occurs in a correlation set or

not (for performance reasons), which ultimately results in an overapproximation

of the exact Fourier representation. If a situation occurs in which e.g. multiple

shares with a correlation coefficient of zero are combined, the verifier would

report a leak that does not exist in practice (which implies non-completeness).

Soundness is however guaranteed by the fact that the verifier always keeps track

of an overapproximation of all the terms that a register/wire could depend on,

hence, a real leak can never be missed.

In case of sound but not complete masking verification approaches, the amount

of false positive leakage reports in realistic scenarios plays an important for

practicality. Simply speaking, the longer a computation becomes, the more likely

a false positive occurs. Note however that after every mask refresh operation,

the newly introduced randomness essentially eliminates possible future false-

positive leaks caused by over-approximation that has happened thus far. In

other words, as long as mask refreshing occurs somewhat frequently (which is

generally the case) the occurrence of false positive leak reports will generally

be quite low. Later, in Section 4 and Section 5, we show that the soundness of

our approach is in fact sufficient to perform meaningful verification of masked

SW/HW implementations in many typical PQC/ARX applications.

During our analysis in this work, we only really observe a single false positive

when verifying Goubin-A2B [Gou01] in software, as discussed in more detail in

Section 5.2.

3.3. Example

Finally, we give an example about how correlation sets are constructed using our

verification approach. Assume an example circuit which takes two 2-bit arithmetic
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shares a + r (input signal A0) and r (input signal A1), and two bits of fresh

randomness s (input signal S). The ultimate goal is to compute (A0 + S) +A1

by using two Full Adders. In order to verify the first-order security of this circuit,

one first assigns the respective labels to the inputs which result in the following

correlation sets:

C(A(0)
0 ) = {{b(0)0 }}, C(A(0)

1 ) = {{b(0)1 }}, C(S(0)) = {{s(0)}},

C(A(1)
0 ) = {{b(1)0 }} C(A(1)

1 ) = {{b(1)1 }} C(S(1)) = {{s(1)}}

The input bits are propagated to the first adder, which computes (A0 + S).

We obtain the following correlation sets at the output signals of the first adder:

C(Adder1
(0)
sum) = C(A(0)

0 )⊗ C(S(0)) = {{b(0)0 , s(0)}}

C(Adder1
(1)
sum) = C(A(1)

0 )⊗ C(S(1))⊗ C(Adder1
(1)
carry)

= {{b(1)0 , s(1)}} ⊗ {{1}, {b(0)0 }, {s(0)}, {b(0)0 , s(0)}}

= {{b(1)0 , s(1)}, {b(1)0 , s(1), b
(0)
0 }, {b(1)0 , s(1), s(0)},

{b(1)0 , s(1), b
(0)
0 , s(0)}}

C(Adder1
(2)
sum) = C(Adder1

(2)
carry)

Note that the second bit of the adder has to be labeled with the (recursively

resolved) carry of the addition. These correlation sets are then propagated to

the second adder:

C(Adder2
(0)
sum) = C(A(0)

1 )⊗ C(Adder1
(0)
sum) = {{b(0)1 , b

(0)
0 , s(0)}}

C(Adder2
(1)
sum) = C(A(0)

1 )⊗ C(Adder1
(1)
sum)⊗ C(Adder2

(1)
carry)

= {{b(1)1 , b
(1)
0 , s(1)}, {b(1)1 , b

(1)
0 , s(1), b

(0)
0 }, {b(1)1 , b

(1)
0 , s(1), s(0)},

{b(1)1 , b
(1)
0 , s(1), b

(0)
0 , s(0)}}

C(Adder2
(2)
sum) = C(Adder1

(2)
sum)⊗ C(Adder2

(2)
carry)

C(Adder2
(3)
sum) = C(Adder2

(2)
carry)

Obviously, (A0 + S) + A1 is a valid operation in the context of arithmetic

masking and this is also visible on bit-level. The computation of the carry bits

of the second adder combines shares in a non-linear way, which typically leads

to a leak. However, the addition is still secure in the end since (A0 + S) adds

randomness to each share bit linearly. When performing an addition of two

operands we always conservatively label one bit more than the size of the largest

operand to correctly capture bit width of the result independently on the concrete

input values. Note that by performing modular reduction one can clear the carry

residing in the most significant bit (MSB). This type of computation occurs very
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frequently in the beginning of A2B algorithms when two arithmetic shares should

be added since the addition of fresh randomness is equivalent to a mask refreshing

operation.

4. Application to Masked Hardware
Implementations

In this section we apply our verification approach to hardware implementations

of Coron et al.-A2B. While it has already been shown in the past that this

algorithm is secure in the stable setting, which is also confirmed by our verifier,

we want to put our focus mainly on settings where we also consider transition and

glitch effects. We show, both via a formal analysis, and in empirical evaluations,

that hardware side-effects can reduce the protection order of the implementation.

While the straight-forward approach of adding additional register stages whenever

needed can eliminate this problem, we also want to point out that this comes

with a noticeable increase of latency.

Coron et al.-A2B/B2A

In 2014, Coron et al. [CGV14] have proposed the first higher-order mask con-

version algorithm, which we refer to as Coron et al.-A2B/B2A in the following.

This algorithm is based on the SecAdd function and allows to perform arithmetic

additions in a Ripple-carry fashion on Boolean shares. More specifically, the

algorithm converts the arithmetic shares a0 and a1 which correspond to the

native value a into the Boolean shares b0 and b1. The conversion starts with

the initial remasking, where the arithmetic input shares are refreshed by adding

fresh randomness, followed by the carry computation. A single native carry bit is

computed based on Equation 2, which can be rewritten as:

c(i+1) = u(i) ∧ v(i) ⊕ u(i) ∧ c(i) ⊕ v(i) ∧ c(i) with c(0) = 0 (7)

However, the algorithm operates on shared carries c0 and c1 instead on the native

c, which are computed bit by bit using secure masked AND gadgets (SecAnd). In

Appendix C we sketch the structure of Coron et al.-A2B when implemented in

hardware. The corresponding B2A conversion chooses the first arithmetic share

a0 randomly, and computes a1 = (b0 ⊕ b1)− a0 using SecAdd. The algorithm is

very efficient for hardware implementations [Fri+22], since SecAdd can be used for

both A2B and B2A, and both can also be applied to higher orders. In Section 5

we formally evaluate both Coron et al.-B2A, and a second-order masked software

implementation of Coron et al.-A2B.
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4.1. Formal Analysis

We implement Coron et al.-A2B with 16-bit shares in hardware. We store all

inputs in registers, and implement the remaining parts as a pure combinatorial

circuit, which takes a single cycle to finish and therefore does not require a

state machine. The input shares as well as the necessary random values are

stored in registers. The verifier confirms algorithmic security for this single-cycle

implementation, while in the transient case under the consideration of glitches,

first-order side-channel protection is not given. More concretely, glitches in the

initial remasking phase and the SecAnd modules, which are part of the bigger

SecAdd, may lead to a temporary combination of shares due to delayed addition

of randomness.

Initial Remasking

Two XOR gates at the circuit’s inputs are used to perform the refreshing during

the initial remasking phase, which each combines an arithmetic share with a

random value. In the worst case, a glitch at the output of the XOR gate

propagates the pure values of a0 and a1, for example, when the wire delay of

the random values is bigger than the wire delay of the arithmetic shares. The

input of SecAdd will then be the arithmetic shares without refreshing, and the

circuit computes a0 + a1 = a for a short time frame in the beginning of the clock

cycle, until all wires stabilize and the randomness arrives at the gates. As a

solution, we add a single additional register stage to store the result of these

XOR computations. This ensures that the SecAdd module’s input comes out of a

register instead of combinatorial logic, and will therefore not glitch.

SecAnd

Coron et al. suggest to use the masked AND gadget proposed by Ishai et al.

[ISW03], called ISW-AND, in the SecAnd-blocks of the conversion. Formal

verification however reports a leak due to glitches in the SecAnd module because

the ISW-AND is not glitch-resistant, and also does not fulfill the required

composability properties. As a solution, we suggest to insert two register stages

to the SecAnd component. Works like [Cor+13; Fau+18; Moo+19; MPG05]

confirm our observation that these two register stages are indeed needed in this

case. Combined with the register stage inserted for the initial remasking, this

results in a high latency overhead, i.e., for n-bit input shares, the implementation

now requires 34 = 2 + 2× n cycles to complete, and also utilizes a state machine

in order to control the execution.

Using this case study, we evaluate our verification approach for masked hardware

circuits in Table 1 by comparing the broken single-cycle implementation to the one
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Table 1.: Verification of Coron et al.-A2B (broken and fixed) in hardware

Algorithm
Input

shares

Runtime

(cycles)

Verification result/runtime

Stable Transitions Transient

Coron et al. [CGV14] 16 bit 1 Ë 11 s Ë 10 s é 1 s

Coron et al. [CGV14] 16 bit 34 Ë 56 s Ë 2min Ë 3min

which adapts our fixes. All experiments are run using a 64-bit Linux Operating

System on an Intel Core i7-7600U CPU with a clock frequency of 2.70GHz and

16GB of RAM. The security on algorithmic level of both implementations can

be shown in 11 seconds and respectively 56 seconds in the stable case. We need

around a second to find the issues in the transient case, and about three minutes

to prove that our fixes indeed provide first-order protection. Our implementation

serves the purpose of a proof-of-concept and allows further extensive optimiza-

tions. However, we consider the discussion of these optimizations along with the

evaluation of area and performance overhead out of scope for this paper.

4.2. Empirical analysis

In the last section we discussed the outcome of the formal analysis which indicates

that glitches in the design are problematic in the context of masking. As a second

step, we show practical evidence for the proposed statements.

Evaluation Setup

We practically evaluate Coron et al.-A2B using a first-order t-test on the NewAE

CW305 Artix-7 FPGA evaluation board connected to a PicoScope 6404C at

312.5Ms/s sampling rate. The hardware design operates at a clock frequency of

1MHz. In order to detect potential first-order leakage, we perform Welch’s t-test

following the guidelines of Goodwill et al. [Goo+11], which is a standard method

to measure information leakage of masked implementations. The basic idea is to

create two sets of measurements, one representing the power consumption of the

design with random inputs (random set), and one with constant inputs (fixed set).

For the fixed set, we assume the native value a is 0 and generate the respective

shares a0 and a1 such that a0 + a1 = a. For the random set, we generate a0
and a1 completely at random. We use fresh random values for the random

inputs in both cases. From these trace sets, one can compute Welch’s t-score to

measure the significance of the difference of means of the two distributions. The

null-hypothesis is that both trace sets have equal means, which is rejected with a

confidence greater than 99.999% if the absolute t-score does not exceed 4.5, and

implies that the trace sets cannot be distinguished from each other.



5. Application to Masked Software Implementations 215

0 500 1000 1500 2000 2500
samples

0

2

4

6

8
|t

-v
al

ue
|

0 10000 20000 30000 40000 50000
samples

0

2

4
4.5

|t
-v

al
ue

|

Figure 2.: T-test scores of the original (left) and the secured (right) implementa-

tion of Coron et al.-A2B using 400 000 power traces

Discussion

Figure 2 shows our leakage assessment using 400 000 traces. The results for

the original, unprotected single-cycle implementation are presented on the left.

The t-test score shows significant peaks over the 4.5 border, indicating first-

order leakage. On the right side, the leakage evaluation of our 34-cycle fixed

implementation is shown, in which the t-score does not cross the significance

boarder. Thus, these measurements confirm the security claim made by the

formal tool. In Appendix D we show the functionality of the measurement setup

by turning the random number generator off.

Note that Coco verifies ASIC netlists of masked implementations and identifies

problematic wires where leaks might occur. The exact structure of this netlist

must be reflected on the final FPGA layout to make concrete security statements,

which is why we cannot simply synthesize the hardware design to the FPGA.

The synthesis process will possibly merge multiple ASIC gates into a single

lookup table (LUT) on the FPGA, and the original netlist structure will not be

preserved. Consequently, one might see artifacts in the measurements stemming

from this merging process, e.g. because the strict separation of shares is lost in

the translation process [Cnu+17]. Therefore, we must ensure to map each gate

in the verified ASIC netlist to a functionally equivalent FPGA LUT, in order to

preserve the original netlist structure as good as possible. We achieve this by

mapping each ASIC gate to a LUT with 2 inputs and one output, by putting a

dont touch = "true" on every gate/wire in the netlist.

5. Application to Masked Software
Implementations

In this section we discuss how Coco can be used to identify leaks in arithmetically

masked RISC-V assembly implementations. In the beginning, we outline the

software verification setup. First, we focus on algebraic conversions, including

Coron et al. [CGV14], Schneider et al. [Sch+19] for prime moduli and Goubin-
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A2B/B2A [Gou01], for which we point out several register overwrite leaks. We

discuss the table-based conversion algorithms of Debraize [Deb12] and Beirendonck

et al. [BDV21], and explain how table lookups can be formally verified from

a probing-security perspective. To conclude the section, we verify the masked

ARX-based schemes Speck 32/64 and Alzette.

5.1. Software Verification Setup

Potential leaks in masked software are either caused by flaws in the algorithmic

design, or due to microarchitectural side-effects of the processor’s hardware.

Flaws in the algorithmic design are mainly attributed to non-uniform sharings of

intermediate variables, accidental combinations of masks, or transition leakage

caused by register overwrites. However, even if such issues are taken into account

there is still no guarantee that such an algorithm, once implemented for a specific

processor, will be free of leaks. For example, a recent work by Gigerl et al.

[Gig+21] has analyzed the RISC-V Ibex core in terms of architecture side-effects

for masked software, and has pointed out multiple additional potential sources

of leakage due to the design of the register file, the SRAM, the ALUs, and the

load-store unit. They created a secured Ibex2 that incorporates some relatively

cheap hardware fixes that mostly eliminate glitch-related issues that are otherwise

difficult to deal with purely on software-level.

For the purpose of this paper we are not so much interested into further netlist

modifications, but rather focus on potential flaws in the algorithmic design of

masked software implementations. We use their secured Ibex core as a reference

platform that comes with a concrete list of hardware side-effects that do or do not

need to be taken into consideration in software, thus allowing for an even playing

field when evaluating and comparing different masked software implementations

of A2B/B2A conversion algorithms. More specifically, the certain common

microarchitectural leakages do not need to be addressed in software because the

secured Ibex already has appropriate fixes on netlist-level. These fixes include:

• A glitch-resistant register file which allows to read and write shares without

combination, as long as the respective software constraints are met

• No hidden registers or always-active computation units

• A glitch-resistant model of the SRAM (similar to the register file)

For more details on these fixes, we refer to the work of Gigerl et al. [Gig+21].

When a masked assembly implementation is executed by the secured Ibex and

the software constraints are met, the leakages which are left are primarily regis-

ter/memory overwrites and leaks caused by algorithmic flaws. The results of the

following analysis can therefore be ported to any other microprocessor, as long

as the respective device-specific fixes against these leaks, either in hardware or in

software, are implemented.

2https://github.com/IAIK/coco-ibex

https://github.com/IAIK/coco-ibex
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The synthesis process will transform the adder, which lies in the ALU of the

secured Ibex, to a set of logic gates. Theoretically, each gate is each assigned

a correlation set during verification, which is very time-consuming. We wrap

up the addition into a custom adder ”gate” instead of splitting it up, which

means only the output wires of the adder must be assigned correlation sets. In

order to achieve this, we identify the addition in the CPU design before synthesis

(which is trivial), move it into a distinct module, and apply keep hierarchy

on this module, which results in a single adder gate on netlist level. In case

of the secured Ibex core, the adder gate is represented by 2 × 32-bit inputs,

and creates a 33-bit output, for which we can compute the correlation set quite

efficiently using Equation 5 and Equation 6. Without this optimization, the

synthesizer would split the adder up into individual logic gates and one would

check the correlation of each of these gates individually. Consequently, especially

verification in transient mode would then not be possible in a feasible time frame 3.

It is important to note that this does not affect the soundness guarantees of our

approach because the correlation sets computed for the outputs of the adder

gates are identical to the correlation sets of an adder which is split up.

5.2. Verification of Algebraic Share Conversions

Coron et al.-A2B/B2A [CGV14]

In Section 4 we discuss the verification of Coron et al. [CGV14] conversion

algorithms in hardware. When verified on a CPU netlist, the algorithm in general

behaves very similar. As shown in Table 1, we implement Coron et al.-A2B and

-B2A in software and verify it successfully. We provide 16-bit A2B and B2A

implementations which we verify in all three modes. Additionally, we implement

4-bit first- and second-order implementations, which can also successfully be

verified with our approach. Compared to the results of Section 4, where we

verify a 34-cycle implementation in 3min, we can verify the respective software

implementation (˜1000 cycles) in 20min, which shows the efficiency of our tool.

Interestingly, both QMVerif and LeakageVerif have to fall back to exhaustive

enumeration when verifying Coron et al.-B2A, while the other direction (A2B) is

possible [MPH21].

Schneider et al.-B2A [Sch+19]

Various A2Bs/B2As work with power-of-two moduli exclusively, while many

lattice-based constructions require a prime modulus. To address this issue,

one can first transform the shares from Fq to F2k , and then apply conversion

algorithms working with power-of-two moduli [Ode+18]. Another possibility

3Runtime of a few hours for a single 32-bit addition
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is to directly adapt a F2k -conversion algorithm to work in Fq. We investigate

Schneider et al.-B2A [Sch+19], which is an adaption of Coron et al.-B2A, and was

initially proposed to build a masked binomial sampler. We sketch the algorithm

in Appendix E. We construct a first-order implementation of Schneider et al.-B2A

with q = 257 and 4-bit input shares.

During conversion, Schneider et al.-B2A heavily uses reductions mod q, which

are usually not implemented using the processor’s mod instruction due to the

instruction’s large runtime overhead. Instead, many practical implementations

use efficient reduction methods like Montgomery [Mon85] or Barret [Bar86] in

combination with lazy reduction, i.e., skipping reductions as long as intermediate

values are guaranteed to fit inside 32-bit words (on 32-bit architectures) [BKS19].

For our implementation, we eliminate all reductions except the very last at the

end of the algorithm, where we stick to Barret reduction. These tricks not only

significantly improve runtime but also reduce the verification runtime drastically,

since mod operations create very complex dependencies between individual bits

of a share. In this setting, we want to point out and interesting pitfall that should

be avoided when using lazy reduction techniques in the context of masking. For

example, in order to convert the Boolean shares b0 and b1, Schneider et al.-B2A

first generates a random number E0 ∈ Fq, and then computes E1 = ((b1 − E0

mod q)−2·((b1−E0 mod q)·b0)) mod q . If one now lazily skips the reductions,

the upper bits of E1 will not be masked anymore due to the smaller bit width of

E0 . To mitigate this potential pitfall on 32-bit architectures, one could simply

always use 32-bit words of randomness whenever mask refreshing is required.

Other than that, the verification points out no issues in the algorithm.

Goubin-A2B/B2A [Gou01]

Goubin’s algorithms [Gou01] fix one output share, while the other is computed

accordingly in order to derive a correct arithmetic or Boolean sharing. Goubin-

B2A fixes a1 = b1 and then applies the recursive rule a0 = (b ⊕ b1) − b1 to

compute the second share, while the respective A2B fixes b1 = a1 and computes

b0 by recursion instead. Goubin-B2A remains popular due to its efficiency (O(1)),

while the A2B conversion is more costly (O(n) for n bits [CGV14]). In Appendix

G we outline both algorithms. We can successfully verify the security of the B2A

conversion in the stable, transition, and transient case. However, we encounter

several issues with the A2B conversion that we now describe in more detail. To

the best of our knowledge, these findings have not been reported yet.

First, Goubin-A2B introduces several problems regarding insecure register

overwrites even if we ensure that our implementation uses dedicated registers

for each of the variables proposed in the original algorithm. The algorithm uses

an intermediate Y , which is initialized with a random variable and overwritten

several times during the computation. Each of these overwrites leaks the XOR

between the old (Yold) and the new (Ynew) value. The verifier points out two

situations during the computation in which Yold⊕Ynew reveals information about



5. Application to Masked Software Implementations 219

the native value a. This issue can however be fixed easily be ensuring that

different registers are used for every re-assignment of Y . In Appendix G we give

a detailed calculation of the issue.

Second, the verifier indicates another leak during the computation, which is

however not a practical problem, but a false positive as already mentioned in

Section 3.2. In the following, we want to briefly highlight the circumstances and

give the exact calculation in Appendix G. During the computation, an attacker can

probe the following 1-bit expression: (Y (0)∧(Y (0)⊕a
(0)
1 ))⊕(a

(0)
1 ∧(Y (0)⊕a

(0)
0 )),

with Y (0) being random. The exact Fourier expansion of this expression does

not contain a single term which depends on both a
(0)
0 and a

(0)
1 alone, but only in

connection with Y (0), and is therefore properly masked. However, the verifier

works with approximated correlation sets, which contain a subset {a(0)0 , a
(0)
1 }

where the random value Y (0) is not contained, and therefore represents a leak.

According to [MPH21], both QMVerif and LeakageVerif also fail to verify

Goubin-A2B correctly because their tools produce false positives. Unfortunately,

they do not discuss the exact issue, and therefore we were not able to make

further investigations.

5.3. Verification of Table-based Share Conversions

Besides algebraic approaches, several A2Bs utilize lookups into pre-computed

tables, such as the ones from Debraize [Deb12] and Beirendonck et al. [BDV21].

A table lookup represents a data-dependent memory access, i.e., an operation

that loads data from a memory address that is data-dependent. Coco was mostly

intended to verify symmetric cryptography, where table lookups are not common

and have therefore not been considered. However, our study shows that the

verification approach can be successfully applied under specific conditions, which

are fortunately fulfilled by all table-based A2Bs that we are aware of.

First, it must be possible to compute all entries in the table with a single

unique function f(i), which depends only on the table index i and constants. This

ensures that every table entry is assigned the same label during the verification

independently of the address. For example, Debraize-A2B uses f(i) = i+ r+ p⊕
(p||r) for initially generated random values (”constants”) r and p. Second, the

evaluation platform must guarantee constant-time memory accesses, i.e., memory

accesses always require the same amount of cycles independently of the memory

address. For example, the original Ibex core fetches multiple memory locations in

case of a misaligned memory access, and therefore requires more cycles compared

to an aligned memory access. Therefore, we simply disable the secured Ibex

core’s ability to perform misaligned memory accesses, which represents a quite

reasonable modification for verification purposes since constant-time is anyway a

desired property of cryptographic implementations.
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Table 2.: Verification results for masked software: Ë(no issues were found),

(Ë) (algorithmically secure, but potential problems like table-lookups),

é(algorithmically insecure implementations), é(false positive).

Algorithm Input shares
Runtime

(cycles)

Verification result/runtime

Stable Transitions Transient

A2Bs

Coron et al. [CGV14] 4 bit 225 Ë 41 s Ë 67 s Ë 3min

Coron et al. [CGV14] 16 bit 984 Ë 4min Ë 5min Ë 16min

Coron et al. [CGV14] (2nd

order)

4 bit 1240 Ë 3.8min Ë 6min Ë 20min

Debraize [Deb12] ! 4 bit (n = 2,

k = 2)

140 é 35 s - -

Debraize [Deb12] ! 16 bit (n = 4,

k = 4)

450 é 118 s - -

Beirendonck et

al.-fixed-Debraize [BDV21] !
4 bit (n = 2,

k = 2)

180 (Ë) 38 s (Ë) 48 s -

Beirendonck et

al.-Dual-Lookup [BDV21] !
4 bit (n = 2,

k = 2)

105 (Ë) 28 s (Ë) 30 s -

Goubin [Gou01] 16 bit 170 é 37 s é -

B2As

Goubin [Gou01] 16 bit 23 Ë 5 s Ë 8 s Ë 19 s

Coron et al. [CGV14] 4 bit 650 Ë 6min Ë 4min Ë 11min

Coron et al. [CGV14] 16 bit 2475 Ë 11min Ë 16min Ë 38min

Schneider et al. [Sch+19],

without final mod instruction

4 bit, (q =

257, log2 q =

9)

400 (Ë) 2min (Ë) 21min -

ARX-based schemes

Speck 32/64 1 round 6 × 16 bit 1465 Ë 6min Ë 13min Ë 5.13 h

Alzette 1 round 2 × 32 bit 3082 Ë 29min Ë 2.48 h Ë 27 h
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5.4. Application to Table-based Conversion Algorithms

Table-based A2Bs usually take over one Boolean share from the arithmetic

domain and derive the second by computing b0 = (a0+a1)⊕a1. From a masking

perspective, (a0 + a1) leaks the native value a, which is prevented using a pre-

computed look-up table which stores (a0 + r)⊕ r for a fixed r [BDV21]. However,

generating the table for each possible value of a0 is not efficient.

Debraize-A2B [Deb12]

In 2012, Debraize [Deb12] suggests to split up a0 into n parts of k bits each,

and precompute a table entry for each of the 2k possible values. The actual

conversion is performed by iterating over the n parts of a0 and converting each

part individually by performing a table lookup to the precomputed table. The

table returns (a) the transformed part of a0 into the Boolean domain, and (b)

the one-bit carry that is Boolean masked and has to be considered in the next

iteration. We sketch the algorithm in Appendix F. We implement Debraize-A2B

with n = 2, k = 2 as well as n = 4, k = 4 and verify its execution as shown in

Table 2. Two leaks are already reported in the stable verification mode (indicated

by é), which points towards algorithmic errors.

First, the verifier reports a leak when performing the table lookup due to a

combination of the (share-dependent) address bits and the memory content. On

gate level, a table lookup using 32-bit addresses is realized using an equality

comparator, which itself consists of 32 XNOR gates, whose output is combined

by a single AND gate [Man82]. In case of equality, the AND gate outputs 1, and

0 otherwise. This information is finally used to decide whether to read data from

a specific location. We give an example of an equality comparator in Appendix

H. When performing the table lookup in Debraize-A2B in the first iteration, the

address bits depend on both arithmetic shares, a random value r and a random

bit β, which represents an intermediate result of the transformation. The content

of the precomputed lookup-table is determined by r and β. Combining both

values cancels out the random values r and β, and the attacker can probe an

expression depending on the native value a. One can argue that an SRAM module

is constructed in a way such that the address and the memory cell content will

never be combined. However, in bigger CPUs, the memory access logic is much

more complicated and might contain buffers or caches, which employ such an

addressing mechanism. For example, data caches usually require the computation

of a tag based on the address, and compare this tag to the one in the cache.

Second, the verifier points out that the value obtained from the lookup-table

in the first iteration is not uniformly distributed, although used as a mask in the

algorithm. Beirendonck et al. [BDV21] already report the issue in their work,

which was found by empirical measurements, and provide a theoretical analysis

afterwards. We want to emphasize that another advantage of our verification

approach is the fast discovery of such bugs, which happens in 35 s and 118 s



222 Chapter 7. Formal Verification of Arithmetic Masking

according to Table 2 in this case, which is much quicker than empirical/theoretical

evaluations. Coco reports the leaking cycle and netlist gate immediately and

therefore one does not need to carry out a laborious empirical analysis.

Beirendonck et al.-A2Bs [BDV21]

In their work, Beirendonck et al. [BDV21] propose two new secure table-based

A2Bs, Beirendonck et al.-fixed-Debraize A2B (a secured version of Debraize-A2B)

and Beirendonck et al.-Dual-Lookup A2B (an efficient version of Beirendonck

et al.-fixed-Debraize A2B). We verify both algorithms by choosing parameters

n = 2, k = 2. As shown in Table 2, table lookups cause a similar leak as we

already discussed for Debraize-A2B. Since the issue however strongly depends on

the underlying microarchitecture, and no further issues were found, we mark it

with (Ë) in the table.

5.5. Application to ARX-based Constructions

The ARX (Addition-Rotation-XOR) design principle has been used for sev-

eral well-known symmetric cryptographic constructions like the block cipher

Speck [Bea+13], the stream cipher ChaCha [Ber08], or the hash function SHA-

256 [Nat02]. We focus on first-order implementations of a single round of Speck

32/64 [Bea+13], and the 64-bit ARX-based S-box Alzette [Bei+20]. Alzette is a

central building block of Sparkle, which is currently one of the finalists of the

NIST LWC Standardization Process [Tur+21]. Masking these implementations

requires both Boolean masking (for the Rotation and XOR) and arithmetic

masking (for the addition). One option is to apply an algorithm like SecAdd,

which implements modular addition directly on Boolean shares [CGV14; DGC17;

KRJ14; SMG15]. Another possibility is to first convert the Boolean shares to

arithmetic shares, then perform the addition on arithmetic shares, and convert

the shares back to the Boolean domain. In our implementation, we choose the

second option using Goubin-B2A before each addition, perform the addition

on arithmetic shares, and switch back to the Boolean domain using Coron et

al.-A2B. We are able to verify algorithmic security in under 30minutes for both

schemes (stable mode). For the transient mode, the verification requires several

hours, which is mostly spent by solving the SAT equation, and therefore offers

several possibilities for further optimization.

6. Conclusion

In this paper, we presented an approach for the formal verification of masked soft-

ware and hardware implementations, which supports both arithmetic and Boolean

masking schemes of any order. On the hardware side, we show that glitches

may cause issues in the context of masking for a straightforward implementation

of Coron et al.-A2B. We demonstrate that this issue exists in practice using



Appendix A. Iterative and unrolled circuits 223

empirical measurements. On the software side, we first analyze algebraic share

conversions, report a previously unknown register transition issue in Goubin-A2B

and provide new insights on the security of lazy reduction, a popular optimization

technique in PQC. Second, we discuss table-based conversions and demonstrate

that table lookups might not be secure due to architectural side-effects. Last but

not least, we underline the scalability of our approach by applying it to entire

round functions of masked ARX-based ciphers.
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Appendix A. Iterative and unrolled circuits
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Figure 3.: Iterative circuit [Bha+10]
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Figure 4.: Unrolled circuit [Bha+10]
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Appendix B. Fourier Expansion of the Arithmetic
Addition

Recall the Fourier expansion of the AND, OR and XOR functions:

And W (a ∧ b) =
1

2
+

1

2
a+

1

2
b− 1

2
ab

Or W (a ∨ b) = −1

2
+

1

2
a+

1

2
b+

1

2
ab

Xor W (a⊕ b) = ab

Additionally, note that Fourier expansions represent Boolean functions as a

polynomial over the real domain {1,−1}, where 1 represents False and -1

represents True. Consequently, monomials xc with even exponents c evaluate to

1 in Fourier expansions. The Fourier expansion of the carry and sum can hence

be expressed as:

Carry W (c(j)) = W ((u(j) ⊕ u(j)) ∧ c(j−1)) ∨ (u(j) ∧ u(j)))

= −(0.25u(j))2(u(j))2c(j−1) − 0.25(u(j))2(u(j))2

− 0.25(u(j))2u(j)c(j−1) − 0.25u(j)(u(j))2c(j−1) + (0.25u(j))2u(j)

+ 0.25u(j)(u(j))2 − 0.5u(j)u(j)c(j−1) + 0.25u(j)c(j−1)

+ 0.25u(j)c(j−1) + 0.25u(j) + 0.25u(j) + 0.25c(j−1) + 0.25

= 0.25c(j−1) − 0.25− 0.25u(j)c(j−1) − 0.25u(j)c(j−1) + 0.25u(j)

+ 0.25u(j) − 0.5u(j)u(j)c(j−1) + 0.25u(j)c(j−1) + 0.25u(j)c(j−1)

+ 0.25u(j) + 0.25u(j) + 0.25c(j−1) + 0.25

= 0.5c(j−1) + 0.5u(j) + 0.5u(j) − 0.5u(j)u(j)c(j−1)

W (c[0]) = 1

Sum W (sum(j)) = W (W (u(j) ⊕ u(j))⊕ c(j))

= W (u(j)u(j) ⊕ c(j))

= u(j)u(j)W (c(j))

= 0.5u(j)u(j)c(j) + 0.5u(j) + 0.5u(j) − 0.5c(j)
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Appendix C. Coron et al.-A2B
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Figure 5.: Schematic image of Coron et al.-A2B [CGV14] when implemented in

hardware. The arithmetic input shares a0, a1 are transformed into

Boolean shares b0, b1. The carry computation happens in the SecAdd

module, from which we draw the first part responsible for bits 0 of the

final result.

Appendix D. Sanity Check Measurement Setup
(RNG Off)

Figure 6.: T-test statistics of the fixed version of Coron et al.-A2B with 400 000

traces and RNG off.
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Appendix E. Schneider et al.-B2A [Sch+19]

Algorithm 1 Schneider et al. B2A [Sch+19]

(simplified for 1st order)

Input: k-bit shares b0, b1 such that b = b0 ⊕ b1
Output: Shares a0, a1 ∈ Fq such that b = a0 + a1 mod q

1: b′0 ← b
(k−1)
0

2: b′1 ← b
(k−1)
1

3: a0, a1 ← B2A Bit(b′0, b
′
1)

4: R
$← Rq

5: a0 ← (a0 + R) mod q

6: a1 ← (a1 − R) mod q

7: for j = 2 to k − 1 do

8: b′0 ← b
(k−j)
0

9: b′1 ← b
(k−j)
1

10: C0, C1 ← B2A Bit(b′0, b
′
1)

11: R
$← Rq

12: C0 ← (C0 + R) mod q

13: a0 ← ((a0 << 1) + C0) mod q

14: C1 ← (C1 − R) mod q

15: a1 ← ((a1 << 1) + C1) mod q

16: end for

17: return a0, a1

Algorithm 2 Schneider et al.

B2A Bit [Sch+19] (simplified for

1st order)

Input: 1-bit shares b′0, b
′
1 such that b =

b′0 ⊕ b′1
Output: E0, E1 such that E0 +E1 = b

mod q

1: E0
$← Rq

2: E1 ← b′1 − E0 mod q

3: E1 ← E1 − 2 · (E1 · b′0) mod q

4: E0 ← E0 − 2 · (E0 · b′1) mod q

5: E1 ← E1 + b′1 mod q

6: returnE1, E0

Appendix F. Debraize-A2B

Algorithm 3 Table T genera-

tion [Deb12]

Input: k

Output: Conversion table T , random

variables r, ρ

1: r ← U(0, 1)k
2: ρ← U(0, 1)
3: for i← 0 to 2k − 1 do

4: T [ρ||i]← (i + r)⊕ (ρ||r)
5: T [(ρ⊕ 1)||i]← (i+ r+1)⊕ (ρ||r)
6: end for

7: return T, r, ρ

Algorithm 4 Debraize-A2B [Deb12]

Input: (n ·k)-bit shares a0, a1 such that a = a0 +

a1 mod 2(n·k), T, r, ρ

Output: (n · k)-bit shares b0, b1 such that a =

b0 ⊕ b1
1: a0 ← a0 − (r||...||r||...||r) mod 2n·k

2: β ← ρ

3: for i← 0 to n− 1 do

4: Split a0 into (a0h||a0l), split a1 into

(a1h||a1l)

5: a0 ← a0 + a1l mod 2(n−i)·k

6: β||x′
i ← T [β||a0l]

7: x′
i ← x′

i ⊕ a1l
8: a0 ← a0h, a1 ← a1h
9: end for

10: b0 = (x′
0||...||x

′
i||...||x

′
n−1)⊕ (r||...||r||...||r)

11: b1 = a1

12: return b0, b1
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Appendix G. Goubin [Gou01]

Algorithm 5 Goubin-A2B [Gou01]

Input: n-bit shares a0, a1 such that a = a0 + a1

mod 2n

Output: n-bit shares b0, b1 such that a = b0 ⊕ b1
1: Y ← U(0, 1)n
2: T ← 2Y

3: b0 ← Y ⊕ a1

4: Ω← Y ∧ b0
5: b0 ← T ⊕ a0

6: Y ← Y ⊕ b0
7: Y ← Y ∧ a1

8: Ω← Ω⊕ Y

9: Y ← T ∧ a0

10: Ω← Ω⊕ Y

11: for i← 0 to n− 1 do

12: Y ← T ∧ a1

13: Y ← Y ⊕ Ω

14: T ← T ∧ a0

15: Y ← Y ⊕ T

16: T ← 2Y

17: end for

18: b0 ← b0 ⊕ T

19: b1 ← a1

20: return b0, b1

Algorithm 6 Goubin-B2A [Gou01]

Input: n-bit shares b0, b1 such that a = b0 ⊕ b1
Output: n-bit shares a0, a1 such that a = a0+a1

mod 2n

1: Y ← U(0, 1)n
2: T ← b0 ⊕ Y

3: T ← T − Y

4: T ← T ⊕ b0
5: Y ← Y ⊕ b1
6: a0 ← b0 ⊕ Y

7: a0 ← a0 − Y

8: a0 ← a0 ⊕ T

9: a1 ← b1
10: return a0, a1

Overwrite leakages

In line 9 of the algorithm, the attacker probes the re-assignment of Y :

Yold = Yline 6 ∧ a1

= (Yline 1 ⊕ b0line 5) ∧ a1

= (Yline 1 ⊕ (T ⊕ a0)) ∧ a1

Ynew = T ∧ a0

Yold ⊕ Ynew = ((Yline 1 ⊕ (T ⊕ a0)) ∧ a1)⊕ (T ∧ a0)

= (a0 ∧ a1)⊕ (a0 ∧ T )⊕ (a1 ∧ Y )

Hence, for every bit >= 0, this expression will correlate with native value a.

Another similar situation occurs in Figure 12 where Yold = T ∧a0 is overwritten

by Ynew = T ∧ a1 in the first loop iteration.

False positive in Goubin-A2B

Assume the attacker probes the expression Ω ⊕ Yline 9 in line 10, which is

(Y (0) ∧ (Y (0) ⊕ a
(0)
1 ))⊕ (a

(0)
1 ∧ (Y (0) ⊕ a

(0)
0 )). For reasons of readability, we omit

to indicate that we always refer to the LSB, i.e., skip (0).
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Exact Fourier expansion

W ((Y ∧ (Y ⊕ a1))⊕ ((Y ⊕ a0) ∧ a1)) =?

W (Y ⊕ a0) = Y a0

W (Y ⊕ a1) = Y a1

W (Y ∧ (Y ⊕ a1)) = −0.5Y 2a1 + 0.5Y a1 + 0.5Y + 0.5

= −0.5 a1 + 0.5Y a1 + 0.5Y + 0.5

W ((Y ⊕ a0) ∧ a1)) = −0.5Y a0a1 + 0.5Y a0 + 0.5 a1 + 0.5

W ((Y ∧ (Y ⊕ a1))⊕ ((Y ⊕ a0) ∧ a1)) = −0.25Y 2a0a
2
1 + 0.25Y a0a

2
1 + 0.25Y 2a0 − 0.5Y a0a1

+ 0.25Y a21 + 0.25Y a0 + 0.50Y a1 − 0.25 a21 + 0.25Y + 0.25

= −0.25 a0 + 0.25Y a0 + 0.25 a0 − 0.5Y a0a1

+ 0.25Y + 0.25Y a0 + 0.50Y a1 − 0.25 + 0.25Y + 0.25

Approximated Fourier expansion

C((Y ∧ (Y ⊕ a1))⊕ ((Y ⊕ a0) ∧ a1)) =?

C(Y ⊕ a0) = {{Y, a0}}
C(Y ⊕ a1) = {{Y, a1}}

C(Y ∧ (Y ⊕ a1)) = {{1}, {Y }, {Y, a1}, {a1}}
C((Y ⊕ a0) ∧ a1)) = {{1}, {Y, a0}, {a1}, {Y, a0, a1}}

C((Y ∧ (Y ⊕ a1))⊕ ((Y ⊕ a0) ∧ a1)) = C((Y ⊕ a0) ∧ a1))⊗ C(Y ∧ (Y ⊕ a1))}

= {{1}, ...{Y 2, a0, a1}, ...}

Note: Y 2 = 1 because in Fourier expression each element is either 1 (False) or -1

(True).
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addr(3) addr(2) addr(1) addr(0)

0 1 1 0

Data

eq

Figure 7.: Example of table lookup including equality comparator on gate-level

with 4-bit addresses and 8-bit data words. The address addr is com-

pared to the constant address of the SRAM cell ((0110)b). If both

values are equal, the resulting 1-bit signal eq is 1, and 0 otherwise. eq

is further used to decide whether the respective data word should be

read or not.
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Abstract Many IoT and automotive use cases employ cryptographic hardware

implementations, which are susceptible to physical attacks such as power analysis.

Masking is a popular approach to protect against these attacks on algorithmic

level. In general, a masked hardware implementation must be secure in theory,

but also in practice. The practical security of masked ASIC designs has been

analyzed thoroughly in literature, especially regarding physical defaults such as

glitches and transitions, and optimizations performed during synthesis. Besides

ASICs, FPGAs are often used to implement masked hardware designs, which

utilize reconfigurable lookup tables (LUTs) instead of binary logic gates to

implement arbitrary logic functions. Due to their different structure, FPGAs

apply different synthesis flows and optimizations, whose effects on the security of

masked implementations have not been investigated yet.

In this work, we present a case study of leakage sources in masked hardware

implementations on FPGAs. We investigate several implementations that are

formally proven to be secure even in the presence of glitches when implemented

as an ASIC but show leakage when running them on an FPGA. We demonstrate

in several practical experiments that this leakage is caused by optimizations

performed during synthesis, such as LUT combining or register retiming. In

order to identify such leaks, we present Fenix, the first tool to formally verify

any-order masked hardware implementations directly on FPGA netlists. Fenix

takes glitches into account and automatically localizes the leaking wire in case

of an insecure design. We demonstrate the practicality of our tool using several

masked hardware implementations, including masked multiplication gadgets, a

2nd-order Keccak S-box, and a full Ascon round.

1. Introduction

Embedded devices have become an essential part of many IoT, automotive,

and industrial applications, where they unavoidably get in touch with sensitive

information. One key aspect is therefore privacy, which raises the need for

strong cryptographic primitives that are able to withstand both theoretical

(mathematical) and physical attacks. Physical attacks assume that the adversary

has direct access to the device and can observe information about the device during

the computation. A famous example is Differential Power Analysis (DPA) [KJJ99],

which works by monitoring the power consumption of a cryptographic device
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during computation. The power consumption correlates with the processed

sensitive data, such as the encryption key, which can then be extracted using

statistical tools. To defeat such attacks, implementations employ the masking

countermeasure [Cha+99; GP99; ISW03], which splits each sensitive variable

into d+ 1 random shares and performs the cryptographic operations on these

shares instead. During the computation, the power consumption of the device at

a given point in time does not correlate with the unshared sensitive value, but

with at most one share.

The masking countermeasure can be applied to cryptographic hardware imple-

mentations, which are realized using an ASIC (Application-Specific Integrated

Circuit) or an FPGA (Field-Programmable Gate Array). While ASICs are custom

circuits designed for a specific purpose, FPGAs can be configured many times

with a design using configurable logic blocks (lookup tables). In recent years,

FPGAs have become more and more important in the area of cryptography due

to their short time-to-market and reconfigurability [Gün11; Pra+04].

The security of a masked cipher can formally be proven on algorithmic level

by analyzing an abstract description of the protected cipher implementation.

However, even if the masking scheme is theoretically secure, a concrete imple-

mentation of the scheme, such as a hardware implementation running on an

FPGA, might still be insecure. Hardware-related physical side-effects such as

glitches and transitions, which are not part of the theoretical model, can still

lead to the unintentional combination of shares and therefore leak the sensitive

value [Cas+21; CS20; GMK16; ISW03; NRR06; Rep+15; Tri03]. Additionally,

the synthesis process, which transforms an HDL design into a gate-level netlist,

may introduce leaks by performing optimizations such as reordering operations

[Blo+18; Roy+15; SSM21].

Consequently, the verification of masked implementations has gained a lot of

attention recently. In general, there are two approaches to determine whether

a masked implementation is secure in practice. The first option is to perform

empirical verification by fabricating the design as an ASIC or porting it to an

FPGA, recording power traces, and manually analyzing these regarding leakage

using statistical tools. Empirical verification is not only an error-prone and

laborious task but does also not guarantee leakage-freeness on other platforms if

no leak is found. As an alternative, formal verification tools like Silver [KSM20],

Rebecca [Blo+18], Coco [Gig+21; HB21] and maskVerif [Bar+19] have been

proposed which aim at proving the absence of leakage by verifying the respective

post-synthesis gate-level netlist. However, these verification tools are tailored to

ASIC netlists consisting of logic gates with two inputs and one output. Currently,

there does not exist a tool that can handle the structure of FPGA netlists, which

consist of LUTs with multiple inputs and up to two outputs. The effects of the

FPGA synthesis process on the security of the design are also not understood

yet. Therefore, in practice, to ensure security properties are preserved during

synthesis, optimizations are usually disabled globally, for example, by selecting
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the keep hierarchy option [Cnu+16; Mas+23; MRB18; Wei+19]. While this

serves the purpose of ensuring that security-critical design partitioning is kept, it

also prevents optimizations in parts of the design that are not security-critical.

Our contribution It is still an open question to which extent the FPGA synthesis

process introduces leakage into a masked design. Since existing formal verification

tools are built for ASIC netlists, no formal tool exists to detect these leaks on

FPGAs. We close this gap by providing the following contributions:

• We present a case study to investigate whether FPGA-specific synthesis

flows introduce leakage to masked designs. We investigate two masked

multiplication gadgets, for which we formally prove their security on RTL

level with an existing ASIC verification tool. Using two different FPGA

synthesis tools, we show that the produced netlist is insecure due to glitches

introduced by optimization measures such as LUT combining or register

retiming. We confirm that the leakage is observable in practice using

empirical measurements. (Section 3)

• We present Fenix, a tool that can formally verify the security of (any-order)

masked FPGA implementations. Fenix operates directly on the FPGA

netlist which allows to detect leakage introduced by optimization measures.

Instead of turning off optimizations globally by default, which leads to

inefficient designs, designers can apply more specific optimizations and

check the security of the resulting design using the tool. (Section 4)

• We show the practicality of Fenix by verifying various masked FPGA

implementations, including masked multiplication gadgets, a 2nd-order

Keccak S-box, and a full Ascon round. We demonstrate the two operation

modes, which allow verification with and without considering glitches.

If a leak is found, the exact wire and cycle are automatically localized.

(Section 5)

• We publish Fenix on GitHub1.

2. Background and Related Work

In this section, we cover necessary background on masking, formal verification

tools for masked ASIC designs, and describe formal verification using the Fourier

expansion of Boolean functions in more detail.

2.1. Masking

The power consumption of a cryptographic device depends mostly on the per-

formed operations and the processed data [CRR02; KJJ99]. Using techniques

1https://github.com/kevPretterhofer/FENIX

https://github.com/kevPretterhofer/FENIX
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such as DPA [KJJ99], this dependency can be exploited to recover the secret

key used in an encryption. The masking countermeasure aims at breaking this

dependency by randomizing sensitive values before starting the cryptographic

operation [Cha+99; GP99]. Randomization in a dth-order Boolean masking

scheme is achieved by splitting each sensitive value s into d + 1 shares such

that s = s0 ⊕ ... ⊕ sd, where ⊕ denotes the exclusive OR (XOR) operation.

s0...sd−1 are chosen uniformly at random and statistically independent of s,

while sd = s⊕ s0 ⊕ ...sd−1. Consequently, an attacker observing up to d shares

cannot infer any information about the sensitive value. In order to mask a crypto-

graphic algorithm, masked descriptions for the linear and non-linear parts need to

be found. Masking linear functions is simple since they be computed individually

for each share. Masking non-linear functions is more complex because it requires

operations on all shares and usually additional insertion of fresh randomness to

avoid unintended direct combinations of shares.

2.2. Leakage sources in masked designs

A masked implementation, even though proven theoretically secure on algorithmic

level, is not necessarily secure when implemented on an FPGA. Possible reasons

for this are transient timing effects such as glitches and transitions [MPG05;

MPO05], which unintentionally combine the shares of a sensitive value. Glitches

are counteracted by inserting registers, which serve as synchronization points to

balance out different signal propagation times caused by physical circumstances

like different wire lengths. Goddard et al. [GLE15] analyze a masked PRESENT

S-box implementation without synchronization and show that leakage can be

observed when implemented on an FPGA. Roy et al. [Roy+15] study an imple-

mentation of a first-order masked SIMON without synchronization and show that

glitches and reordering of logic operations lead to leakage when implemented on

an FPGA. Finally, Li et al. [Li+20] suggests a simulation-based tool to automat-

ically identify locations where synchronization registers need to be inserted in

an FPGA design. Currently, there exists no work which shows that even after

inserting synchronization registers, the optimizations performed by EDA tools

may again lead to glitches, which in turn cause unintentional share combinations.

2.3. Formal verification of masking

In order to prove that a masked circuit is algorithmically secure and secure in the

presence of glitches, formal verification tools consider a specific attacker model.

The probing model introduced by Ishai et al. [ISW03] involves an attacker with

d probing needles, which can placed on arbitrary wires/gates in a masked circuit.

A probe allows capturing the value from a wire for an infinite amount of clock

cycles. A masked hardware implementation is dth-order secure in the probing

model if the attacker cannot infer any information about the sensitive value

by combining the d probed values. The robust probing model [Fau+18] was
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introduced as an extension to the original probing model, which allows a probe

to observe temporary wire values caused by glitches and transitions.

Several automated tools to check the security of a masked circuit have been

proposed. Rebecca [Blo+18] and Coco [Gig+21; HB21] apply Fourier-based

techniques to approximate correlation sets (leakage sets) for every gate in the

circuit. The leakage set contains all values that can be probed by the attacker by

observing the gate output. Other tools like maskVerif [Bar+19], Silver [KSM20],

and IronMask [Bel+22] compute these correlation sets exactly, achieving higher

accuracy at the cost of efficiency. All these tools first synthesize a masked

hardware design with a synthesis tool such as Yosys [Wol16] and then perform

verification directly on the gate-level ASIC netlist.

2.4. Fourier-based verification

Rebecca formally verifies the security of masked ASIC circuits based on Fourier

expansions of Boolean functions [Blo+18; ODo14]. Given that every gate repre-

sents a Boolean function, the correlation of the gate with respect to a sensitive

value can be determined using the Fourier expansion (Walsh expansion) [BCG13;

Blo+18], which represents the function as a multilinear polynomial. Given the

input variables X = (x1, x2, ...xn) with xi ∈ {−1, 1}, the Fourier expansion of

the function f : {−1, 1}n → {−1, 1} with {−1, 1} = {⊤,⊥}, is defined as:

f(X) =
∑
T⊆X

f̂(T )
∏
xi∈T

xi (1)

The real number f̂(T ) is called the Fourier coefficient of f on T , which directly

describes the statistical dependence (correlation) of a Boolean function with

regard to its inputs. That is, it does not correlate with T ⊆ X iff ∀T ′ ⊆ T it

holds that f̂(T ′) = 0 [XM88]. In a masked circuit, the inputs of a gate are either

shares of a sensitive variable, a fresh random value or any unrelated value such

as a control signal. To verify that no 1st-order leakage is exhibited by a gate, we

must ensure that the output does not directly correlate with a linear combination

of shares, i.e., without fresh randomness. This can be done by computing the

Fourier coefficients, and checking that the coefficients of linear share combinations

are zero. For dth-order security, Rebecca checks the nonlinear combination of any

tuple of d gates.

From a verification perspective it is sufficient to know whether a Fourier

coefficient is non-zero or not, while computing the exact value is unnecessary.

Therefore, Rebecca groups together all linear combinations of inputs a gate

correlates to into correlation sets. A correlation set C of a gate g computing a

function f satisfies the following condition:

For T ⊆ X :
∏
xi∈T

xi ∈ C(g) if f̂(T ) ̸= 0 (2)
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Correlation sets are sound but incomplete approximations, i.e., linear combi-

nations with zero Fourier coefficients might end up in the correlation set. In

order to determine the correlation set of a gate, Rebecca applies propagation

rules, starting with the correlation sets of circuit inputs which consist only of the

respective input variable. For every gate g = a ∗ b, C(g) is computed by applying

the propagation rule for the operator *, considering the correlation sets C(a) and
C(b).

For example, considering a simple circuit with inputs X = (p, q, r) computing

g(p, q, r) = (p ⊕ q) ∧ r. The Fourier expansion of g is 0.5 + 0.5pq + 0.5r +

0.5pqr. The correlation set of the first gate g1(p, q, r) = p⊕ q is C(g1) = {{pq}}.
The correlation set of g, computed by propagating C(g1) and C(r), is C(g) =

{{}, {p, q}, {r}, {p, q, r}}.

3. Leakage Sources on FPGAs

In this section, we present a case study of leakages introduced to masked hardware

implementations when synthesized to an FPGA. We show that two masked

multiplication gadgets, which are secure in the presence of glitches, become

insecure when implemented on an FPGA. We identify glitches introduced by

LUT combining and register retiming, optimization measures applied by the

FPGA synthesis process, as the main reason for the observed leakage. We give

empirical evidence using physical measurements that the leakage is observable in

practice. In the following, we first describe our evaluation setup (Section 3.1),

followed by the experiments in which we observe leakage due to LUT combining

(Section 3.2) and register retiming (Section 3.3). A LUT with n inputs will be

denoted as LUTn.

3.1. Experiment setup

In our case study, we investigate the security of masked multiplication gadgets.

Given two shared field elements in GF (2n), A and B, a masked multiplication

gadget computes C = A∧B in a secure way. Many masked multiplication gadgets

have been introduced in literature [GMK16; ISW03; NRR06; Tri03]. We focus

on 1st-order DOM (Domain-Oriented Masking) [GMK16] and 2nd-order ISW

(Ishai-Sahai-Wagner) [ISW03].

We use Xilinx Vivado 2022.2 and Xilinx ISE 14.7 to process our designs.

Both tools first synthesize the RTL (register-transfer level) design into a netlist

consisting of registers, multiplexers and LUTs, and then perform place-and-route,

where they assign the netlist components to concrete locations on the FPGA and

establish the wiring. Every LUT is physically implemented as a six-input LUT

with two outputs (LUT6 2) [Xil16a]. For example, if the post-synthesis netlist

contains a LUT4, it is mapped to a LUT6 2 during place-and-route, leaving the

unused inputs unconnected. The post-place-and-route netlist is eventually used
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Figure 1.: Netlist of 1st-order DOM multiplier with input shares (A0, A1),

(B0, B1) and fresh randomness r0, and output shares (C0, C1). LUT

combining is performed during place-and-route.

to generate the FPGA configuration file (bitstream file).

For the empirical measurements, we use the NewAE CW305 Artix-7 FPGA

evaluation board, connected to a PicoScope 6404C at 1.25Gs/s sampling rate

(800 ps sampling interval). The hardware designs operate at a clock frequency

of 1.5625MHz, a submultiple of the sampling rate. We synchronize the clocks

between the FPGA and the oscilloscope to reduce the noise level. We apply

Welch’s t-test following the guidelines of Goodwill et al. [Goo+11] to investigate

whether 1st-order leakage is present. For this purpose, a random and fixed set

of traces is created. The random set is constructed by assigning fresh random

values to the shares of A and B for every trace. For the fixed set, both A and B

are set to zero, and fresh values are generated for the shares for every trace. The

null hypothesis is that both trace sets have equal means, which can be rejected

with a confidence greater than 99.999% if the t-score exceeds -4.5 and 4.5. The

RNG is enabled for our measurements.

3.2. LUT combining

LUT combining is an optimization measure that merges several smaller LUTs into

a single bigger LUT to save area and reduce the length of the critical path [Xil22a].

LUT combining is either applied during synthesis or during place-and-route. LUT

combining during place-and-route means that the post-synthesis netlist contains

multiple individual LUTs that get merged when mapped to physical components

on the FPGA. In the following case study, we show that for masked hardware

designs, LUT combining may merge functions, which are supposed to be computed

individually, into a single LUT.
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Figure 2.: Univariate fixed-vs.-random t-test results for the 1st-order DOM mul-

tiplier using 6 million traces. No leakage is visible without LUT

combining (a), but the design leaks with LUT combining enabled (b).

LUT combining during place-and-route In our first experiment, we investigate

a 1st-order masked DOM multiplication gadget [GMK16]. Given the input

sharings (A0, A1) and (B0, B1) and the fresh random variable r0, the multiplier

computes the output sharing (C0, C1) as follows, where registers are indicated

by parenthesis:

C0 = (A0 ×B0)⊕
(
(A0 ×B1)⊕ r0

)
(3)

C1 =
(
(A1 ×B0)⊕ r0

)
⊕ (A1 ×B1) (4)

When synthesized to an ASIC netlist with Yosys, as sketched in Appendix A,

the design is 1st-order probing secure, i.e., secure also in the presence of glitches,

as we confirm by verification with Coco [Gig+21; HB21].

We synthesize the design with Vivado 2022.2 for an arbitrary chosen 7-series

FPGA (xa7s25csga225-2I) using the default settings for synthesis and place-and-

route. Figure 1a shows the resulting FPGA netlist of the design after synthesis.

The partial multiplication terms
(
(A0 × B1) ⊕ r0

)
and

(
(A1 × B0) ⊕ r0

)
have

been realized using two LUT3s each. The place-and-route process then merges

the two LUT3 into a single LUT6 2, as shown in Figure 1b. The first output of

the LUT6 2 refers to the first partial multiplication term, and the second output

of the LUT6 2 refers to the second partial multiplication term. Internally, a

LUT6 2 realizes the two functions using two LUT5s and then uses a multiplexer

to realize one output while the other output is directly tied to one of the LUT5s

[36], as sketched in Appendix B. Each of the two LUT5s however gets as an

input both shares of A (A0, A1) and both shares of B (B0, B1). The functional

configurations of the LUT5s are such that the partial multiplication terms are

computed, and the unused inputs do not influence the function result once all

inputs have stabilized. Still, before all inputs have stabilized, the LUT outputs

allow to probe a combination of (in the worst case) all inputs temporarily. The

exact combinations that can be observed depend on several things, including the

arrival time and ordering of inputs.
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Using an empirical evaluation over 6 million traces, we confirm that this leakage

can be seen in practical measurements, as shown in Figure 2. Figure 2a presents

the t-test results when LUT combining during place-and-route is disabled. As

expected, the t-test reveals no significant peaks, which indicates the absence of

1st-order leakage. Figure 2b presents the t-test results when LUT combining is

enabled, i.e., following the structure of Figure 1b, which shows significant peaks

over the 4.5 border, and therefore, indicates 1st-order leakage. Our evaluation

spans four clock cycles, capturing the leaking LUT6 2 computation in the third

cycle.

The leak introduced by LUT combining during place-and-route can hardly

be detected manually by the designer on RTL level or by looking at the post-

synthesis netlist. Manual detection becomes infeasible for larger designs due to

the growing complexity, and a possible solution is to disable LUT combining

globally. With a formal tool capable of verification on FPGA netlist level, it

would be possible to identify single LUTs for which LUT combining must be

turned off instead.

LUT combining during synthesis Designs containing many multiplexers, e.g.,

a multiplexer tree, are realized by combining them into LUTs during synthesis,

which potentially causes additional leakage in masked designs. For example,

Shahverdi et al. [STE15] introduce an area-optimized TI-Simon implementation

using three shares, which splits the round function into three identical component

functions. The component function is instantiated exactly once, and another

set of shares is sent to the input in each cycle. In order to determine which

share is being processed, a single LUT is used that has the shares and the select

signals as an input. When the multiplexer select signals glitch, a combination of

multiple shares might be visible on the LUT output, resulting in leakage. In an

ASIC implementation, this leakage is more challenging to observe because the

multiplexers are still individual physical components that take at most one share

as an input, and there are many other influencing factors, such as the concrete

wiring. By contrast, on an FPGA, a glitch on one of the input select signals

might directly allow probing a combination of all shares on the LUT output.

3.3. Register retiming

Register retiming, also known as register balancing, allows improving the de-

lay on the critical path of a design by moving the location of registers across

combinatorial logic [Dud23; Xil16b; Xil22a]. The original input/output behavior

and latency in terms of cycle count remain unchanged, but the possible clock

frequency of the resulting design is increased. Retiming is enabled per default

when performing synthesis with ISE 14.7.

In masked designs, the insertion and correct location of registers is crucial for

security against glitches. Retiming changes the location of registers and, therefore,

introduces glitches into the design. In our case study, we investigate a 2nd-order
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Figure 4.: Univariate fixed-vs.-random t-test results for the 2nd-order ISW mul-

tiplier using 30 million traces. No leakage is visible without register

retiming (a), but the design leaks with retiming enabled (b).

masked ISW multiplier [ISW03] in which retiming changes the location of registers

and share combination happens due to glitches. Again, when synthesized to an

ASIC netlist with Yosys, as sketched in Appendix C, we confirm the 2nd-order

probing security with Coco. The multiplier computes C = A ∧ B using the

random variables r0, r1, r2, resulting in the output sharing (C0, C1, C2), where

registers are indicated by parenthesis:

C0 = (A0 ∧B0)⊕ r0 ⊕ r1 (5)

C1 = (A1 ∧B1)
(
(r0 ⊕ (A0 ∧B1))⊕ (A1 ∧B0)

)
⊕ r2 (6)

C2 = (A2 ∧B2)⊕
(
(r1 ⊕A0 ∧B2)⊕A2 ∧B0

)
(7)

⊕
(
(r2 ⊕A1 ∧B2)⊕A2 ∧B1)

)
(8)

As shown in Figure 3a, when computing C1 two register stages are required.

The intermediate result (r0 ⊕ A0 ∧ B1) is computed by a LUT3 (lut f1), while

(A1 ∧B0) is computed by a LUT2 (lut f2).

The result of lut f1 needs to be stored to a register reg1 to ensure the refreshing

with r0 is finished before combining it with the result of lut f2. Figure 3b shows

the netlist of the circuit after synthesis with ISE 14.7 where register retiming is
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applied. The registers reg1 and reg2 are moved forward, i.e., they are swapped

with lut f3. Then, the synthesizer merges lut f1, lut f2 and lut f3 into a single

LUT5, and registers reg1 and reg2 can be merged. The area of the design

is reduced, since the resulting circuit only requires two LUTs instead of four,

and two registers instead of three. However, reg1 ensuring proper refreshing is

removed and consequently, an attacker probing the output of the LUT5 can learn

a function of two shares of A and B respectively due to glitches, for example, if

the randomness r0 arrives later at the LUT5 input. Note that in this example,

LUT combining happens besides register retiming, but the leakage would also be

present if LUT combining was disabled.

Intuitively, the computations of C0, C1, and C2 individually must be 1st-order

secure such that the whole gadget can be 2nd-order secure. Therefore, in the

empirical measurements, we assess the 1st-order security of the part of the circuit

computing C1. Figure 4 shows the results of our empirical leakage evaluation

using 30 million traces, which confirms that register retiming introduces 1st-order

leakage to the design. More specifically, we compare the security of the design

without register retiming (Figure 4a) to the security of the design when retiming

is enabled (Figure 4b). In the latter case, we perceive peaks in the t-score over

the 4.5 border as expected, indicating 1st-order leakage.

The leak introduced by register retiming was not detected by Coco because

the ASIC netlist did not contain the retimed registers. To spot the leakage, the

post-synthesis FPGA netlist needs to be considered.

4. Fenix

In this section, we describe how we built Fenix, the first tool for the formal

verification of masked FPGA implementations. Fenix operates directly on

post-place-and-route netlist level and therefore easily detects leaks introduced

by synthesis and place-and-route. Similar to Rebecca/Coco, our tool utilizes

Fourier expansions and approximates correlation sets for LUTs, registers, and

multiplexers, which are part of the FPGA netlist. The correlation sets are

encoded and then checked with a SAT solver. First, we describe the high-level

verification flow of Fenix, give a precise description of the input netlist produced

by 1○, and describe the verification step ( 4○) in detail.

4.1. Verification Flow

The verification flow implemented by Fenix consists of six steps, as shown in

Figure 5, divided into three preprocessing steps 1○- 3○, the verification step 4○,

the solving step 5○, and the interpretation step 6○:

1○ The masked hardware design written in an HDL such as Verilog or VHDL

is processed by the FPGA design flow, which typically consists of synthesis and

place-and-route. In our experiments, we focus on Xilinx tools, although the
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Figure 5.: Verification flow of Fenix, consisting of 1○- 3○ three preprocessing

steps, 4○ the actual verification step, 5○ the SAT solving step and 6○
the interpretation step.

verification flow could, in principle, be used with tools from other vendors such

as Intel or Lattice as well. The result of this process is the post-place-and-route

netlist in Verilog format. LUTs that are combined into a LUT6 2 are marked as

pairs using dedicated annotations.

2○ Using Yosys [Wol16], we parse the netlist and transform it into a circuit

graph with gates as nodes and wires as edges. The graph is stored in JSON

format. Using a dedicated preprocessing script, we merge the LUTs, which are

marked as pairs in the netlist, into a single LUT6 2 element. Additionally, we

remove cycles in the circuit by unrolling and then topologically sort the graph

such that the root nodes are registers and circuit inputs.

3○ A label is assigned to every circuit input bit, which expresses its purpose in

the masking scheme. An input bit can either be a share, random or unimportant.

4○ For each node in the circuit graph, Fenix computes the respective correlation

set according to the propagation rules and encodes them into a SAT formula with

regard to the masking order. For LUTs, Fenix determines the propagation rules

in a precomputation step. This process is repeated for a specific number of clock

cycles for a specific masking order chosen by the user. Similar to Rebecca/Coco,

Fenix supports both stable and transient verification.

5○, 6○ The resulting SAT formula is given to the Z3 Theorem Prover, which

searches for leaks in the correlation sets over all cycles. If a leak is found, the

SAT formula is satisfiable, and a possible variable assignment is given to the

Fenix tool. The tool interprets the model and reports the leaking gate and cycle.

If no leak is found, the SAT formula is unsatisfiable, and the tool reports that

the circuit is secure.

4.2. Input netlist

Fenix operates on the post-place-and-route netlist in Verilog format. In Vivado, it

can be extracted using the write verilog TCL command. The netlist describes
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the design as a graph where nodes are either circuit inputs, outputs, LUTs,

registers, or multiplexer cells, and edges are wires. For every LUT, the netlist

contains the initialization (INIT) string, which represents the output values of

the LUT for every possible assignment of the inputs and eventually allows to

determine the logic function.

On the FPGA, LUTs are grouped into slices, and slices are grouped into CLBs

(Configurable Logic Blocks), which are connected to a switch matrix for routing

[Xil16a]. Slices are categorized into SLICEL and SLICEM. SLICEL consist of

four LUT6 2, eight registers, several cascade multiplexers, and logic elements to

realize carry logic efficiently. SLICEM additionally support storing data using

distributed RAM and contain shift registers. Which features are used depends on

the configuration of the slice. For most cryptographic implementations, SLICEL

are configured to process an input using the LUTs and storing either the result to

the register or forwarding it to another LUT. In this case, the post-place-and-route

netlist verified by Fenix will contain only the LUTs and registers if used because

the post-place-and-route netlist replicates the exact configuration of slices. The

cascade multiplexers and carry logic are not included in the netlist, and therefore

not considered by the verification, even though they are physically present.

However, it is valid to exclude these logic elements from the verification because

they are inactive, i.e., do not actively compute anything, and can therefore not

cause any share-dependent combinations leading to leakage in the design. For

example, as sketched in Appendix D, the three cascade multiplexers each connect

two LUT6 2 outputs, and the third multiplexer connects the output of the two

multiplexers before. If the multiplexer select signals glitch, the attacker could, in

the worst case, probe a combination of the output of all four LUTs in the slice.

However, in practice, the select signals are stable and never change their value,

which allows to probe only the output of a single LUT and therefore does not give

the attacker any advantage. In case any implementation ever requires the use of

the cascade multiplexers and carry logic, which is very rare for cryptographic

implementations, the slice configuration is changed, and the respective elements

are added to the netlist.

4.3. Verification of LUTs

Before starting verification with Fenix, the user needs to provide a label file

indicating the purpose of each input signal. We incorporate the labeling system

of Rebecca/Coco, that is, a share represents a share of a sensitive bit, random

means a fresh and uniformly-distributed random bit, and unimportant means

that it is not relevant for the masked implementation, e.g., a control signal or

the clock input. These labels are directly translated into correlation sets for

the input signals of the circuits. Then, Fenix propagates these correlation sets

through the circuit according to the propagation rules. Which propagation rule is

used depends on the gate type (input, register, LUT) and the verification mode

(stable or transient). The stable verification mode refers to checking the security
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Table 1.: Overview of propagation rules

Gate type Function
Propagation rule

Stable St(g) Transient T t(g)

Input x ∈ X {x} {x}
Register Copy St−1(g) St−1(g)

Multiplexer g = g3?g1 : g2

St(g1) ∪ St(g2) ∪
(St(g3)△St(g1)) ∪
(St(g3)△St(g2))

△i(∅∪T t(gi)) for 1 ≤ i ≤ 3

LUTn g = f(g1, ...gn) Derived from INIT △i(∅∪T t(gi)) for 1 ≤ i ≤ n

LUT6 2
g = f1(A),
A ⊆ (g1, ...g5)

Derived from INITg △i(∅∪T t(gi)) for 1 ≤ i ≤ 5

h = f2(B),
B ⊆ (g1, ...g5)

Derived from INITh △i(∅∪T t(gi)) for 1 ≤ i ≤ 5

in the classic probing model [ISW03], while the transient verification mode allows

glitch-extended probes. In this work, we propose propagation rules for LUTs for

both stable and transient verification for the first time . The propagation rules

for registers and multiplexers are carried over from Rebecca/Coco.

Like Coco, Fenix generally performs verification in the time-constrained prob-

ing model. The time-constrained probing model [Gig+21] restricts the temporal

scope of a probe to one clock cycle, i.e., a probe is used to observe information in

one specific clock cycle at one specific location. By that, Fenix can be used to

verify non-pipelined circuits, although it is restricted to verifying circuits without

state machines and control signals. Therefore, we formulate propagation rules

(correlation sets) implemented by Fenix in a cycle-aware fashion, which allows

a more intuitive interpretation of results and several optimizations. In Table 1

we give an overview of the propagation rules used by Fenix. △ refers to the

symmetric set difference.

Propagation rules for LUTn In the stable case, the correlation set computed

according to the propagation rule reflects the correlation at the LUT output,

assuming no glitches on the input. Before verification starts, we determine a

stable propagation rule for each LUT in the netlist by computing the Fourier

representation of the LUT’s function. In order to determine these propagation

rules for a LUT representing the function g = f(g1, ...gn), we apply a three-step

process inspired by [ODo14]:

1. Every LUTn in the circuit graph is associated to a hexadecimal initialization

string which represents the output values of the LUT for every possible

assignment of inputs in ascending order. We convert the initialization string

to a 2n-digit binary number INIT = {−1, 1}n, and then compute the truth

table Y :

∀a ∈ {−1, 1}n : Y [a] = INIT[pos(a)] (9)
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The function pos(a) converts the n-bit binary vector a into the index such

that f(a) = INIT[pos(a)].

2. We compute the indicator polynomials 1a. Intuitively, 1a(g1, ...gn) = 1 if

a = (g1, ...gn), else it is 0:

∀a ∈ {−1, 1}n : 1a(g1, ...gn) =

n∏
i=1

1 + aigi
2

(10)

3. Using the indicator polynomials we arrive at the Fourier representation of f

by computing and summarizing the following expression:

f(g1, ..gn) =
∑

a∈{−1,1}n

Y [a] · 1a(g1, ...gn) (11)

From that expression, we extract the linear combinations of the inputs and the

Fourier coefficients, which enables the construction of the correlation set St(g)

according to Equation 2. The propagation rule is then formed by replacing the

abstract LUT inputs by the respective input correlation sets St(g1), ...St(gn).

In the transient case, Fenix makes the worst case assumption and extends the

attacker’s abilities by assuming any arbitrary Boolean function from the LUT’s

original inputs may be probed, independent of the INIT string or the concrete

ordering of inputs. This is reflected by the respective propagation rule as shown

in Table 1.

Example Consider a LUT3 with initialization string 0x78 = (01111000)2, repre-

senting the function f(g1, g2, g3) = (g1 ∧ g2)⊕ g3. To compute the propagation

rule for the stable mode we first convert 0x78 to INIT = (1,-1,-1,-1,-1,1,1,1). By

computing the truth table and indicator polynomials we arrive at the Fourier ex-

pansion f(g1, g2, g3) = 0.5g3 +0.5g1g3 +0.5g2g3 − 0.5g1g2g3, and the correlation

set with regard to abstract inputs S (g) = {{g3}, {g1, g3}, {g2, g3}, {g1, g2, g3}}.
This yields the propagation rule St(g) = St(g3)△(St(g1) ∪ St(g3))△(St(g2) ∪
St(g3))△(St(g1) ∪ St(g2) ∪ St(g3)). In the transient case, the propagation rule

says to propagate all possible combinations of the transient correlation sets, i.e.,

T t(g) = ({∅} ∪ T t(g1))△({∅} ∪ T t(g2))△({∅} ∪ T t(g3)).

Propagation rules for LUT6 2 A LUT6 2 consists of two LUTs connected by

a multiplexer (cf. Appendix B), that have the common inputs (g1, ...g5). Each

LUT operates on a subset of inputs, i.e., the first LUT computes g = f1(A), A ⊆
(g1, ...g5) and the second LUT computes h = f2(B), B ⊆ (g1, ...g5). The sixth

input is driven high, which ensures that the output of the first LUT is forwarded

to the first output port, and the output of the second LUT is forwarded to the

second output port. In the stable case, we compute the propagation rules for
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Table 2.: Verification of masked implementations using Fenix. ✖ indicates in-

tentionally broken implementations. Nodes include inputs, outputs,

registers, multiplexers and LUTs.

Name Nodes Cycles
Input Fresh Runtime

shares randomness Stable Transient

1st-order

DOM-AND [GMK16] 107 2 4 × 8 bit 8 bit 0.1 s 0.1 s

DOM-AND [GMK16] with LUT

combining

20 2 4 × 1 bit 1 bit 0.1 s < 0.1 s ✖

DOM-AND [GMK16] without

registers

74 1 4 × 8 bit 8 bit <0.1 s <0.1 s ✖

TI-AND [NRR06] 96 1 6 × 8 bit - <0.1 s <0.1 s

ISW-AND [ISW03] 155 3 4 × 8 bit 8 bit 0.3 s 0.6 s

Trichina-AND without registers

[Tri03]

64 1 4 × 8 bit 8 bit < 0.1 s 0.6 s ✖

DOM Keccak S-box [GSM17] 62 2 10 × 1 bit 5 bit <0.1 s 0.6 s

DOM Ascon Round 5136 3 10 × 64 bit 320 bit 9min 9.5 h

DOM AES S-box [GMK16] 409 5 2 × 8 bit 28 bit 4.5min -

2nd-order

DOM-AND [GMK16] 219 2 6 × 8 bit 24 bit 2.1 s 19 s

ISW-AND [ISW03] 315 3 6 × 8 bit 24 bit 42 s 1.8m

ISW-AND [ISW03] with retim-

ing

29 4 6 × 1 bit 3 bit 0.3 s < 0.1 s

DOM Keccak S-box [GSM17] 62 2 15 × 1 bit 15 bit 0.3 s 1.7 s

3rd-order

DOM-AND [GMK16] 49 2 8 × 1 bit 6 bit <0.1 s 0.1 s

DOM-AND [GMK16] 371 2 8 × 8 bit 48 bit 1.3min 1.9 h

the two individual LUTs, and use the rules to assign the correlation sets to the

respective output. Conceptually, we treat the two LUT5s independently from

each other. In the transient case, we however need to take into account that

all five inputs are forwarded to each of the two LUTs, and an attacker might

probe an arbitrary combination of all five inputs even though not all inputs are

processed functionally. Therefore, we assign the same correlation set to both

outputs to capture the fact that all inputs (g1, ...g5) enter both LUTs. Similar

to the regular LUTn, we assume the attacker can probe an arbitrary function of

input signals.

5. Evaluation

In this section, we first describe the evaluation setup and then discuss and

interpret the results obtained from verifying different masked implementations.

We compare our tool to others, including Rebecca [Blo+18], Coco [Gig+21],

maskVerif [Bar+19], Silver [KSM20], and discuss possible optimizations to improve

the tool for the future.
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5.1. Setup

For evaluating Fenix in terms of verification runtime, we use a notebook with

an AMD Ryzen 5 4500U CPU with 16GB of RAM. To synthesize the designs,

we use Vivado 2021.1 and a Xilinx 7 Series FPGA as the target device (XC7S75-

FGGA676-1). For our experiments, we use the default synthesis options of

Vivado with a few exceptions. First, we set the Verilog attribute extract reset

to the reset signals in our designs. This ensures that the reset signal is directly

connected to the respective register instead of being used as an input to the LUT

before the register. Unless stated otherwise, we set the options -no lc to true

to prevent LUT combining (cf. Section 3.2), and -retiming to false to prevent

register retiming (cf. Section 3.3) to construct secure FPGA designs. Instead, we

could also have placed dont touch attributes on selected wires.

5.2. Results

The verification results of the masked hardware implementations and the verifica-

tion runtime are shown in Table 2. We evaluate several 1st-, 2nd- and 3rd-order

masked hardware implementations. Table 2 shows the name of the masked design,

the number of nodes (inputs, outputs, registers, multiplexers, LUTs) in the circuit

graph, the number of verified cycles, and the number of labels provided by the

user (shares and fresh randomness). In terms of runtime, we report the total

verification runtime for the stable and transient mode, which includes the steps

4○- 6○.

The selection of masked circuits covers various 1st-order masked AND gadgets

[GMK16; ISW03; NRR06; Tri03] which can all be verified in less than a second.

We include a DOM-AND implementation without a register stage, which is secure

in the stable case but exhibits leakage in the transient case due to glitches, which

is correctly detected by Fenix. During our analysis, we make an interesting

observation about the security of the Trichina-AND gadgets, which we implement

without a register stage. In the transient case, the implementation is therefore

insecure due to glitches, as confirmed by our tool. However, the Trichina-AND

gadget passes the stable verification on the FPGA netlist with Fenix, but fails

stable verification with Rebecca when implemented on an ASIC as shown in

[Blo+18]. The reason for this is that in the case of Rebecca, the ASIC synthesis

tool reorders the individual binary gates, but the specific order of gates is crucial

for stable security. By contrast, when implemented on an FPGA, the binary

gates are merged into a single LUT, leaving less possibilities for reordering.

Fenix can also be applied to bigger designs, like the Keccak S-box. We

successfully verify a complete Ascon round consisting of more than 5000 nodes

using 64-bit input shares in less than 10 hours in the transient mode. By verifying

2nd- and 3rd-order DOM-AND gadgets, and a 2nd-order ISW-AND gadget,

we show that Fenix can be applied to higher orders. We successfully verify a

1st-order masked AES S-box protected by DOM with a latency of five cycles
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in 5 minutes for the stable case. In the transient case, the solver returned

no result after one week, although Fenix managed to build the formula in 3

seconds. This is mainly due to the complex structure of an AES S-box, and to

choosing Z3 as a solver. Also, in the original publication of Rebecca [Blo+18], the

authors mention that they checked each sensitive bit separately while treating the

others as constants and starting the verification eight times instead of labeling

all sensitive bits at once, which significantly reduces the complexity of the SAT

problem. The reduction of the complexity can, for example, be seen very well

when comparing the verification runtimes of Fenix when verifying a 3rd-order

DOM-AND gadget. For 1 bit, the verification finishes in 0.1 s, while for 8 bits, it

takes 1.9 h.

5.3. Comparison and Future Work

Currently, no verification tool operating on FPGA netlists exists, which does

not allow for a direct and fair comparison with another state-of-the-art tool.

Also, comparisons with other ASIC verification tools need to be made with

caution, as these tools often use parallelization instead of only one CPU core.

Compared to Rebecca, Fenix provides similar and, in most cases, even better

verification runtimes, given the fact that Rebecca uses multithreading and focuses

on 1-bit implementations. Coco, which was built on top of Rebecca for verifying

masked software implementations on CPU netlists, was recently extended for

hardware implementations [HB21]. Coco is able to provide very low verification

runtimes due to extensive simplification of correlation sets based on the behavior

of ASIC gates. For example, it tracks whether the input of an AND gate is zero

and glitch-free, allowing to safely assume that the output will also be zero and

glitch-free. Such assumptions are not possible in the case of LUTs since the

exact internal structure of LUTs, and therefore, their glitch behavior, is unknown.

Additionally, Coco considers control signals by reading simulation traces of the

respective designs, which also helps to simplify stable correlation sets. A similar

technique could be integrated into Fenix’ stable verification mode and would

require to re-compute the propagation rules for LUTs in every cycle depending

on the value of a concrete control signal.

The verification runtimes of basic gadgets are also comparable to the ones

reported by maskVerif and Silver. For future work, it would be very interesting to

check other properties such as composability, e.g., strong non-interference (SNI)

[Bar+16] with Fenix as it is already done by maskVerif and Silver.

The total verification runtime of Fenix is largely determined by the time it

takes to solve the generated SAT formula. For example, for verifying the ASCON

Round, it took only 15 s to create the SAT formula (step 4○), while it took 9min

to solve it. The evaluation of different solvers is therefore also an open point for

future work, as we believe a solver better suited for our problem would further

decrease the verification runtimes drastically.
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6. Conclusion

In this paper, we investigated the effect of the FPGA synthesis process on the

security of masked hardware designs. We showed that optimization measures

such as LUT combining and register retiming could introduce additional leakage

into a design that was formally verified to be secure even in the presence of

glitches. Using empirical measurements, we demonstrated that the leakage is

also observable in practice. These leaks can hardly be detected manually by the

designer on RTL level and usually require a close inspection of the post-synthesis

or post-place-and-route netlist, which becomes infeasible for larger designs due to

the growing complexity. Based on this case study, we therefore presented Fenix,

the first formal verification tool to verify masked FPGA designs directly on netlist

level. More concretely, we show how the Fourier analysis of Boolean functions

can be used to determine propagation rules for LUTs in a circuit, which can then

be used to estimate correlation sets during the verification. We evaluated the

tool using several masked designs, including multiplication gadgets and a full

Ascon round.
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Appendix A. 1st-order DOM multiplier
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Figure 6.: 1st-order DOM multiplication gadget [GMK16] represented as an ASIC

netlist.
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Appendix B. Internal structure of LUT6 2
primitive
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Figure 7.: Internal structure of a LUT6 2, which consists of two LUT5 and a

multiplexer [Xil22b].

Appendix C. 2nd-order ISW multiplier
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Figure 8.: 2nd-order ISW multiplication gadget [ISW03] represented as an ASIC

netlist.
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Appendix D. SLICEL with cascade multiplexers
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Figure 9.: Simplified sketch of SLICEL connecting four LUT6 2s and cascade

multiplexers.
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’Cause there were pages turned
with the bridges burned
Everything you lose is a step you take

Taylor Swift – You’re On Your Own, Kid

9
Conclusions and Outlook

Masking is one of the most popular and most researched countermeasures against

power analysis attacks. It follows the idea of decoupling the intermediate values

processed by a cryptographic device from the sensitive values, such as the

secret key, by splitting the sensitive values into multiple random shares. One

very beneficial aspect of masking is that it provides provable security based on

assumptions like the independent leakage assumption (ILA). The ILA states that

the power consumption of independent computations leaks shares independently

instead of their combinations. Based on an algorithmic description, a masking

scheme is either implemented in hardware or in software. However, physical

effects like glitches and transitions that occur in CMOS circuits have been shown

to potentially violate the ILA, leading to insecure masking schemes. In this thesis,

we investigated the security and efficiency of masked software and hardware

implementations, taking into account effects that potentially violate the ILA.

Conclusions in the Context of Masked Software We studied the security of

masked software implementations when executed on CPUs and identified microar-

chitectural components that can cause violations of the ILA. More specifically,

we observed that physical effects like glitches and transitions that occur in the

CPU on gate-level can lead to the temporary combination of intermediate val-

ues and, therefore, cause leakage during the execution of masked software. In

[Gig+21], we demonstrated, based on the example of the RISC-V Ibex core,

that components like the register file, computation units (including the ALU),

and the load-store unit are prone to such effects. Similar observations can be

made for more complex processor architectures, as we demonstrated in [GPM21]

by analyzing the RISC-V SweRV core, which features a 9-stage pipeline with

forwarding logic and superscalar building blocks. We formalized our findings by

adapting the order-reduction theorem, such that the number of pipeline stages
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and execution units are considered.

To deal with ILA violations originating from components in the CPU, we showed

that changes are required both on hardware and software level. In [Gig+21], we

proposed a list of small changes for the Ibex core that eliminate most of the

leakages and allow the secure execution of masked software if the software fulfills

a set of constraints. In [GPM21], we reported similar findings for the SweRV

core and discussed how software constraints can be adapted for more complex

microarchitectures in general.

In [GPM23b], we further extended this analysis to include the embedded OS

that runs the masked software as one out of many tasks. We concluded from this

analysis that ILA violations are potentially also committed by the embedded OS,

for instance, during context switches. To fix these issues, we explored several

strategies that involve changes to the context-switching routine of the OS.

Our analysis clearly highlights that the CPU needs to be taken into consid-

eration when constructing masked software implementations. In this context,

we introduced a new formal verification approach that can be used to prove the

security of a masked software implementation given a concrete CPU netlist.

Conclusions in the Context of Masked Hardware Masking for hardware imple-

mentations does not come free of charge but rather with a significant overhead in

latency, randomness, and area. A considerable amount of resources, for instance,

RNGs and additional register stages, is spent on dealing with ILA invalidations

caused by glitches and transitions. In [Gig+24a] we showed for a second-order

masked AES design that the randomness consumption can be significantly re-

duced by recycling fresh randomness produced by the RNG, and using shares of

unrelated state bytes for refreshing in a COTG-based fashion. We demonstrated

that the reduction of randomness does not necessarily lead to an increased en-

cryption latency in the design and can be done while keeping the minimal number

of three shares for second-order security.

Formal verification is one option to check whether a masked hardware implemen-

tation is secure in the presence of glitches and transitions. Most existing formal

verification tools focus on Boolean masking, although arithmetic masking has

become more important recently, especially with the rise of PQC. In [GPM23a],

we showed how existing Boolean verification approaches can be extended to

the arithmetic domain. We demonstrated that this extension allows to verify

A2B/B2A conversion algorithms and uncovered a possible issue related to glitches

when implementing a popular A2B/B2A conversion algorithm in hardware. In a

further analysis, we showed that the developed approach can also be applied in

the software domain.

In the context of masked hardware implementations on FPGAs, we showed

in [GPM24] that optimizations performed during the synthesis process could

introduce glitches into the design that lead to invalidations of the ILA. From this

analysis, we conclude that even when using a glitch-resistant masking scheme like
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DOM, there is no guarantee that the glitch resistance is still given after FPGA

synthesis. To identify such issues, we proposed a new formal verification tool

that works directly on the post-synthesis FPGA netlist.

9.1. Future work

This thesis enhances the practical security and efficiency of masked software and

hardware implementations. However, plenty of interesting open problems and

new research directions are still available. In general, we believe it is necessary to

further narrow the gap between the theoretical and practical security of masked

implementations to counteract side-channel attacks efficiently. The following

paragraphs summarize possible next steps towards reaching this goal.

Automated Masking in Software In this thesis, we proposed software constraints

for masked Assembly implementations that currently need to be integrated man-

ually. Clearly, this represents a laborious and error-prone task that a compiler

could easily automate. Another open problem in this context is that masked

implementations constructed in high-level languages such as C usually cannot

be trusted because compilers perform optimizations like reordering instructions

or changing register allocations, which potentially break security guarantees

made for the initial masking scheme. One option would be to make the compiler

aware of the masking countermeasure such that only security-uncritical optimiza-

tions are performed. Another option would be to generate masked assembly

implementations directly from high-level descriptions of unmasked cryptographic

primitives by also taking into account possible leakage coming from the CPU

hardware. While there already exists some work in that direction, mainly for

masked hardware implementations [BSG23; Cas+24; Kni+22; Wu+23b], the

state-of-the-art for software is still rather rudimentary, especially considering

microarchitectural leakage.

Enhanced Formal Verification Tools Existing verification tools can mainly be

used to check small cryptographic building blocks, such as masked S-boxes, in-

stead of larger ciphers over multiple rounds or bigger PQC implementations. In

general, the scalability of these tools is limited, and they are less applicable for

higher masking orders or a larger number of gates/execution cycles, especially

when it comes to complex dependencies between intermediate variables, e.g.,

when reusing randomness. Scalability can be improved by approximations, which,

however, leads to less accuracy. Therefore, finding a good tradeoff between

scalability and accuracy is a central aspect of improving formal verification tools.

Additionally, existing approaches work with adversary models, which mostly

include glitches and transitions but largely ignore coupling and crosstalk effects.

As CMOS technology evolves and 2nm processes will be used for manufacturing
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semiconductors soon, the distances between wires on the chip will shrink, provok-

ing crosstalk. Therefore, such effects on the security of masked software need to

be formalized such that integrating them into formal verification tools is possible.

Broadening of the Verification Scope In this thesis, we assumed that at the

beginning of the execution of a masked implementation, shares magically appear in

the register file or the state registers. In reality, the cryptographic implementation

is often embedded in a SoC, connecting many different components via a shared

bus. For example, a typical SoC could contain a cryptographic RNG to generate

fresh randomness and the initial sharing and a CPU to execute the masked

software but accelerates certain operations with a dedicated cryptographic co-

processor. In this case, the attack surface is broadened by many aspects, including

the bus used to transport the shares. Investigating the security of SoCs as a

whole, in turn, requires appropriate verification techniques. Considering the

high complexity of such systems, there is presumably little hope that empirical

verification can deliver meaningful insights, again raising the need for improved

formal verification techniques.

Reducing Randomness Consumption We demonstrated that reusing randomness

in masked hardware implementations greatly decreases the overhead of a masked

implementation in terms of e.g., area. While we focused on AES, the applicability

of the concept to other ciphers makes an interesting future research direction.

First steps in that direction have already been made, e.g., for KETJE [ANR19],

Ascon and Keyak [SD17], ARX ciphers [JPS18], and Prince [MMM21], although

focusing instead on first-order hardware implementations. Reusing randomness

in higher-order (d > 2) designs is still an open problem, mainly because existing

concepts were derived manually, and for higher orders, it likely requires a more

systematic approach. Related to that, it would also be interesting to try to derive a

generic approach that works for any masking order d. Furthermore, existing work

almost exclusively focuses on masked hardware implementations, although the

runtime of masked software could also be decreased significantly when reducing

the required amount of fresh randomness. In this context, the low-noise setting

of masked software implementations could be problematic, which becomes even

worse with less RNG utilization. This thesis also discusses A2B/B2A conversion

algorithms, which require a certain amount of fresh randomness but have not yet

been studied in terms of reusing randomness.
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[SK23] Soner Seçkiner and Selçuk Köse. “Security Implications of Decou-

pling Capacitors on Leakage Reduction in Hardware Masking”. In:

14th IEEE Latin America Symposium on Circuits and System, LAS-

CAS 2023, Quito, Ecuador, February 28 - March 3, 2023. IEEE,

2023, pp. 1–4.

[Sko09] Sergei P. Skorobogatov. “Using Optical Emission Analysis for Es-

timating Contribution to Power Analysis”. In: Sixth International

Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC

2009, Lausanne, Switzerland, 6 September 2009. Ed. by Luca Breveg-

lieri, Israel Koren, David Naccache, Elisabeth Oswald, and Jean-

Pierre Seifert. IEEE Computer Society, 2009, pp. 111–119.

[SKS09] François-Xavier Standaert, François Koeune, and Werner Schindler.

“to Compare Profiled Side-Channel Attacks?” In: Applied Cryptog-

raphy and Network Security, 7th International Conference, ACNS

2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings. Ed.

by Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and

Damien Vergnaud. Vol. 5536. Lecture Notes in Computer Science.

2009, pp. 485–498.

[SM15] Tobias Schneider and Amir Moradi. “Leakage Assessment Method-

ology - A Clear Roadmap for Side-Channel Evaluations”. In: Cryp-

tographic Hardware and Embedded Systems - CHES 2015 - 17th

International Workshop, Saint-Malo, France, September 13-16, 2015,
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