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Abstract

Embedded and IoT devices rely on cryptographic building blocks to protect
sensitive user data from unrestricted access. Cryptographic algorithms have
been designed to provide security against mathematical attacks, assuming that
the adversary knows the input, output, and the algorithm itself but not the
secret key. Real-world attackers are often more powerful because they can exploit
physical access to the device, allowing them to observe physical properties like
the device’s power consumption. Using side-channel attacks, such as differential
power analysis, these physical properties can be statistically analyzed to extract
the secret key. One popular countermeasure is masking, which splits sensitive
values into multiple random shares, effectively decoupling the sensitive data
from the data processed by the device and, thus, the power consumption. The
security of masking schemes is based on the independent leakage assumption
(ILA), which states that independent computations result in independent leakage.
Unfortunately, it has been shown that the ILA does not always hold for masked
implementations that are used in practice. In this thesis, we work on improving
the security and efficiency of masked implementations in software and hardware.

First, we study the security of masked software when executed by a micropro-
cessor and identify several microarchitectural building blocks that could prevent
leakage-free execution due to ILA violations. To fix the discovered issues, we
explore possible solutions on the hardware and software level and compare them
with respect to efficiency. We focus on simple as well as more complex CPUs,
which include multiple pipeline stages and superscalar building blocks. Further-
more, we investigate the security of masked software when running as a task
in an operating system. To identify leakage in the first place, we propose a
new formal verification approach that allows to verify the execution of masked
software implementations directly on the CPU netlist, facilitating the detection
of ILA violations stemming from the CPU microarchitecture.

Second, we focus on masked hardware implementations. Typically, these im-
plementations compensate for ILA violations either by consuming a significant
amount of fresh randomness or by an increased encryption latency. We research
strategies to lower the randomness consumption of masking in hardware without
increasing the latency, mainly by reusing fresh randomness for unrelated compu-
tations during the encryption. In addition, we research new formal verification
concepts for masked hardware implementations and apply these techniques in
different contexts. We construct a verification approach that supports both
Boolean and arithmetic masking and allows us to detect ILA violations in imple-
mentations adapting both types of masking. In the context of masked hardware
implementations on FPGAs, we build a new verification tool that can be used to
uncover leakage introduced by the FPGA synthesis process.

iii
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The greatest of luxuries is your secrets.
Taylor Swift — Dear Reader

Introduction

The Internet of Things (IoT) is becoming increasingly intertwined with our daily
lives, offering comfortable and easy solutions to our everyday problems. While in
2003, approximately 500 million devices were connected to the internet, already in
2010, the number of connected devices (12.5 billion) by far outgrew the number of
humans living on the planet (6.8 billion) [Evall]. Reasons for this steep increase
are the introduction of ubiquitous devices like smartphones and tablets and the
growing ability of everyday objects to communicate with the world around them.
In 2024, it is almost impossible to imagine the world without electronic door
locks, cameras automatically recognizing the number plate of our cars when we
pass the tollbooth and the possibility of tracking goods in real-time in supply
chain management. However, the sheer convenience and benefits of using IoT
technology often make us blind to the possible risks to our privacy. It is in the
nature of IoT devices to collect, process, and transmit our data, which is in most
cases sensitive corporate or personal information, for example, our heart rate
monitored by fitness trackers or information about the electricity consumption of
our home sent by smart meters to the grid operators. Since leaking this data to
the outside world can have serious monetary, legal, or safety consequences, a key
aspect of implementing IoT devices is protecting them from unauthorized access.

Cryptography One of the most critical measures to secure communication
between two parties, e.g., an IoT device and a server, is cryptography. One
general tool provided by cryptography are encryption algorithms (ciphers) that
allow to transform a message (plaintext) into a concealed message (ciphertext)
using a key. In the case of symmetric cryptography, the communicating parties
share a common secret key k, which is only known to them and is used for both
encryption and decryption. To securely transmit a message, the sender encrypts
the message m with the algorithm E using the key k£ and obtains the ciphertext
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¢ = Ei(m). The sender then sends the ciphertext ¢ to the receiver, who uses
the same key to decrypt the message and obtains the plaintext m = E'k_l(c).
The encryption algorithm is designed in a way such that any eavesdropper
who observes ¢ cannot practically obtain any information about k or m, which
refers to security in the so-called black-box model. In the black-box model, the
adversary can control the input plaintext and observe the plaintext-ciphertext
pairs for a certain amount of encryptions. Additionally, the adversary knows
which cryptographic algorithm is used but has no knowledge about the internal
cipher state. Over the years, security in the black-box model has been the
focus when designing cryptographic primitives, which covers mathematical and
statistical attacks like differential or linear cryptanalysis [BS90; BS91; Mat93].

Physical Attacks In the context of the IoT, symmetric cryptography is used by
cryptographic devices such as smart cards, which store a cryptographic key and
perform cryptographic operations using these keys [MOPO07]. The cryptographic
key needs to be kept secret. If the key falls into the hands of an attacker, the
possible consequences are devastating, including data breaches, identity theft, and
financial loss. For example, the cryptographic key stored on a prepaid credit card
could be misused to increase the balance or issue malicious money transactions.

Compared to the traditional setting, an attacker in the IoT world often has more
powerful abilities, effectively turning the black box into a gray box. While the
black-box model assumes that the only insecure component in the cryptographic
system is the transmission channel and that the operations performed by the
cryptographic devices are entirely hidden, this is not necessarily the case in
reality. In many scenarios, attackers might be able to gain physical access and
perform physical rather than mathematical attacks. Especially IoT devices
make perfect targets for physical attacks due to their ubiquitous nature. For
example, attackers can quickly gain access to electronic key cards, e.g., by just
stealing them. For big server machines located in a company’s server room, this
is much harder. In general, physical access means that the attacker possesses
the cryptographic device or is in close vicinity and can observe and record its
physical properties, which are referred to as side-channel information. The idea
of exploiting side-channel information is that cryptographic devices perform
computations involving the secret key, and computations, in turn, strongly
influence physical properties. Consequently, a dependency exists between the
secret key and the side-channel information that can be analyzed to recover the
key. From an attacker’s perspective, the cryptographic primitive is then found in
a gray-box setting because some information about the internal cipher state is
leaked through side-channel information.

Side-channel attacks using various kinds of physical properties have been used
to extract secrets from cryptographic devices, including time [Koc96; OSTO06;
SWTO01], electromagnetic radiation [GMOO01; Hey+12; QS01], sound [Gen+19;
GST14], temperature [HS13], and photonic emission [FHO08; Sch+12; Sch+13;
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Figure 1.: Dependency chain between secret key and power consumption of a
cryptographic device (extended from [MOPOQT7])

Sko09]. In 1999, Kocher et al. [KJJ99] proposed power analysis attacks that
utilize the instantaneous power consumption of CMOS circuits as side-channel
information. CMOS is the prevailing technology for building ICs like ASICs,
FPGASs, and microprocessors because of its low overall power consumption. Power
analysis attacks exploit a specific characteristic of CMOS circuits: instantaneous
power consumption is primarily determined by switching activity, such as a
register or wire changing its logical value. As a result, different operations
on different data cause different switching activity and, thus, different power
consumption. Differential Power Analysis (DPA) is one of the most popular
methods to exploit power consumption as a side-channel. To perform DPA, the
attacker statistically analyzes the differences in the power consumption over
multiple executions of the encryption to obtain information about intermediate
values processed by the cryptographic device, which depend on the secret key.

Countermeasures In order to counteract power analysis attacks like DPA, it is
necessary to identify the requirements for a successful attack. One fundamental
requirement is the dependency between the power consumption and the secret
key, as shown in Figure 1. During the execution of a cryptographic algorithm,
the secret key is leaked by the processed data and the executed operations
via the power consumption. To prevent the leakage of the key, either the link
between the power consumption and the data/operations or the link between
the data/operations and the secret key must be broken. There exist two general
classes of countermeasures, hiding and masking, which focus on breaking either
one of these two links.

Hiding aims at weakening the dependency between the power consumption
and the processed data and executed operations by randomizing or equalizing
the power consumption. Randomization of the power consumption can be
achieved by shuffling the execution order of operations, inserting random delays
or dummy operations, or utilizing noise engines to produce random switching
activity. Another possibility is equalizing the power consumption such that every
operation for every data value consumes approximately the same amount of power,
e.g., by using dual-rail logic styles. Several proposals to protect cryptographic
devices by hiding exist [CCD00; Das+17; GM11b; HOMO06; Man04; MSS09;
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RPD09; TV04].

The goal of masking [Cha+99; GP99] is to remove the dependency between the
secret key and the processed data and operations. This is achieved by randomizing
sensitive intermediate values, such as the key, by splitting them randomly into
multiple shares. The cryptographic algorithm itself is adapted to process each
share individually instead of the secret key. Although the power consumption of
the cryptographic device still depends on the processed data, the processed data
is effectively random. Every share is statistically independent of the sensitive
value, such that the sensitive value can only be recovered by recovering all shares,
which makes attacks much more difficult and often impractical. The security of
a masked cryptographic algorithm is determined by the security order d, which
is also referred to as the masking order. For instance, first-order masking (d = 1)
works with at least two shares and protects against first-order DPA attacks, while
protection against dth-order attacks requires dth-order masking, and thus, at
least d 4 1 shares. In the context of symmetric cryptography, Boolean masking is
commonly used, which uses the exclusive or (&) operator to split a value into
multiple shares. Other areas, for instance, some PQC schemes, require a mix of
arithmetic masking based on modular additions and Boolean masking. Compared
to hiding, masking does not require modifications to the power consumption
characteristics of the physical device since it is applied exclusively on algorithmic
level. In this thesis, we focus on the masking countermeasure.

Besides hiding and masking, countermeasures can be implemented on protocol
level, such as re-keying, which ensures that a single key is only used for one or
very few encryptions. Re-keying is a central building block for the design of
leakage-resilient modes of cryptographic primitives [DP08], which aim at limiting
the amount of side-channel information an attacker is able to collect. However,
in many scenarios, frequent updates of the secret key are not possible. For
instance, smart cards are usually assigned their secret key upon production, and
no mechanism exists to update it.

The Independent Leakage Assumption The security of a masking scheme against
DPA attacks can be formally proven. This is achieved by verifying that the
distribution of every processed intermediate does not depend on the sensitive
value. In the case of a masking scheme working with d + 1 shares, every tuple
of d or less intermediate variables must be independent of the sensitive variable
to be secure. For example, to split a sensitive value s into two shares s; and
s2, one would sample s; randomly from a uniform distribution and compute
sg = s @ s1. Clearly, s1 is independent of s, but also sg is independent because
s is concealed (masked) by s1. Many works give formal proofs of the security
of masking schemes [Bar+18; Cor+13; Gou0l; NSS22; PR13], including, for
instance, the work of Rivain et al. [RP10], who propose a generic dth-order
masking of the AES along with a manually derived formal security proof.
Formal security proofs have in common that they are based on the independent



leakage assumption (ILA) [Ren+11]. The ILA states that independent com-
putations lead to independent leakage, i.e., the leakage caused by two distinct
computations depends on at most one intermediate value but not on their com-
binations. For example, on a microprocessor, the ILA implies that the power
consumption of two instructions executed successively is independent of each
other. To obtain a secure masking scheme that meets the properties derived in
the formal proof, it must be ensured that the ILA holds.

Masking in Practice Based on the algorithmic description of a masking scheme
of a cryptographic primitive, the masking scheme is either implemented in
hardware or in software. For instance, to create a hardware implementation,
masking schemes are often coded in a Hardware Description Language (HDL)
like Verilog and then manufactured into an ASIC or ported to an FPGA. Masked
software implementations are frequently created using a programming language
like C or assembly and then executed by a CPU, either in bare-metal mode or
within an operating system. ASICs, FPGAs, and CPUs are typically built using
CMOS technology, which is prone to physical effects like glitches, transitions,
and couplings. In a CMOS circuit, at the beginning of a clock cycle, the data
stored by registers is propagated into the combinatorial logic of the circuit. Due
to differences in the wire lengths and propagation delays of gates, some gates
might temporarily compute incorrect results when one gate input has arrived but
the other has not. These temporary events are known as glitches and transitions.
Coupling effects include crosstalk between adjacent wires, power supply noise, or
IR drop.

Numerous publications demonstrate that the ILA is violated by physical
effects in CMOS circuits [Cnu+17; Dho21; FG05; GMK16; ISW03; LBS19;
MPGO05; MPOO05; Rep+15], leading to insecure masked hardware and software
implementations. For example, combining two shares s; and sp with a random
value r by the expression x = (s1 ® r) @ s2 is valid in theory. In a masked
hardware implementation representing the expression as a CMOS circuit, r could
be delayed, and x would temporarily compute s1 @ s2, leading to the combined
instead of independent leakage of the two shares. In the case of masked software
implementations, physical effects occurring in the CPU on the hardware level can
lead to violations of the ILA [Bal+14; Cor+12; Gro+16a; MMT20; PV17]. For
instance, overwriting a CPU register that stores one share with its counterpart
can leak the Hamming distance between the two shares.

Verification of Masked Implementations To detect potential violations of the
ILA, after creating a masked implementation from the theoretical description of a
masking scheme, designers need to test if the security order in practice adheres to
the theoretical protection order. One option is to perform empirical verification
using leakage assessments such as Welch’s t-test or concrete attacks like DPA.
For masked hardware implementations, this can be done by producing an ASIC
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test chip or evaluating the design on an FPGA board. For masked software,
it is possible to assess the implementation directly on the microcontroller or
use a leakage simulator that tries to estimate the power leakage for a specific
microprocessor [Har+03; MOW17; She+21a; She+21b].

Formal verification approaches analyze the masked implementation for ILA
invalidations and generate a security proof in case the implementation is secure.
This analysis can be performed in an automated way by a formal verification
tool with respect to a specific attacker model. For example, existing approaches
for masked hardware circuits often work by investigating the implementation
in the robust probing model [Fau+18; ISW03]. In the robust probing model,
the attacker possesses d probes, which allow the observation of values of up to d
wires in a masked circuit. The probes are parametrized by a tuple (g, t, c), which
defines whether glitches (g = 1), transitions (¢ = 1), or coupling (c = 1) effects
can be observed by a probe. A masked hardware circuit is dth-order secure in
the robust probing model if an attacker, who places d probes on arbitrary wires
in the circuit, cannot infer any information about the secret value by combining
these observations.

1.1. Objectives and Contributions

The objective of this cumulative thesis is to improve the security and efficiency
of masked implementations in software and hardware. In Section 1.1.1 and
Section 1.1.2, we describe the main contributions made in each area. Part II
contains the scientific publications that are part of the author’s thesis. Each
work is preceded by the publication details and a brief description of the author’s
contribution. The content of the papers is unmodified from the camera-ready
versions published at the respective conferences, but the format was modified to
fit the layout of this thesis.

1.1.1. Masking in Software

Masked software implementations that have been proven secure in theory often
exhibit leakage in practice when being executed by a CPU. This is due to physical
effects, like glitches and transitions, that occur in the CPU on hardware level
and violate the ILA [Bec+22; Cor+12; Gro+16a; MMT20; PV17]. Based on this,
Balasch et al. [Bal+14] formulate the so-called order reduction theorem, which
states that a masking scheme that has been proven to be dth-order secure in
theory is only |4 |th-order secure when implemented in software and executed by
a CPU. To deal with the leakage of masked software, ILA violations first need to
be identified and then eliminated.

The identification of ILA violations is usually done empirically by executing
the masked software on a microprocessor. However, the results of this analysis
are highly dependent on implementation details of the CPU, including placement,
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routing, and the used standard cell library [Aro+21; MPW22]. Additionally,
identifying the concrete root causes of leakage, e.g., components in the CPU,
is a very challenging task, especially when working with CPUs that adapt
a more complex microarchitecture. To eliminate ILA violations, changes to
the masked software implementations need to be made. One strategy is to
rewrite the software with respect to the identified leaking instructions and CPU
components [PV17; She+21a; She+21b]. Another strategy is to use the lazy
engineering approach [Bal+14], which tries to address this issue by using a higher
protection order than theoretically required to compensate for the loss of masking
order without identifying the concrete leakage sources. While both strategies
result in a secure implementation, they come with very high overhead in terms
of runtime and memory [Gro+16a; PV17].

Main Contributions In this thesis, we investigate the security of masked software
implementations in practice when executed on CPUs. We explore methods to
facilitate the identification and efficient elimination of ILA violations. Our analysis
includes both small and more complex microprocessors, as well as masked software
running in bare-metal mode or as a task within an OS.

In [Gig+21], we demonstrate that glitches and transitions in CPU components,
such as the register file or the ALU, are possible root causes of ILA invalidations.
We show that eliminating the leakage is more efficient and easier when done both
on the hardware level (by integrating small changes into the CPU netlist) and on
the software level (by applying a set of constraints). Furthermore, we create a
list of requirements that need to be fulfilled by the SRAM block attached to the
processor to enable secure loads and stores of shares. This analysis is done using
the 32-bit open-source RISC-V IBEX core. After applying the hardware fixes, we
obtain a secured version of the core, which guarantees that masked software can
be executed without invalidating the ILA, given that the software adheres to the
constraints. To identify the ILA invalidations in the first place and verify that
our fixes provide the expected security level, we propose a new multi-level formal
verification approach called Coco. Coco includes the gate-level netlist of the
CPU, as well as the masked assembly implementation, allowing the identification
of ILA invalidations in the CPU netlist during the execution of the masked
software.

This work was published at USENIX Security 2021 in collaboration with Vedad
Hadzic, Robert Primas, Stefan Mangard, and Roderick Bloem. The respective
publication can be found in Chapter 3.

In [GPM21], we show that constructing secure and efficient masked software
becomes more challenging for CPUs that have a more complex microarchitecture.
Using Coco, we demonstrate that for such processors, glitches in the forwarding
(bypass) logic that connects the CPU’s pipeline registers can potentially lead
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to leakage in the execution of masked software. To formalize our findings, we
adapt the order-reduction theorem such that the number of pipeline stages and
execution units is considered. Again, we show that ILA invalidations can be
eliminated by modifying both the hardware and the software. When following
the proposed software constraints, masked software can be executed securely but
not always efficiently. Therefore, we suggest several implementation strategies
and coding techniques that allow us to apply these constraints more efficiently.

This work was published at ASTACRYPT 2021 in collaboration with Robert
Primas and Stefan Mangard. The respective publication can be found in Chap-
ter 4.

In [GPM23b], we provide the first analysis of masked software when executed as
a task in an embedded OS instead of bare-metal mode. We show that OS-specific
events, such as context switches, can potentially lead to ILA invalidations, causing
leakage when executing the masked software. This leakage mainly stems from
overwriting shares in memory and transitions on the register file and memory
read and write ports that occur during a context switch. To fix these issues, we
explore several efficient strategies to harden a context-switching routine of an OS
against these leakage effects, while keeping the overhead for unmasked software
minimal.

This work was published at AsiaCCS 2023 in collaboration with Robert Primas
and Stefan Mangard. The respective publication can be found in Chapter 5.

Other Contributions This section briefly describes publications in the area of
software masking that the author worked on as a co-author during her PhD, but
are not included in this thesis.

In [Blo+22], we propose power contracts between the masked software and
the CPU, which define the exact leakage behavior of every instruction. When
constructing masked software, it is then enough to check it within the power
contract, which makes verification much faster and offers vendors the opportunity
to release a power contract corresponding to their CPU instead of the complete
CPU netlist. To demonstrate our approach, we model a power contract for the
secured IBEX core and give a formal proof that the contract is complete.

The paper “Power Contracts: Provably Complete Power Leakage Models for
Processors” [Blo+22] was published at CCS 2022 in collaboration with Roderick
Bloem, Marc Gourjon, Vedad Hadzic, Stefan Mangard, and Robert Primas.

In [Gig+24b], we construct an efficient second-order masked software implemen-
tation of the Ascon cipher. The resulting implementation does not require any
fresh randomness, and applies various other techniques to handle ILA violations
caused by the CPU directly on the software level. We evaluate the implementation
in terms of performance and security on 32-bit ARM and RISC-V processors.
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Our work includes both an empirical assessment based on Welch’s t-test and a
formal study using Coco and the secured IBEX core.

The paper “Efficient Second-Order Masked Software Implementations of As-
con in Theory and Practice” [Gig+24b] is currently in submission and is a
collaboration with Florian Mendel, Martin Schléffer, and Robert Primas.

1.1.2. Masking in Hardware

To deal with glitches and transitions causing ILA invalidations in masked hard-
ware circuits, glitch-resistant masking schemes like Threshold Implementations
(TT) [NRRO6] and Domain-Oriented Masking (DOM) [GMK16] have been sug-
gested. Such schemes are based on the idea of inserting glitch-stopping registers
and refreshing masks during critical computations. Applying such measures
requires additional registers, gates, and RNGs, which leads to a significant in-
crease in the chip area and latency and a general decrease in the efficiency of
an implementation. One promising technique to reduce the randomness con-
sumption of masked hardware designs is the changing of the guards (COTG)
technique [Dael7]. To refresh an intermediate value, COTG suggests using a share
of another unrelated intermediate value instead of fresh randomness. Since its
proposal, COTG has been successfully applied to various kinds of cryptographic
algorithms, including the AES. However, regarding AES, most implementations
focus on the first-order case [Ask+22; Sugl9; WM18], or optimize exclusively for
randomness, resulting in a higher latency [Bey+21; DSM22].

Besides efficiency, another important aspect of masking in hardware is to
verify that the resulting implementation is secure in the presence of physical
effects. To do so, a wide variety of automated formal verification tools have been
proposed [Bar+19; Bel+22; Blo+18; KSM20] that allow to check if the ILA is
invalidated for a given masked hardware design. While these tools are applicable
in many different scenarios, the focus is clearly on Boolean masking and designs
intended for ASICs.

Main Contributions In this thesis, we study ways to improve the efficiency
of masked hardware implementations in terms of randomness and latency. We
research new formal verification techniques, including one for arithmetic masking
and one for FPGA platforms.

In [Gig+24a], we propose a second-order AES design protected by DOM, which
provides a decent tradeoff between latency and randomness. In particular, we
significantly reduce the required amount of fresh randomness per encryption while
keeping a latency of 5 cycles per round. Reducing the randomness is achieved by
the COTG technique, i.e., by sharing fresh randomness across the S-boxes and
using shares of state bytes as randomness in other unrelated computations. The
resulting implementation only requires 3 200 random bits per encryption (instead
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of 20800), and has an area of 117kGE (instead of 176 kGE). To verify that our
concept of reusing randomness is valid, we use a modified version of CoCO, which
can verify hardware implementations and perform empirical measurements of our
design on an FPGA board.

This work was published at CHES 202/ in collaboration with Franz Klug,
Stefan Mangard, Florian Mendel, and Robert Primas. The respective publication
can be found in Chapter 6.

In [GPM23a], we extend the formal verification approach proposed by Bloem et
al. [Blo+18] to the domain of arithmetic masking. The resulting verification tool
is capable of handling both arithmetic and Boolean masking of any order. For
the first time, we formally analyze so-called A2B and B2A conversion algorithms,
which are required to switch from the Boolean to the arithmetic domain and vice
versa. In our analysis, we investigate a popular A2B/B2A algorithm implemented
in hardware and show that glitches might compromise its security. Furthermore,
we show that the approach can also be applied in the software domain, allowing
us to report new findings of leakage caused, e.g., by register transitions.

This work was published at ACNS 2023 in collaboration with Robert Primas
and Stefan Mangard. The respective publication can be found in Chapter 7.

In [GPM24], we provide new insights on the security of masking schemes when
implemented on FPGAs. We demonstrate that FPGA-specific optimizations
performed during the synthesis process, which translates the HDL design to an
FPGA configuration file, might introduce glitches invalidating the ILA. Con-
sequently, even when adapting a glitch-resistant masking scheme, there is no
guarantee that it is still glitch-resistant after FPGA synthesis. To detect such
effects, we present FENIX, the first formal verification tool that operates directly
on FPGA netlists and can handle any-order masked hardware implementations.

This work was published at HOST 2024 in collaboration with Kevin Pretter-
hofer and Stefan Mangard. The respective publication can be found in Chapter 8.

Other Contributions This section briefly describes publications in the area of
hardware masking the author worked on as a co-author during her PhD, but are
not included in this thesis.

In [Cas+24], we construct a tool to automatically generate pipelined masked
hardware implementations. Based on a Boolean equation describing the function-
ality of a cryptographic primitive, our tool generates a secure masked hardware
implementation of the desired protection order from composable building blocks.
The resulting designs have a low area consumption due to the elimination of
synchronization registers in the pipeline, which is achieved by assigning computa-
tions to register stages in an optimized way such that registers can be removed
or merged without breaking the ILA.
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The paper “Compress: Generate Small and Fast Masked Pipelined Circuits”
is currently in submission and is a collaboration with Gaétan Cassiers, Stefan
Mangard, Charles Momin, and Rishub Nagpal.

In [Nag+22], we propose a low-latency hardware masking scheme. The idea is to
synchronize the propagation of shares such that glitches cannot lead to violations
of the ILA by adapting a dual-rail encoding instead of registers. Our approach is
generic and can be integrated into already existing masking schemes such as DOM.
We show that it can be used to construct single-cycle glitch-resistant masked
S-boxes. To validate the practicality and security of the proposed technique, we
perform empirical verification on an FPGA and formal verification with Coco.

The paper “Riding the Waves Towards Generic Single-Cycle Masking in Hard-
ware” was published at CHES 2022 in collaboration with Rishub Nagpal, Robert
Primas, and Stefan Mangard.






Familiarity breeds contempt.

Taylor Swift — Bejeweled

Background and State of the Art

This chapter provides the necessary background for this thesis. We start with
a brief introduction to cryptography in Section 2.1. In practice, cryptographic
concepts are implemented by cryptographic devices, which we cover in Section 2.2.
Physical attacks represent a serious threat to the security of such devices. We give
a brief overview of possible attacks, in particular Side-Channel Analysis (SCA)
attacks like DPA, and discuss some more recent attack techniques in Section 2.3.
To counteract SCA attacks, masking is one of the most popular countermeasures,
which we describe in Section 2.4. To obtain a secure masked implementation, the
ILA needs to be fulfilled, which is not always the case in practice. Section 2.5
presents common ILA violations observable in masked hardware and software
implementations. To detect these violations, it is necessary to verify a masked
implementation, either empirically or formally. We cover empirical verification
in Section 2.6 and formal verification in Section 2.7. In the context of formal
verification, we give a description of the most common adversary models, and
give an overview of state-of-the-art automated formal verification tools.

2.1. Cryptography

Cryptography addresses the security of information exchanged between multiple
parties [Sch96]. The goal of cryptography is to provide confidentiality, data
integrity, and authentication of messages through cryptographic primitives such
as encryption schemes, hash functions, and digital signature schemes [MOV96].
Encryption schemes provide the confidentiality of messages, which means that
the message is concealed in a way such that it can only be understood by the
intended receiver. Hash functions can provide message integrity, which refers to
detecting whether the concealed message was altered by an unauthorized third
party. Message authenticity refers to the sender and receiver identifying each

15
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other when communicating, which can be achieved by digital signature schemes.
All these cryptographic building blocks are based on the usage of keys, which
represent a piece of information exchanged by the sender and receiver before
communicating and then used to encrypt and decrypt messages. The security of
cryptographic systems and their ability to provide properties like confidentiality,
integrity, or authentication relies on the secrecy of the cryptographic key.

In general, based on the usage of keys, cryptographic primitives can be divided
into symmetric and asymmetric primitives [MOV96]. In this thesis, we mostly
focus on symmetric cryptography, although some of our contributions in the
area of arithmetic masking can also be applied in the asymmetric domain (cf.
Section 2.4.2, Chapter 7). Therefore, we describe both briefly in the next section
but choose the symmetric domain as the basis for the rest of this chapter.

2.1.1. Symmetric and Asymmetric Cryptography

Both asymmetric and symmetric cryptography work with encryption schemes that
allow the transformation of a message to a ciphertext using encryption/decryption
keys. In the case of asymmetric cryptography, two different keys are used for
encryption and decryption, while two identical keys are used for symmetric
cryptography. In general, an encryption scheme specifies the message space M,
the key space KC, and the ciphertext space C. To encrypt a message m € M using
the key a € IC with the encryption function F, one computes the ciphertext ¢ € C
by ¢ = Eq(m). E needs to be bijective, such that it can be reversed and a unique
plaintext message can be recovered for each ciphertext during the decryption
process. Therefore, to decrypt a ciphertext ¢ using a decryption key b € IC, one
computes m = Eb_l(c), For instance, in a two-party communication setting, the
sender transmits ¢ over an insecure channel to the receiver, who decrypts ¢ to
obtain the message m.

Symmetric Cryptography In symmetric cryptography, the encryption key is
equal to the decryption key, i.e., a = b, which is kept secret. Before starting
the communication, the sender and receiver need to exchange a in order to
agree on a common key, which is done using dedicated mechanisms for key
agreement or key exchange. Block ciphers are one of the most important elements
in many symmetric-key systems, which break up a message into n-bit blocks
and map each block to a n-bit ciphertext [MOV96]. The mapping function
must provide confusion and diffusion, which means that the relationship between
key and ciphertext is as complex as possible (confusion), and every ciphertext
bit is influenced by every key bit (diffusion) [Sha49]. One method to achieve
confusion and diffusion is to follow the structure of a Substitution-Permutation
network, which provides confusion in the substitution layer through a non-
linear function and diffusion in the permutation layer through a linear function.
The Advanced Encryption Standard (AES) [DR02; Nat01] is one of the most
prominent symmetric block ciphers based on the SP principle. It works with a
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block size of 128 bits, an 8-bit S-box in the substitution layer, and the ShiftRows,
AddRoundKey, and MixColumns functions in the permutation layer.

Asymmetric Cryptography Asymmetric cryptography keeps a public key a for
encryption and a private key b for decryption, for which it holds that a # b [DH76].
To start the communication, the receiver generates a key pair (a, b) and transmits
a over a potentially insecure channel to the sender. The sender then uses the
public key a to encrypt a message, which can, however, only be decrypted by
the receiver who possesses the private key b. An adversary is able to observe
a and ¢, which allows them to encrypt a message but not decrypt ¢ because
b is unknown. One of the most famous asymmetric encryption schemes is the
Rivest-Shamir-Adleman (RSA) cryptosystem [RSATS].

Trapdoor one-way functions are the core of asymmetric schemes. They are
easy to compute but hard to invert unless some trapdoor information (the private
key b) is known. The integer factorization problem, as used in RSA, is a popular
choice for the trapdoor function. It is based on the multiplication of two large
prime numbers. While it is easy to compute the product, it is very hard to
factorize the result and find out which numbers were initially multiplied unless
one number is known. Integer factorization is believed to be intractable for very
large prime numbers on modern computers, although it may be solved efficiently
by quantum computers in the future [Sho94]. If, one day, quantum computers
are powerful enough, they could be used to break many cryptographic schemes
that are currently in use. Consequently, research in the area of post-quantum
cryptography (PQC) emerged in recent years. PQC aims at finding cryptographic
algorithms that are secure even in the presence of an adversary who has access
to a quantum computer by using alternative trapdoor functions.

2.1.2. The Black-box Model

The main goal of symmetric cryptography is to provide ways to communicate
securely under the assumption that the encryption key is secret. To quantify the
security of a symmetric encryption scheme, a specific attack model is used which
defines the abilities and limitations of the adversary. Traditionally, symmetric
encryption schemes have been designed to be secure in the black-box model.

In this model, adversaries can make encryption queries by taking a plain-
text, sending it to the encryption function, and retrieving the respective cipher-
text [Aum17]. The encryption itself is a black box because the internal state of
the cipher is unknown, and only the input and output are observable. Further
refinements of the black-box model are possible, for example, depending on
whether the adversary is allowed to choose the plaintext or the ciphertext or
whether only a single or multiple plaintext-ciphertext-pairs are accessible.

Attacks in the black-box model generally include mathematical and statistical
attacks like differential or linear cryptanalysis [BS90; BS91; Mat93], but also
exhaustive search where the adversary tries out all possible keys. Attacks in
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the black-box model can further be divided into multiple categories [Auml7;
MOV96; Sch96]. Ciphertext-only attacks allow the adversary to only observe
the ciphertext, but not the plaintext, while known-plaintext attacks give access
to both. When performing a chosen-plaintext attack, the attacker can actively
decide which plaintext should be encrypted. Chosen-ciphertext attacks allow the
attacker to submit several ciphertexts and observe the decrypted plaintext.

2.2. Cryptographic Devices

To use a cryptographic algorithm in practice, an implementation of the algo-
rithm is constructed. Devices that execute these implementations and store
secret encryption keys are called cryptographic devices [MOPO7]. In general,
implementations can either be done in hardware or in software. Since this thesis
deals with securing cryptographic implementations in hardware and software,
we discuss the characteristics of both implementation platforms more in detail.
In Section 2.2.1, we describe cryptographic hardware implementations and give
more details specifically about ASICs and FPGAs. In Section 2.2.2, we introduce
CPUs and embedded operating systems, which are used to execute cryptographic
software implementations. Modern ASICs, FPGAs, and CPUs are usually based
on CMOS technology, which we cover later in Section 2.3.3.

2.2.1. Cryptographic Hardware

Cryptographic hardware implementations are typically created from functional
descriptions, often formulated in a hardware description language (HDL) like
Verilog or VHDL, and then employed in an ASIC or FPGA design. ASICs are ICs
customized for a particular task or application. They are heavily optimized and
tailored towards the respective use case, which makes them the most powerful and
performance-driven implementation platform. FPGAs represent reconfigurable
logic circuits consisting of lookup tables (LUTSs), that can be configured to
represent an arbitrary logic function, connected by a programmable interconnect.
Compared to ASICs, the big advantage of FPGAs is the possibility to update,
reusability, and shorter time-to-market, albeit FPGAs are clearly less efficient
and less powerful.

For both ASICs and FPGAs, the design steps to take from the HDL to the
final circuit are similar. First, during synthesis, the design is transformed into
a gate-level netlist, which essentially represents a graph, where the nodes are
logic gates and the edges are wires. In the case of ASICs, the logic gates are
defined according to a standard-cell library, while for FPGAs, the logic gates are
LUTs. In the next step, the floorplanning, placement and routing of the design
happens. This includes deciding on the exact location of logic gates on the chip,
and establishing the wires between them such that specifications like the clock
frequency are met. In the case of an ASIC, the design is then sent to a fab where
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Figure 2.: Illustration of the 3-stage pipeline of the IBEX core (simplified), con-
sisting of IF, ID+EX and WB stage [low24]

the manufacturing of the chip happens. In the case of an FPGA, a configuration
file specifying the behavior and connection of LUTSs is created and then flashed
onto the FPGA.

Cryptographic hardware implementations are typically used as co-processors
that are connected to a microprocessor and can be used to accelerate specific
cryptographic operations. Depending on how tight or loose the connection
(coupling) is, the co-processor and microprocessor can, for instance, communicate
via a bus system or directly via custom instructions added to the processor’s
ISA. Numerous works describe the construction of co-processors for all kinds
of cryptographic operations. For example, Steinegger et al. [SP20] propose a
tightly-coupled accelerator for Ascon connected to a RISC-V CPU, that can be
controlled via custom instructions added to the CPU. Another example is the
work by Fritzmann et al. [Fri+22], who develop several side-channel protected
PQC building blocks in hardware, where some can be accessed via an AXI bus,
and some are directly integrated into the microprocessor. One famous example
from outside of the embedded world is the AES accelerator built into many
desktop-grade CPUs manufactured by Intel [Gue]. It can be controlled using
dedicated instructions specified by the AES-NI instruction set. For instance,
when executing the AESENC instruction, a whole round of an AES encryption is
performed by a hardware circuit connected to the CPU. Besides co-processors,
cryptographic hardware can also be found in other contexts, for instance, memory
or disk encryption.

2.2.2. Cryptographic Software

As an alternative to hardware implementations, one can implement the crypto-
graphic scheme in software and then use a general-purpose processor to execute
the software. For embedded devices, compact microprocessors are used, rather
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than large and powerful processors which can be found in desktop PCs and servers.
Since embedded microprocessors deal with tasks that are less computing-intensive
and often operate in low-power environments, they typically do not include more
advanced features like out-of-order execution, complex branch prediction logic,
virtual memory, or an extensive cache hierarchy. Such CPUs either directly run
the software in bare-metal mode or as a task within an OS. Again, in the context
of embedded systems, when referring to the OS we do not mean a full-scale
Linux or Windows system, but rather a simple embedded OS, sometimes even
providing real-time functionality. Code for cryptographic purposes is usually
written directly in Assembly, or a high-level programming language suited for
embedded use-cases like C, and then translated into Assembly with a compiler.
The Assembly instructions are then executed by the CPU.

Microprocessors Microprocessors work by executing instructions that are located
in some type of memory, such as a ROM or a RAM. The CPU first fetches an
instruction, executes it, and writes the result back to memory. The architecture
of a microprocessor refers to the Instruction-Set Architecture (ISA), which
defines the instructions a processor can execute and provides a description of
the configuration and data registers available [Pag09; Pec08]. Compared to that,
the microarchitecture of a CPU refers to the concrete implementation of the
ISA. Figure 2 shows an example of the microarchitecture of the RISC-V IBEX
core. In the following, it serves as our example since other embedded processors
follow a very similar structure. The IBEX core features a pipeline with three
stages: Instruction Fetch (IF), Instruction Decode and Execution (ID4+EX), and
Writeback (WB). Other central building blocks are the register file, which consists
of multiple general-purpose registers, several computation units, including the
Arithmetic Logic Unit (ALU) and the multiplier, and the Load-Store Unit (LSU)
to handle memory accesses.

Pipelining is used to increase the throughput of a processor, i.e., the number
of instructions executed per time unit. The idea of pipelining is to split the
execution of an instruction into multiple stages, where each pipeline stage deals
with completing a specific step in the execution of an instruction [BO16; HH12;
HP12]. Different pipeline stages complete different steps of different instructions
in parallel. Therefore, in a pipeline with n stages, n different instructions can
be processed in parallel, although each in a different level of completion. For
example, the IBEX core can decode and execute the first instruction while fetching
the second instruction in the same cycle.

Sometimes, it is not possible to execute all instructions in the pipeline in the
given order, for example, when one instruction depends on the result of another
instruction which has not yet finished its execution [BO16; HH12; HP12]. For
instance, in the IBEX core, one instruction in the ID4+EX stage might require the
result of the previous instruction, which resides in the WB stage and has not yet
been written into the register file. In such a situation, it might be necessary to
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stall the pipeline, i.e., pause the execution of all previous instructions until the
result of the required instruction becomes available in the register file. Clearly,
stalls have a negative impact on the performance of the CPU. A more efficient
alternative is forwarding. Forwarding logic, also called bypass logic, allows to
send the result of an instruction from a later pipeline stage back to an earlier
one if required [BO16; HH12; HP12]. Besides forwarding, many other concepts
to optimize pipelining exist, e.g., superscalar execution. Superscalar processors
employ copies of certain pipeline stages to execute multiple instructions in the
same stage simultaneously. For instance, a processor could contain two ALUs,
allowing it to compute the result of two add instructions in the same cycle.

Embedded Operating Systems Many embedded systems require multitasking
functionality to handle the communication over a bus or the network, or to acquire
and process sensor data. One common example are smart meters that record
information about the energy consumption of a household while communicating
with the grid operator and providing statistics to the local customer over WiFi.
In such situations, dedicated embedded OSs are used that run the cryptographic
software as one out of many concurrent tasks or processes. Unlike in desktop-
grade Linux systems, the tasks that will be spawned by the OS are already
known at compile time. This is especially important to be able to meet real-
time guarantees if required by the application. Hence, the CPU executes the
cryptographic software, which is compiled together with the embedded OS in
bare-metal mode. Switching from one task to another is enabled by interrupts,
which are triggered periodically by a timer or non-periodically by external events
such as 1O operations. On a software level, a task switch is called a context
switch, where the register contents of one task are saved to memory, the scheduler
selects the next task and the register contents of the next task are loaded from
memory.

2.3. Physical Attacks

Cryptographic schemes have been designed to maintain security in the black-box
model. To be used in practice, these schemes are implemented in hardware
or software and then executed by cryptographic devices. In reality, attackers
frequently manage to gain physical access to the device, which turns the black box
into a gray box, paving the to physical attacks. Physical attacks exploit additional
leakage caused by the fact that cryptographic devices run implementations of
cryptographic schemes that violate the assumptions of the black-box model. Side-
channel attacks are a subclass of physical attacks in which the attacker passively
observes and analyzes the leakage (the side-channel information) emanating
from the device. The device’s power consumption is one powerful example of
side-channel information that can be exploited in the context of a power analysis
attack.



22 Chapter 2. Background and State of the Art

In the following, we give an overview of physical attacks in general (Sec-
tion 2.3.1), then cover side-channel attacks (Section 2.3.2), and give more details
about power analysis attacks (Section 2.3.3, Section 2.3.4). Throughout this and
the following chapters, our explanations and discussions are based on the example
of a cryptographic device running a symmetric encryption scheme. However, the
statements are not limited to this setting and generally extend to other contexts
as well.

2.3.1. Overview

The gray-boxr model assumes that the adversary has physical access or is in very
close vicinity to the device when performing the encryption queries. Physical
access allows the recording of physical characteristics, such as power consumption
or timing, which can be analyzed to gain insight about the internal state of
the cipher. Therefore, the encryption is not a black box anymore which shields
any views from the adversary on intermediate computation results of the cipher.
Instead, it is rather a gray box that allows observing some intermediate com-
putation results besides the input and output when performing the encryption.
Physical attacks have been shown to be very powerful since information on the
internal state of the cipher can often be used to find out the secret encryption
key, which leads to a complete break of the security of a system.

Mangard et al. [MOPOT7] propose a classification of physical attacks into
passive and active attacks, which we briefly summarize in the following. When
performing a passive attack, the adversary is merely observing the device and
recording its physical properties while performing the encryption queries. By
contrast, the goal of an active attack is to change the behavior of the device by
tampering with its inputs or the execution environment. For instance, during
a fault attack, the adversary operates the device outside the specification by
increasing or decreasing the temperature or changing the clock speed or supply
voltage for the purpose of skipping encryption rounds or creating a bias in the
output ciphertext of multiple encryptions with the same input that eventually
hints the key. Active attacks are out-of-scope for this thesis.

A further categorization of passive attacks according to the degree of invasive-
ness is possible, as discussed in [KK99; MOPO07]. Invasive attacks completely
disassemble the cryptographic device, for instance, by etching the chip’s surface,
which is extremely powerful but also requires rather expensive equipment. Non-
invasive attacks are performed without changing the device, which is typically
cheaper. Non-invasive, passive attacks are also known as side-channel attacks,
which are the focus of this thesis.

2.3.2. Side-Channel Attacks

Side-channel attacks exploit the unintentional leakage of information via the
physical properties of a device [And08; MOPOT; SKS09; Spr+18; Stal0]. This
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information is called side-channel information. During the attack, the adversary
first records the side-channel information using dedicated measurement instru-
ments and then tries to infer the secret key from the recorded information using
statistical tools. Various kinds of physical properties have been used to extract
secrets from cryptographic devices. The first side-channel attacks targeted the
execution time of cryptographic implementations and were based on analyzing
differences in the execution time caused by the input data and secret key [Koc96;
OST06; SWTO01]. One famous example is leaking the secret exponent in an RSA
cryptosystem that is based on the square-and-multiply algorithm for modular
exponentiation. It is based on the observation that if a bit of the secret exponent
is 1, the square and the multiply function are executed, which takes longer than
executing only the square function in case a bit is 0. Ever since the publication
of these attacks, the constant-time property has become an essential requirement
to secure cryptographic code.

Even if implementations are constant-time, there are still other kinds of side-
channel information that can be exploited, including electromagnetic radia-
tion [GMOO01; Hey+12; QS01], sound [Gen+19; GST14], temperature [HS13] and
photonic emission [FH08; Sch+12; Sch+13; Sko09]. One of the most commonly
used side channels is power consumption [KJJ99]. To perform a power-analysis
attack, an adversary uses an oscilloscope to measure the voltage drop over a
shunt resistor placed in the VDD or GND path of the device. The voltage drop
is proportional to the power consumption of the device, which differs depending
on which data/key is used and can therefore be analyzed to be exploited.

2.3.3. CMOS Power Consumption

Today, almost all ICs are built using CMOS technology, mostly because of its low
power consumption. The implementation of a CMOS cell is based on MOSFET
transistors (NMOS and PMOS), which basically represent voltage-controlled
switches. If the input signal is 1, NMOS transistors act like a switch that is
on, while PMOS transistors act like a switch that is off. The CMOS technology
combines NMOS and PMOS such that they work in a complementary fashion.
Every CMOS cell consists of a PMOS pull-up network connecting the output to
1 (VDD) and an NMOS pull-down network connecting the output to 0 (GND).
For any input pattern, exactly one network is switched on, while the other is
switched off [Voil3; WH11].

The power consumption of a CMOS cell comprises a static and a dynamic part.
Static power is consumed when the inputs are constant and no switching activity
happens, and is mainly due to a small leakage current [AR02; Yeall]. It is
negligible in most cases because in any stable state, no conductive path between
VDD and GND exists. The static power consumption is by far outweighed by
the dynamic power consumption, which occurs when the inputs of a CMOS cell
change. The main reason for dynamic dissipation is the charging and discharging
of load capacitances and the small short-circuit current which flows for a very
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Figure 3.: Power consumption of an AES encryption. Left: Power trace of
complete encryption. Right: Difference in the power consumption
when processing plaintexts pp and p;

short period of time when the transistors switch, and both the pull-up and pull-
down network are conducting simultaneously [AR02; WH11; Yeall]. Therefore,
whenever the input of the cell transitions from 0 to 1 or from 1 to 0, a different
amount of power is drawn, especially compared to the case where the input does
not change. Consequently, the dynamic power consumption is highly dependent
on the processed data and the executed operations [AR02; Bak10; MOPO07;
WH11].

In Figure 3 on the left, we show an example of a power trace of a single AES
encryption. One can clearly identify the 9 AES rounds, which are followed by
the 10th shorter round, which does not compute MixColumns. Additionally,
within each round, it is possible to see differences depending on which concrete
operation (AddRoundKey, SubBytes, MixColumns, ShiftRows) is executed. On
the right side, we plot the power consumption of the AES encryption for two
different plaintexts pp and p; using the same key, and zoom into the beginning
of the first round. The difference in the power consumption is clearly visible,
underlining that it is dependent on the processed data but also dependent on the
executed operations, as it can be seen on the left side.

2.3.4. Power Analysis Attacks

Power analysis attacks exploit both data and operation dependencies in the
power consumption of cryptographic devices. Data dependencies are connected
to the secret key and plaintext since cryptographic devices mostly process this
kind of data. Operation dependencies can be exploited because although the
adversary is not assumed to know the implementation, they typically know
which cryptographic algorithm is executed. The first power analysis attacks,
SPA (Simple Power Analysis) and DPA (Differential Power Analysis) [KJJ99],
inherently targeted dynamic power consumption. More recently, successful attacks
based on the static power consumption [MM21; MMR17; Moo19; Mor14; Poz+15],
as well as the impedance of the chip [MMT23] have been demonstrated. They
show that the static power consumption is also data-dependent because the
amount of leakage current of a CMOS cell differs depending on the concrete input
value and that the difference is significant enough to be exploitable in practice.



2.3. Physical Attacks 25

Oscilloscope

Cryptographic Computer Adversary

device
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For more details, we refer to the discussion in the respective papers.

The attention of this thesis is on attacks targeting dynamic power consumption.
In the following, we first describe a typical setup to conduct a power analysis
attack and give an overview of SPA, DPA, and state-of-the-art attack techniques.

Attack Setup One central part of any power analysis attack is measuring
the power consumption of a cryptographic device. Figure 4 shows a typical
measurement setup, which consists of the cryptographic device storing the secret
key, an oscilloscope, and a computer operated by the adversary. The cryptographic
device can be any CMOS circuit performing a cryptographic operation, e.g., an
encryption, using a secret key. The computer is connected to the cryptographic
device in order to perform encryption queries, which involves sending a plaintext
to trigger the encryption and receiving a ciphertext. An oscilloscope is used to
record the power consumption of the device by measuring the voltage drop over
a shunt resistor placed in the VDD or GND path of the device with a probe.
The oscilloscope returns the measured power consumption in the form of a power
trace to the computer. A power trace, as it is shown on the left side of Figure 3,
consists of multiple sampling points, each representing the power consumption of
the circuit at a specific point in time. The remainder of the attack is executed
by the adversary on the computer, which typically involves statistical analysis of
the power traces.

Simple Power Analysis In the case of SPA, the attacker tries to disclose the
secret key by looking at only a few, or even a single, power trace [KJJ99; MOPO7].
SPA tries to exploit patterns in the power trace, which are caused by the key-
dependent timing or order of operations or key-dependent processed data values.
One famous example is attacking square-and-multiply in an RSA cryptosystem,
which is based on a specific pattern in the power trace that can be observed
depending on whether a bit of the secret exponent is 0 or 1. One possibility to
improve SPA attacks are template attacks [CRR02], where the adversary first
systematically characterizes the device’s power consumption using templates
and then uses the templates in the SPA attack. Soft-Analytical Side-Channel
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Attacks (SASCA) represent a further improvement of template attacks based on
belief propagation [VGS14]. Since their publication, SASCA attacks have been
successfully demonstrated in various contexts [KPP20; Li+22; PP19; PPM17;
You+23].

Differential Power Analysis DPA aims at disclosing the secret key by considering
a large amount of power traces, usually a few thousand or even millions [KJJ99;
MOPOQ7]. The main idea is to exploit the differences in these power traces, which
were recorded for multiple different inputs but with a constant key. DPA works
in a divide-and-conquer fashion by splitting the encryption key into smaller
chunks, which are then leaked individually. For example, in the case of AES-128,
exhaustive search has an attack complexity of 2128 while with DPA, it can be
reduced to 256 x 16 = 212 by attacking the key byte-by-byte. In the following, we
briefly summarize the steps of a classic DPA attack using the example of a single
key byte of AES-128, based on the description of [MOPO07]. For more details, we
refer to [MOPO7].

First, the adversary chooses an intermediate value for the attack that is
computed during the encryption and depends on the key byte and input plaintext
in a non-linear way. In the case of AES, the output of the SubBytes operation,
Sbox(k @ p) makes a good candidate. Then, the adversary records n power traces,
each consisting of m samples, by sending n random plaintexts to the encryption
device. Knowing which plaintexts were sent to the device, the adversary then
computes the hypothetical intermediate values for each possible subkey value.
In the case of AES, there are 256 possible values per subkey (subkey guesses).
For each key guess kg, and for each of the n plaintext bytes p;, the hypothetical
intermediate value is calculated by v = Sbox (kg @®p;). By applying a power model,
the hypothetical power consumption for each v can be computed. The power
model is a function f: R — R that maps v to the approximate amount of power
consumed to compute it. Popular choices are the Hamming weight (HW) model
(f(v) = HW(v)), the Hamming distance (HD) model (f(v,w) = HD(v,w) =
HW (v @ w)), the identify model (f(v) = v), the Least Significant Bit (LSB)
model (f(v) = v&1), or the Most Significant Bit (MSB) model (f(v) = v&128).

Finally, the adversary matches the hypothetical power consumption for each
subkey guess to the recorded power traces. The subkey guess, for which the
hypothetical power consumption best matches the power traces, is most likely the
correct key guess. As a measure of comparison, the Pearson correlation coefficient
is frequently used. DPA attacks based on the correlation coefficient are also
called Correlation Power Analysis (CPA).

Others Over the years, power analysis attacks evolved in many ways. For
instance, adversaries have been becoming more powerful simply due to the
availability of a better measurement setup, which allows them to record more
power traces in a shorter amount of time. Another interesting research direction
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is the combination of power analysis and machine learning, which is based on
training a classifier with previously collected templates and using the trained
model to perform the attack [Ben+20; HGG20; Hos+11; Ker+22; Kim+19;
MDP20; MPP16; MWM21; Pic+19; Pic+23; Wan+23; Zai+20]. Similar to
that, there also exist several works that utilize side-channel analysis attacks
to leak the architecture of neural networks instead of keys from cryptographic
devices [Bat+19; MBC21; Wei+18; Yos+20]. Furthermore, Remote Power
Analysis attacks represent a class of power analysis attacks that do not require
that the adversary has direct physical access to the cryptographic device or is
even in close vicinity [MDB21]. Instead, such attacks use hardware components
that are natively part of the cryptographic device as voltage sensors that can
be read remotely by the attacker. For example, in a multi-tenant FPGA cloud
scenario, the adversary can build a voltage sensor based on ring oscillators to
spy on the victim running on the same FPGA [Gra+19]. The topic of remote
power analysis has been analyzed by many other works [JUP24; Kra+19; Lip+21;
OD19; Ram+18; Sch+18; Udu+22].

2.4. Masking against SCA

One of the most popular countermeasures against power analysis attacks is
masking, which aims at decoupling the secret key from the data processed by the
cryptographic device. In this section, we first explain the basic working principle
of masking schemes (Section 2.4.1). Section 2.4.2 presents the different types of
masking. In Section 2.4.3, we provide an overview of the most commonly used
masked gadgets, which represent the basis of masked implementations. Later,
the application of the masking countermeasure to cryptographic hardware or
software implementations is discussed in Section 2.5, as well as methods to check
if a masked implementation is secure (Section 2.6, Section 2.7).

2.4.1. Overview

Masking was initially proposed in 1999 by Chari et al. [Cha+99] and Goubin et
al. [GP99], and is based on the principle of randomizing intermediate variables.
An intermediate variable is sensitive if it depends both on the plaintext and the
secret key. Randomization is established by splitting the sensitive intermediate
variable into multiple random shares and adapting the cryptographic algorithm
to process these shares instead. Consequently, the power consumption of the
device depends on the shares instead of the sensitive intermediates, preventing
the exploitation of side-channel leakage.

Given a sensitive intermediate value s, the core idea of masking is to split it
into N random shares s, ..., sy using the splitting operation o such that:

§=810820...08N (1)
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The shares s1, ..., sy_1 are sampled randomly from a uniform distribution, while
SN =80s10820...08y_1. The N-tuple (s1,...,sny_1) is called a sharing of the
sensitive variable s. Masking relies on the fact that an adversary who manages
to recover N — 1 shares cannot learn any information about s because any subset
of up to N — 1 shares is statistically independent of s. The masking type is
determined by the splitting operation o, which is often the Boolean XOR (&),
the modular addition (+) or the modular multiplication (x). In practice, the
generation of shares is performed by the cryptographic device, before the execution
of the encryption algorithm. The sharing does not only affect the sensitive
intermediate values but also the cryptographic functions which are applied to
it. Any function F' is split into multiple component functions F, Fo, ..., Fy such
that the combination of the outputs of these resemble the original function’s
output, i.e., F(s) = FjoFyo...0Fy. In case F' is a linear function, it can simply
be called for every share individually, i.e., F(s) = F(s1) o...0 F(sy). In case
F' is a non-linear function, the situation is more difficult since every component
function operates on more than one share, which requires the correct addition of
randomness to prevent the accidental unmasking of intermediate computation
results. In the end, a masked implementation of an encryption algorithm outputs
N shares, which need to be combined together by the cryptographic device to
retrieve the actual ciphertext.

Masking is parameterizable by the security order d. In general, dth-order
masking protects against dth-order DPA attacks, which exploit the joint leakage
of d intermediate values [Din+14; MOPO7]. Hence, to obtain a dth-order secure
implementation, at least d 4+ 1 shares are required. Since handling more shares
leads to a larger implementation overhead, working with the minimum number
of shares (N = d + 1) is the preferable option. For example, in Section 2.3.4, we
run a first-order DPA attack by considering the leakage of only one intermediate
value. Besides the independent leakage of shares, sufficient measurement noise
is a crucial requirement for the security of masking. Masking of order d can
only provide protection against dth-order attacks if the measurement samples
are sufficiently noisy because then the number of required measurements grows
exponentially with d [Cha+99]. Many works deal with the relation between
noise and the security order d, e.g., [Bar+17; DFS15a; PR13; RPD09; Sta+10],
as well as higher-order attacks in general [Cor+13; Gie+10; MM17; PRB09].
Formalizations in this direction are often done in adversary models, which we
discuss in Section 2.7.1. More recently, several works use machine learning
techniques to improve attacks on masking [GHO15; Lu+21; PWP22; Tim19;
WPP20; Wu+23a]. Other than DPA it has been shown that masking can have
a positive effect on SPA but should generally better be combined with other
countermeasures like shuffling [Jen+23; PPM17]. Several works have also pointed
out that, in some cases, masking can be used to defeat fault attacks [ACS18;
BHO08; Dob+18; DOT24; MSS24].
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2.4.2. Masking Types

A masking scheme is characterized by the choice of the splitting operation o.

Boolean Masking The most popular type of masking is Boolean masking, where
the exclusive OR () is used as the splitting operator. It is frequently applied to
symmetric cryptographic algorithms that use linear operations and non-linear
S-boxes over a characteristic-two field For. For such algorithms, linear operations
such as adding the round key with an XOR operation or bit permutations are
easy to mask with Boolean masking, as they can just be applied to every share
independently. For instance, to apply first-order Boolean masking to AES, the
128-bit state and the 128-bit key are first split into two 128-bit shares each.
The linear functions of the AES (ShiftRows, MixColumns, and AddRoundKey)
are applied to the shares of the state within the round function and the shares
of the key within the key schedule individually. The AES S-box represents a
non-linear function because Sbox(s1 @ s2) # Sbox(s1) ® Sbox(s2), and therefore
requires dedicated solutions that will be discussed later in terms of masked
gadgets Section 2.4.3. In this thesis, we focus on Boolean masking, which we
refer to in the following sections unless otherwise stated.

Arithmetic Masking Another type of masking is arithmetic masking, where the
relation between shares of a sensitive value s is the modular addition: s =", s; =
$1+ ...+ sy mod g. The modulus is either a power of two (¢ = 2k) or a prime
number (g € Fy). One common use-case are ARX-based constructions like the
hash function SHA-256 [Nat02], the stream cipher ChaCha [Ber08], or the block
cipher SPECK [Bea+13], where each round consists of a modular addition (using
a power-of-two modulus), a rotation and an exclusive OR operation. In practice,
masking these primitives requires both arithmetic masking (for the modular
addition) and Boolean masking (for the rotation and exclusive OR). One option
to deal with this is to stay in the Boolean domain and use a dedicated algorithm
to securely add Boolean shares, as e.g. proposed by [CGV14]. Alternatively,
one can switch between the arithmetic and Boolean domain using dedicated
conversion algorithms called A2B and B2A [BCZ18; BDV21; CGV14; Cor+15;
Cor+22; Corl7; Gou01; HT19]. The implementation of A2B and B2A algorithms
in a secure way is challenging since they involve information from all shares but
must not accidentally leak information about the unmasked value s.

With the rise of the PQC, arithmetic masking, especially using a prime modulus,
has gained a significant amount of new attention. The fundamental building block
of many PQC algorithms is polynomial multiplication, which can be implemented
using the number theoretic transform (NTT), which is most efficiently masked
in the arithmetic domain. At the same time, Boolean masking is required to
protect building blocks like Gaussian samplers and decoders. Therefore, efficient
conversion techniques for PQC have been researched more extensively in recent
years, especially focusing on the use of a prime modulus [BC22; Fri+22; Sch+19].
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Other Types Several other masking types have been proposed in literature. Mul-
tiplicative masking uses field multiplications ® to protect sensitive intermediates
by computing s = ®;s; [GT02; MOP07; MQ)]. It has, for example, been applied
to mask the AES S-box, which represents a field inversion (Sbox(s) = s~ 1) [AGO1;
MRBI18]. Due to the close relation of Multi-party Computation (MPC) and
masking, which are both secret sharing techniques, several proposals borrow ideas
from the MPC domain [GSF14], for instance, masking based on Shamir’s Secret
Sharing [GM11a]. Inner product masking follows a slightly different approach,
representing shares in the form of two random vectors that are connected by the
inner product [Bal+12; Che+21; DF12].

2.4.3. Masked Gadgets

Masking cryptographic operations affects both the processed data, which is
split into multiple shares, and also the operations, which need to be replaced
by masked gadgets. For a function F(s) that is computed by the unprotected
implementation, a gadget F”(s1, ..., sjy) is used to replace it in order to obtain the
masked implementation. Gadgets implement exactly the same functionality as
the original function, i.e., if the Boolean masked gadget F'(s1, ..., sx) produces
the output sharing (5], ..., s%y) then s] @...® sy = F(s). Gadgets are used both in
hardware and software, although some gadgets are more optimized for either use
case. For instance, to build a masked hardware implementation, the logic gates
in the unprotected circuit are replaced by suitable gadgets. For masked software,
an implementation technique called bit-slicing is very popular. Bit-slicing reduces
the computation of a function to bitwise logic operations (for example AND, XOR,
OR, NOT) by utilizing an arrangement of the bits of an input data word in the
CPU registers [AP21; GR16; K6n08; MNO7], allowing to execute several instances
of the function in parallel. To obtain a masked implementation, these bitwise
instructions are replaced by masked gadgets consisting of (multiple) instructions.

Masked gadgets can be divided into affine gadgets, refresh gadgets, and
multiplication gadgets. Affine gadgets are primarily used to mask exclusive
OR computations and negations and can simply be constructed by applying
the original function to every share independently because, e.g., in the first-
order case F(s) = F(s1) @ F(s2) @ ¢ for a constant c¢. For example, the
addition of the round constant Rc of the AES to a state byte s is repre-
sented by the function AddRC(s, RC) = s @ RC. The masked version is then
AddRC(s1, RC) ® AddRC(s2, RC) ® ¢ with ¢ = RC. Refresh gadgets are used
to re-randomize a sharing for a sensitive variable, which can improve the security
of a masked implementation. They essentially represent the identity function,
i.e., F(s) = s, but transform the input sharing (s, ..., siy) into a fresh output
sharing (s}, ..., s%y) by setting s} = s; @ r; for 1 <i < N —1, and sy = sy ®; 7;.

Multiplication gadgets are a fundamental building block to implement non-
linear functions, such as masked S-boxes, by providing a way to multiply two
shared field elements. A one-bit multiplier corresponds to an AND-gate, which is
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why multiplication gadgets are also called masked AND gadgets. The construction
of secure masked multipliers is not trivial and requires the careful addition of
fresh randomness. In a first-order Boolean masking scheme working with 1-
bit values, a multiplication gadget combines the value u, represented by the
sharing (u1,u2), with the value v, represented by the sharing (v1,v2), such that
for the resulting value w, represented by the sharing (wi,ws), it holds that
w=uAv=(u; Buz) A (v1 ®vz). Naively, one can compute the shares (w1, ws2)
using the distributive property:

w1 = (up Avy ®ug A ’UQ) (2)
wo = (’u,z ANv1 D ug A vz) (3)

However, this is not secure because w; is not independent of v, and wo is not
independent of u. Over the years, many works have proposed constructions to
compute the product of two shared variables securely. In the following, we will
discuss the most frequently used masked gadgets in more detail.

Trichina AND Gate Trichina et al. [Tri03] proposed one of the first masked
multipliers, which is suitable for first-order Boolean masking. It introduces a
fresh random value r that is used to construct the shares of w as follows:

wy =7 (4)
wa = (((r®u; Avy) ug Ave) ug Avy) G uz A v (5)

The Trichina AND gate provides first-order security given that operations are
applied in the exact order as depicted above, i.e., the random value needs
to be added to the first partial product in the beginning. Several masked
implementations have been constructed using the Trichina AND gate, especially
to mask the AES S-box [Bal+15; SS16; Tri03].

Treshold Implementations (T1) Threshold Implementations (TI) [NRRO6] do
not exclusively focus on multiplication gadgets but represent a more general
framework for the design of masked implementations. The main idea of TI is to
decompose a cryptographic algorithm into multiple component functions that
fulfill the correctness, non-completeness, and uniformity properties. Correctness
means that the sum of the outputs of the component functions resembles the
same result as the original, unmasked function. Non-completeness states that
every component function must only operate on a subset of the input shares.
Uniformity refers to the distribution of input and output shares, which should
be uniform to prevent problems when composing multiple component functions.
Implementing a first-order secure multiplication gadget requires at least three
shares to fulfill the non-completeness property. For instance, one possibility to
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implement such a multiplier is:

wy, = Fl(ul,UQ,vl,’Ug) =u] ANv1 Duy Nva Qug ANvy @ro®@r (6)
wg:Fg(ul,u;g,vl,vg):ugAvgeBul/\vg,@ug/\vl Dry (7)
w3:F3(u2,u;:,,v27113):u2/\11269u2/\v3®u;),/\112 D ro (8)

In this example, every component function excludes at least one of the three
shares. Uniformity is achieved by adding the fresh random variables rg and .
TI, in principle, comes with a larger overhead due to the fact that more than the
minimum number of shares is required, although this often allows us to avoid
using fresh randomness. TI has been popular for hardware implementations
because it is provably secure against glitches (cf. Section 2.5.1), and numerous
works applying the scheme to various kinds of algorithms exist, e.g., [Bil4+13;
Bil+14; Caf421; Cha+22; Gro+15; Jat+20; Mor+11; STE15]. Furthermore,
masked software implementations based on TI have been proposed [Cha+22;
GD23; SBM18; She+21a).

Ishai-Sahai-Wagner (ISW) Muiltiplier Masking schemes that are generic in
terms of the protection order do not only defend against first-order DPA, such as
Trichina’s AND gate but rather support an arbitrary protection order d. One
of the first works in this direction is the ISW multiplier proposed by Ishai et
al. [ISWO03]. The multiplication of the Boolean sharings (u1,...,u4+1) with
(v1,...,v441) results in the output sharing (w1, ...w441). The multiplication is
performed in two steps. First, the random bits 7;; for 1 <i < j < (d+ 1) are
generated. Second, the output shares w; for 1 < i < (d + 1) are computed by:

wi:ui/\vi@(@(rij@ui/\vj)@uj /\’Ui) (9)
i#]

Based on the ISW multiplier, Rivain et al. [RP10] propose a generic masking
scheme for AES together with a security proof. Furthermore, it is a popular
construction to build conversion algorithms to convert between Boolean and
arithmetic masking, as shown by several works [BCZ18; Cor+15; Corl7].

Domain-Oriented Masking (DOM) Another generic masking approach is DOM,
which was presented by Gross et al. [GMK16]. The idea of DOM is to assign each
share a domain, and to keep the domains independent from each other. Domains
are similar to the component functions in TI but less restrictive such that it is
possible to work with the minimum number of shares (d + 1 shares for security
order d). A DOM multiplication gadget is structured in three phases: calculation,
resharing, and integration. In the calculation phase, the shares are multiplied in
pairs, resulting in inner-domain (u; A v;) and cross-domain (u; A vj,4 # j) terms.
Cross-domain terms are then reshared using fresh randomness in the resharing
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phase. Due to the resharing, the cross-domain terms are statistically independent
of other values and, therefore, can be summarized into domains again in the
integration phase. In a dth-order DOM masking scheme, one output share of the
multiplier w; for 1 <1 < (d+ 1) is given by:

Calculation Calculation Calculation
— — —
wi = ui Ao & (D ui Aoy ©ripjo1yy2) © (B wi Av; @7j1i-1))2)
J>1 Jj<t
Refreshing Refreshing

Integration
(10)

We mark the terms computed in the calculation and refreshing phase with blue
and red braces, respectively. The integration phase includes the addition of all
three partial sums. Compared to ISW, DOM comes with significant advantages
in terms of masked hardware implementations, such as shorter delay paths by
balancing the arrangement of multiplication terms and improved security in the
presence of glitches (cf. Section 2.5.1).

Nowadays, several projects make use of DOM for side-channel hardening. For
example, Google launched the OpenTitan project [Joh+18; low19a; low19b],
a commercial-grad open-source hardware root of trust, which employs a first-
order DOM-masked AES implementation. Besides that, implementations of
Ascon [Gro; Pra+23], Keccak [GSM17], and AES [GMK17] based on DOM
have been proposed. Gross et al. [Gro+16b] propose a DOM-masked RISC-V
processor that can execute unprotected software implementations in a side-channel
protected manner. Kiaei et al. [KS20] and Marshall et al. [MP21] suggest an
ISA for masked software implementation using DOM. Furthermore, Fritzmann et
al. [Fri+22] use DOM to build a masked adder for Boolean shares. DOM is even
applied in the area of side-channel resistant machine learning [Dub+22] and as
part of a combined countermeasure against fault attacks [Gru+21].

Composable Multiplication Gadgets To securely mask a cryptographic algorithm
as a whole, several masked gadgets need to be stacked together. However, just
because the security of a masked gadget was proven, it does not imply that the
composition of several of these gadgets is also secure. This does not only hold for
the composition of multiplication gadgets, but can even lead to insecure designs
when composing an affine (linear) and a non-linear gadget. Therefore, deriving
composability properties for masked gadgets is currently an important research
topic [Bar+15; Cas+21; CS20; KSM20], also because it is not always feasible to
(formally) verify the security of a complete cipher due to complexity. Instead,
one could prove the security and composability of a small masked gadget and
follow a bottom-up approach to construct the complete masked design. One of
the biggest challenges when designing composable gadgets is to keep the overhead
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low since composability is enabled by frequent refreshing, leading to increased
randomness consumption.

2.5. Masking in Practice

Masking is a provably secure countermeasure. Its security against SCA can be
formally proven in theory with respect to a set of assumptions. One of these
assumptions is the independent leakage assumption (ILA) [Ren+11], which states
that the shares are always leaked independently from each other. It has been
shown that the ILA does not always hold, leading to a gap between the theoretical
and practical security of masking. More concretely, to use a masking scheme
in practice, it needs to be manifested in an implementation. One option is to
implement the masking scheme in hardware, for instance, as an ASIC or on an
FPGA. For masked hardware implementations, physical side-effects of CMOS
circuits, like glitches, have been shown to break the ILA. Section 2.5.1 focuses
on these effects with respect to masked hardware implementations in detail.
Alternatively, one can craft the masked implementation in software, which can
then be executed on a CPU. CPUs are usually also based on CMOS technology,
which also exposes them to these physical effects that may compromise the
security of masked software. Section 2.5.2 explains the connection between
physical effects and masked software in detail.

To be practical, masking schemes need not only to be secure but also efficient.
While masking already comes with a relatively large overhead, dealing with ILA
violations further drastically increases the cost. Therefore, methods to decrease
the overhead by optimizing masked implementations are important to make
masking countermeasures more practical. In Section 2.5.3, we discuss state-of-
the-art optimization techniques for both hardware and software implementations.

2.5.1. ILA Breaches in HW

CMOS circuits are comprised of combinatorial subcircuits consisting of logic
gates and registers. The input signals for each gate usually do not arrive at the
same time because of different gate delays and wire lengths. The gate delay, or
propagation delay, is the time a gate needs to “react” to input changes, i.e., the
time it takes to produce an output in response to a change of its inputs [KLO03;
WH11]. It depends, among other things, on the type of gate and the concrete
input values. Given that in combinatorial logic, multiple logic gates are cascaded,
the individual arrival time of an input signal at a gate is determined by a variety
of factors, including the delay of all previous gates that were passed through and
the individual wire lengths. The gates might temporarily produce an incorrect
output signal, e.g., when one of the input signals has already arrived but the
other one has not, until both input signals have reached their stable state and
the correct result is computed. Such temporary effects are called glitches.
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Figure 5.: Example of a first-order masked circuit computing (s; @ 7) @ s2. The
sensitive value s is represented by the sharing (s1, s2), and the value r
represents fresh randomness. Due to glitches, the second XOR gate
temporarily computes s1 @ s2 = s, leading to an insecure design.

Many works point out that the security of masked hardware circuits is compro-
mised by glitches [FG05; GMK16; ISW03; Moo+19; MPGO05; MPOO05; Rep+15].
In a CMOS circuit, glitches lead to unexpected combinations of data values for
a short period of time until all signals are stable. In a masked CMOS circuit,
data values are shares, and combining these shares leads to the non-independent
leakage of them, which breaks the ILA. Figure 5 shows an example of a first-order
masked circuit, working with a sharing of the sensitive variable s = (s1, s2) and
the fresh random value r. It computes (s1 @®7) @ s2, which is valid from a masking
perspective. Additionally, the partial sum (s; @ r) is valid and independent from
s. The circuit consists of two XOR gates, where 01 = (s1 @ r) and 02 computes
the final result. In the example, the wire lengths between the inputs s; and sg
and the respective XOR gates are short, while the wire length between the input
r and the XOR gate is long. Therefore, s1 will arrive at the second XOR gate
before being combined with r. Additionally, so will arrive at the second XOR
gate quickly, and oo temporarily computes s; @ so = s, which refers to a leak in
the masking scheme. After a while, r will also arrive and propagate through the
circuit, 01 computes the final (stable) result, s; @ r, and 02 computes s1 @ r @ s2,
which is secure.

This example highlights very well the gap between theory and practice in
masked design. In theory, the computation is secure because no intermediate
computation result depends on the sensitive value. Even the designer who
constructs the implementation, e.g., in Verilog, can hardly see any problem. The
issue arises for the first time after the HDL model has been processed by the
synthesis, placement, and routing flow because the decisive factors (wire lengths)
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are picked in that stage. At the same time, other placement strategies might lead
to shorter wire lengths between r and the XOR gate, which causes r to always
arrive first and does not create any issues. Note that in this example, we assume
uniform gate delays and extreme setup times to better highlight the problem.

Transitions typically occur when data from the previous cycle which still
resides in the circuit at the beginning of the current clock cycle. When the data
from the current cycle propagates through the circuit, it is possible to observe
a transition from the old to the new data value. In the context of masking,
this can, in the worst-case, cause transitions from one share to another, and the
attacker can observe the Hamming distance between the first and the second
share, effectively breaking the ILA. One typical example of leakage caused by
transitions is overwriting a register that stores one share with its counterpart.
Transitions in masked hardware implementations are addressed by many recent
works [Cor+12; CS21; Dho21; Miil+22].

A third effect that breaks the ILA in masked CMOS circuits is coupling, which
basically refers to crosstalk between adjacent wires and the physical proximity of
shares [Cnu+17; Dho21; Gur+23; LBS19; SK23]. For example, De Cnudde et al.
[Cnu+17] show that masked TI designs are vulnerable due to coupling between
shares on an FPGA. Levi et al. [Gur+23; LBS19] show in several experiments that
coupling-based side-channel leakage can be amplified by the adversary through
tweaks applied to the measurement setup. In the future, the challenge posed by
coupling in the context of masked designs will become even more relevant. With
the ongoing evolution of CMOS technology, distances between wires on the chip
will shrink more and more, which provokes crosstalk.

Glitches, transitions, and couplings have been analyzed for ASICs, but also
specifically for FPGAs [Cnu+17; GLE15; Li+20; MM12; Miil+23; Roy+15]. One
example is the work of Roy et al. [Roy+15], who study an implementation of a
first-order masked SIMON without synchronization and show that glitches lead
to leakage when implemented on an FPGA.

Countermeasures As illustrated in the example, glitches are difficult to predict
when designing masked hardware implementations. The first proposals tried to
balance or reorder the operations in a circuit, such that the glitches causing ILA
breaches can be eliminated [Ala+09; Gho+07; KMCO07]. Nowadays, solutions
have been shifted to the algorithmic level because they are easier to apply for
more complex circuits and do not require modifications to the back-end design
flow. The foundation of algorithmic defenses are registers, which stop glitches
from propagating and, therefore, serve as synchronization points. To make the
circuit in Figure 5 secure, a register would need to be inserted between the two
XOR gates, storing the value of 01. As a result, the register ensures that only
s1 @ r is forwarded to the second XOR, gate, but never s; alone, independent of
how fast r reaches the first XOR gate.

Glitch-resistant masking schemes are defined on algorithmic level when registers
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need to be used in order to prevent glitches. TI [NRRO6] was the first provably
secure glitch-resistant masking scheme. Due to the non-completeness property,
no glitch in a component function can reveal any information about all shares
of a sensitive variable. In order to ensure that the property also holds when
the output of a component function is used as the input of the next, the result
needs to be stored in a register. DOM [GMKI16] uses registers to secure crossings
of share domains. To ensure that the refreshing phase is completed before the
integration phase, a register is placed after combining the fresh randomness
with the cross-domain terms. It prevents that due to a glitch, multiple cross-
or inner-domain terms are combined, which results in statistical dependence of
the sensitive value, and breaks the ILA. Composable masking schemes provide
another way to build glitch-resistant designs by composing multiple, smaller
glitch-resistant building blocks [Cas+21; Cas+24; Fel+22; Kni+22; Miil+23].

Transition effects receive slightly less attention in the context of masked
hardware, as defeating them can basically be done by the careful handling of
registers. For instance, masked encryption schemes are often implemented in a
pipelined fashion, where the encryption state is stored in registers connected by
combinatorial logic. Every share is stored in its own “copy” of the state registers
(in its own domain), which is updated with a share of the same domain after the
round function has been computed.

2.5.2. ILA Breaches in SW

It is challenging to maintain the theoretical protection order of masked software
implementations in practice when executed by a CPU. The typical reason for
the observed leakage are transitions occurring in the CPU microarchitecture,
causing distance-based instead of value-based leakage [Bal+14]. While value-
based leakage means that an implementation leaks the computed intermediates
individually (hence, corresponds to the ILA), distance-based leakage describes
that intermediates could also be leaked in pairs (hence, violating the ILA). For
instance, overwriting a register that stores value a with the new value b exhibits
distance-based leakage of HD(a,b) = HW (a) ® HW (b), that is, a transition from
a to b. Papagiannopoulos et al. [PV17] call this effect the register overwrite effect,
or short, the overwrite effect. Register overwrite effects can easily be introduced
by compilers when writing masked software in a higher-level language such as C
because the register allocation is done by the compiler, which has no intuition
about masking. Even when masked software implementations are written in
Assembly, it is often challenging to prevent register overwrite effects since the
exact expressions stored in registers need to be tracked by the programmer.
Before overwriting the register with the value from another register or from
memory, it needs to be ensured that the transition between the old and new value
does not violate the ILA. If that is not possible, another register needs to be
chosen, or the register first needs to be cleared. Several works provide empirical
evidence of the register overwrite effect in practice, including [Bal+14; Bec+22;
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MMT20; PV17; She+21b]. The overwrite effect can also be observed for data
memory, i.e., when overwriting a share stored in memory with another share of
the same sensitive variable [Cor+12; PV17].

While one could argue that register overwrite effects can be detected by
carefully investigating the Assembly code, other leakage effects are more difficult
and sometimes even infeasible to see. The reason is that they often reside from
the microarchitecture of the processor, which is, in most cases, closed-source
and not known by the designer. Several works discuss the leakage caused by
microarchitectural elements of the processor [Gig+21; GPM21; MPW22; PV1T7;
She+21a; She+21b]. For example, Papagiannopoulos et al. [PV17] point out the
neighbor leakage effect, which refers to distance-based leakage observed between
two distinct data storage units, e.g., registers, although an instruction accesses
only one of them. Related to that, data manipulated by two distinct instructions
might be leaked via transitions in hidden microarchitectural storage elements,
such as registers used by the memory bus [She+21b]. Gao et al. [Gao+20] show
that it is even possible that bits stored in the same registers are leaked when
performing a bitwise instruction, e.g., by barrel shifters in the ALU.

Countermeasures One option to address leakage in masked software implemen-
tations is to simply ignore the problem. This approach is called lazy engineering,
and is based on the order reduction theorem proposed by Balasch et al. [Bal+12].
The theorem states that a masking scheme that is dth-order secure assuming
value-based leakage (intermediates are leaked individually) is L%Jth—order se-
cure assuming distance-based leakage (intermediates are leaked in pairs). As a
consequence, a designer applying the lazy engineering approach would design a
dth-order secure masked software implementation if L%J is practically required.
The advantage of lazy engineering is that it can be applied without knowledge
about the microprocessor. The disadvantage is, however, the large overhead: for
instance, to get 2nd-order security in practice, a 4th-order implementation needs
to be constructed.

Another option is to (empirically) build a leakage model that characterizes
the leakage behavior of the target microprocessor, and then adapt the masked
assembly implementation in a way such that it is secure in the leakage model.
Adaptations might require programming tricks, such as inserting dummy memory
accesses to clear registers of the memory bus, temporarily using additional
randomness to mask data stored in registers, or rotating shares before storing
them in registers [Bar+21a; PV17; She+21b].

A quite different approach is to modify the processor such that SCA-protected
operations are facilitated [CPW24; Gao+21; Gro+16b; MGH19; SS22; TKS11].
For example, Cheng et al. [CPW24] propose an Instruction-Set Extension (ISE)
for RISC-V that contains dedicated instruction for masked software implementa-
tions. However, such approaches often imply a large overhead for the CPU as well
as a certain performance penalty with respect to (unprotected) general-purpose
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software.

2.5.3. Optimizing Masked Implementations

Applying the masking countermeasure to the implementation of a cryptographic
algorithm comes at a significant cost. On the one hand, this cost originates
from the algorithmic changes to enable the masking countermeasure in the first
place. This includes splitting the sensitive intermediates into multiple shares
(which potentially requires additional RNGs for mask generation), and processing
them by multiple instances of linear functions, or dedicated non-linear functions
respectively. On the other hand, a certain amount of overhead stems from
compensating for ILA breaches, such as defeating glitches and transitions.

Optimizing Masked Software Typical cost metrics to quantify the overhead of
masked software are the amount of memory (RAM) that is needed on top, the
code size, and the runtime overhead, usually measured in clock cycles. Existing
optimization strategies often combine bit-slicing with clever register scheduling to
minimize memory accesses, which can be expensive in terms of CPU cycles [GR17;
SS16]. De Groot et al. [Gro+16a] propose an optimized implementation of the
PRESENT cipher on an ARM Cortex-M4, that tries to lower the overhead caused
by lazy engineering with bitslicing.

Optimizing Masked Hardware The overhead of a masked hardware implementa-
tion is usually evaluated in terms of area, latency, and randomness. Latency refers
to the (minimum) number of clock cycles required to run an implementation.
The randomness includes both offline and online randomness. Offline randomness
is used to obtain the initial sharing of the input, while online randomness is
consumed by the design during the encryption, e.g., for refreshing. However,
randomness overhead will eventually translate into area because when requiring
more randomness, more/larger/more powerful RNGs are needed to deliver the
random bits, and additional logic gates are needed to add them to the masked
design. While techniques like DOM, TI, or composable masking schemes brought
secure masking into practice, the security came with a certain cost, which ever
since has been tried to be minimized by the scientific community. In the context
of optimizations, there clearly exists a tradeoff between latency and random-
ness/area. For example, glitch-stopping registers increase the latency of a design.
Eliminating such registers requires adding more fresh randomness at another
point of the design, which increases the randomness/area.

Several proposals following either of the two optimization directions (reduction
of latency and reduction of randomness/area) exist. Various proposals in the
direction of low-latency masking exist [AZN21; GIB18; KM22; Nag+22; Sas+20;
Sim+22; Sim+23]. For example, the low-latency variant of DOM [GIB1§] is
based on the idea of eliminating the glitch-stopping register by skipping the
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compression step in the masked multiplier and duplicating the necessary logic
respectively. Removing registers also has a negative impact on the length of
the critical path, which affects the frequency at which the design can run in
practice. While a non-optimized first-order masked AES S-box implementation
runs in 8 cycles and requires 18 bits of fresh randomness, their low-latency variant
runs in a single cycle but requires 2048 bits of fresh randomness. In order to
reduce the amount of randomness required in a design, one method is using a
freshly generated random value at several independent points in a design, or by
applying the changing of the guards (COTG) technique. Works in this direction
include [Bey+21; Fel422; KM23; Papl8]. COTG was initially introduced by
Daemen [Dael7] to achieve uniformity in TI-based designs more efficiently. This
work showed that instead of freshly generating a new random value, it is simply
possible to use an unrelated share of the cipher state, which is independent of
the one being refreshed. Since its proposal, COTG has been successfully applied
to various kinds of cryptographic algorithms, e.g., [ANR19; Bey+21; Gig+24a;
JPS18; SD17; Sugl9; WM18].

2.6. Empirical Verification of Masking

After creating a masked implementation, designers need to test if the security
order in practice adheres to the theoretical protection order by checking if running
the implementation exhibits any observable side-channel leakage. Leakage can
simply be caused by implementation errors (bugs), or by ILA breaches which
were not sufficiently handled. Empiric verification of masked implementations
involves the collection of power traces of the cryptographic implementation and
the subsequent analysis of these traces to identify leakage.

2.6.1. Collecting Power Traces

Masked hardware implementations are subject to empirical verification at multiple
stages throughout the design process. Clearly, it is desirable to detect potential
issues as early as possible. To facilitate this, FPGA boards are commonly
utilized for initial power measurements of the masked design alongside simulation
tools. Masked software implementations can often directly be run on the target
microprocessor, or a simulator for the respective device is used. In the following
we focus on how power traces were collected for the designs in this thesis. We
refer to the work of Buhan et al. [Buh+22] for a broader overview and comparison
of automated leakage detection tools.

Power Traces from Concrete Devices Masked hardware implementations are
frequently assessed on an FPGA board to collect power traces in the early stages
of the design process. In this thesis, we work with different FPGA evaluation
boards that are specifically designed for SCA evaluations, the SAKURA-G
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\

Figure 6.: Measurement setup based on the CW305 evaluation board used in
this thesis, consisting of: (1) connection to oscilloscope to measure the
power consumption, (2) trigger signal, (3) clock output, (4) external
power supply, (5) USB connection to PC to provide plaintexts

board [GIS14], and the NewAE CW305 board [New24]. Figure 6 shows our
measurement setup to acquire power traces based on the CW305 evaluation board.
The cryptographic implementation which we want to assess runs on the FPGA.
The power consumption is measured via a cable connected to the oscilloscope (1).
In order to determine when the cryptographic operation starts, we use a trigger
signal (2). To improve the quality of measurements, we synchronize the clock
signals of the FPGA and oscilloscope (3) and use an external, low-noise power
supply (4). Finally, to provide the implementations with different plain texts, we
connect our lab PC via USB (5). To perform post-silicon evaluations, the ASIC
chip can, for example, be embedded into a PCB [MOPO07].

Masked software implementations can directly be run on the microcontroller,
which is usually also embedded into a PCB to facilitate power measurements. The
setup is in general very similar to the one described above, the main difference
is that the cryptographic implementation is not run on the FPGA, but on the
microprocessor.

Leakage Simulators Estimating the power consumption via simulations repre-
sents an alternative to collecting power traces directly from a concrete device.
Simulations can be performed in cases where no measurement equipment is



42 Chapter 2. Background and State of the Art

available, extremely low-noise power traces are needed, or when only a part of
the design should be assessed instead of the complete implementation. Given
a masked hardware circuit, one simple way to approximate the dynamic power
consumption is to count how many signal transitions happen on a gate’s output
during one clock cycle while simulating the circuit [TVO05]. Another more recent
approach in this context is PROLEAD [MM22], which does not approximate the
dynamic power consumption of a circuit directly but instead simulates the values
of intermediate variables. Based on this simulation, the tool later runs statistical
tests to detect leakage in masked implementations.

For masked software implementations, leakage simulators follow a different
path since the power consumption of microprocessors without access to the
microarchitecture is hard to estimate, especially when considering the effects
of breaking the ILA. Instead, the goal is more to build a leakage model of the
processor which determines the leakage behavior of each instruction on the CPU.
Designers of masked software can use the resulting leakage model to estimate
the security of their implementation. For example, ELMO [MOW17] was built
based on an empirical analysis of the power consumption of instructions executed
on the ARM Cortex-M0 processor. ASCOLD [PV17] can be used to assess
implementations for the 8-bit ATMegal63 microcontroller. As an extension to
PROLEAD, PROLEAD-SW [ZMM23] has been proposed that allows to simulate and
analyze the leakage of masked software running on an ARM CPU.

2.6.2. Analyzing Power Traces

In order to perform empirical verification of a masked implementation, the power
traces obtained by either physical measurements or simulations are statistically
analyzed to detect potential leakage. One option is to run a DPA attack, as de-
scribed in Section 2.3.4, which simply allows to learn whether the implementation
withstands this specific attack or not. No conclusions about all the other attack
models and approaches that have been proposed over the years are possible.
Another option is to run a TVLA (Test Vector Leakage Assessment), as described
by Goodwill et al. [Goo+11], which aims at uncovering statistical dependencies
between the power consumption and processed data in general. TVLA comes
in several different variants, as proposed in [Goo+11]. In this thesis, we focus
on the non-specific fixed vs. random test since this is also the most common in
literature.

TVLA is based on Welch’s t-test, which measures the significance of the
difference of means of two distributions. In the context of cryptographic imple-
mentations, it compares the leakage of a cryptographic device while processing
a fixed plaintext to the leakage while processing a random plaintext. In both
cases, the same encryption key is used. The idea of the t-test is that if the
power consumption of the fixed and the random group can be distinguished, it is
data-dependent and can, therefore, potentially be exploited by attacks like DPA
that are based on differences in the power consumption.
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To perform a t-test for a cryptographic device, the device is first programmed
with a fixed key that remains unchanged throughout the experiment. Then, the
power consumption of the device is recorded while processing either a random
or a fixed input plaintext. The traces are are assigned to the sets Sy € R™/ xm
(fixed plaintexts) or S € R™*"™ (random plaintexts). ny denotes the number
of traces recorded for a fixed plaintext, while n, denotes the number of traces
recorded for a random plaintext. m is the number of samples a power trace
consists of. Based on Sy and Sy, a t-statistic, or t-score t € R™, is computed for
each of the m samples:

L (11)
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In this case, Wy and p, are the means of Sf and Sy, and sy and s, are the
standard deviations. The null hypothesis is that Sy and S have equal means, i.e.,
they cannot be distinguished. The null hypothesis is accepted if the t-score stays
between +4.5, which means that it is not possible to say whether a fixed or a
random plaintext was used based on the power consumption. If the t-score exceeds
+4.5, the null hypothesis is rejected with a confidence greater than 99.999 %,
which means that the power consumption shows data-dependent differences.

TVLA is frequently used to assess masked implementations. In that case,
having a “fixed” key means choosing a value k for the key but refreshing the
shares of k£ with every invocation of the cryptographic device. The shares of the
fixed plaintext are handled accordingly, while the shares of the random plaintexts
are simply chosen randomly every time. TVLA, as described above, can be
used to detect first-order leakages in implementations, as the analysis is based
on comparing the means (first statistical moment) of Sy and Sr. To detect
higher-order leakages, it is necessary to investigate higher statistical moments,
e.g., the variance for a second-order implementation.

The interpretation of the results obtained from TVLA needs to be done
cautiously, as discussed in [Pap+23; SM15; Stal8]. If the t-score exceeds the
+4.5 border, it just means there are data-dependent differences in the power
consumption. It does not imply that these differences can be exploited successfully,
e.g., in a DPA attack, nor does it tell anything about the attack effort in
case an attack applies. For example, the t-score of a masked cryptographic
implementation that loads the unmasked plaintext from memory will exceed
the critical border because this causes data-dependent differences in the power
consumption. However, it is not possible to do, e.g., a DPA attack, because this
operation only involves the plaintext but not the secret key. On the other hand,
if the t-score does not exceed the £4.5 border, it just means that there are no
data-dependent differences in the power consumption. It does not prove that the
implementation is secure, as it might still be broken in another evaluation setup,
e.g., when using more traces, another test device, or another oscilloscope.
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2.7. Formal Verification of Masking

Empirically verifying a masking scheme is very important for investigating the
security of an implementation, but it is strongly bound to the used device,
implementation details, and measurement equipment. For instance, a masked
hardware implementation might be secure on an FPGA once, but when running
the placement and routing process again, another placement of components on the
same FPGA could lead to an insecure design. Furthermore, when not adjusted
carefully, the lab setup could easily result in low-quality measurements, which
means that for every empirical verification, a non-negligible amount of time must
be spent on adjusting the equipment.

Formal verification tries to overcome these disadvantages by constructing a
security proof for the SCA resistance of a given masking scheme. This allows
making general security statements in a specific attacker model, clearly stating
the adversary’s abilities, and providing more independence of the concrete attack
setup. Depending on the attacker model, it is also possible to include physical
effects such as glitches and transitions. We compare and describe the most
common attacker models in Section 2.7.1. Security proofs for masked circuits
can also be automated by formal verification tools that read in the circuit and
check if it is secure against dth-order attacks. Section 2.7.2 gives an overview of
state-of-the-art tools. One possibility to implement a masking verification tool is
to use Fourier-based verification, which is also applied by several works in this
thesis [Gig+21; GPM23a; GPM24]. Therefore, we cover the necessary theoretical
background in Section 2.7.3.

2.7.1. Adversary Models

Formal adversary models define the abilities of a side-channel attacker, allowing
to argue more formally about the security of a masked implementation. They
work with a circuit-based representation of the masking scheme, where the circuit
is represented as a graph consisting of vertices and edges [CS21; ISW03]. The
vertices are either the inputs or outputs of the circuit, logic gates, or registers,
each processing elements from Fo. Edges are the wires carrying elements from
one logic gate to another.

Classic/Robust Probing Model The d-probing model was introduced by Ishai et
al. [[ISWO03] in 2003. It is also known as the standard probing model, the classic
probing model, or simply the probing model, and is still one of the most used
models today. It states that the adversary possesses d probes that can be placed
on any set of wires in the circuit to record the information carried by that wire for
an infinite amount of time. A masked circuit provides d-th order security if the
adversary cannot learn anything about any sensitive variable by combining the
recorded observations. Later, Faust et al. [Fau+18] extended the classic probing
model and proposed the robust probing model to include glitches, transitions
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and coupling effects. In the robust probing model, the adversary works with
(g,t, c)-extended probes, which optionally also allow to capture combinations
of intermediate variables caused by glitches (¢ = 1), transitions (¢ = 1) or
coupling (¢ = 1).

For example, consider the circuit in Figure 5 computing (s1 @ r) @ so. This
circuit is 1st-order secure in the probing model using (0, 0, 0)-extended probes.
A 1st-order attacker is allowed to place one probe, which can either be placed
on an input wire or the wires o1 and 03. Probing the input wires is not useful
for the adversary. Probing o; will record {s; @ r}, which is independent of s.
Probing o9 will record {s1 ®r@® sa}, which is also independent of s. The situation
is different for when working with (1,0,0)-extended probes capturing glitches,
because probing oz records {0, s1, s2,7,51 71,51 D 2,7 D 52,51 D s2 D}, and
the term s1 @ s is not independent of s.

Noisy Leakage Model In practice, side-channel measurements are noisy. Con-
sequently, other than suggested by the classic probing model, the adversary
does not have direct access to the plain intermediates, allowing them to directly
probe an intermediate X. Instead, they probe a noisy function of X, that is,
v(X) = X + 9, where § follows a Gaussian distribution. This was first formalized
in the noisy leakage model by Chari et al. [Cha+99] in 1999. They formally
study the effectiveness of masking based on this model and show that the number
of traces required to recover the sensitive value increases exponentially with
the masking order d. One downside of the noisy leakage model is that formal
proofs are not straightforward to obtain as rely on complex information-theoretic
computations. Compared to the robust probing model, the noisy leakage model is
strongly based on the ILA and, therefore, does not consider physical side effects
like glitches. While the classic/robust probing model restricts the number of
probes to d, and the noisy leakage model assumes jointly leaking wires, it has been
proven that the classic probing model implies the noisy leakage model [DDF14].

Random Probing Model The random probing model states that every wire of a
circuit leaks with a given probability p [Bel+20a; DDF14; ISW03]. Hence, an
adversary placing a probe on a wire can only record the intermediate value with
probability p and will not observe any leakage otherwise. p depends on the noise
level, i.e., the higher the noise, the lower the probability that the adversary can
observe the intermediate value. This allows us to further compute the expected
number of traces required by the adversary to recover the sensitive variable s.
Security proofs in the random probing model are considered more intuitive than in
the noisy probing model due to the higher level of abstraction. It has been shown
that the noisy leakage model reduces to the random probing model, but also that
the random probing model reduces to the classic probing model [DFS15b]. Just
like the noisy probing model, the random probing model is based on the ILA
and, thus, does not consider glitches or transitions.
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Adversary Models for Masked Software The classic probing model, noisy leakage
model and random probing model are relatively high in abstraction such that
they can be used to analyze the security of masked implementations under the
assumption of independent leakage. The robust probing model captures physical
effects that might violate the ILA but is formulated in terms of masked circuits
and does not characterize the leakage of masked software implementations when
executed by CPUs very well. For example, the robust probing model assumes
that the adversary can probe a wire for an infinite amount of time, which is a
valid assumption in the case of, e.g., a pipelined masked hardware circuit. When
transferring this to a CPU, an attacker could choose to probe the read port of
the register file, allowing them to access every intermediate value that is ever
computed by the masked software. By combining these values, masked software
implementations of any order could be broken.

A first work in the direction of adversary models for masked software is
the proposal of distance-based leakage [Bal+14], which suggests that pairs of
intermediates may be leaked by software implementations to represent the register
overwrite effect. However, this does not capture transitions between internal
CPU registers or glitches. The register probing model [Bel+20b] states that since
software works by manipulating CPU registers, it is rather unrealistic that only a
single bit of an intermediate is leaked. Instead, it is more likely, that all the bits
of a register are leaked together (for example in the ALU), and can be observed
by a single adversary probe. The register probing model does not capture the
register overwrite effect or glitches. Barthe et al. [Bar+21b] suggest to build
a CPU leakage model by explicitly characterizing the leakage of every possible
instruction. While this approach yields a very accurate adversary model and
allows the inclusion of various effects like the neighbor leakage effect [PV17], it
does not consider glitches and is closely related to a specific CPU. In this thesis,
we address the issue of adversary models for masked software in [Gig+21].

2.7.2. Automated Formal Verification

Security proofs for masking schemes can be done by using a pen-and-paper
approach. With the growing circuit size and complexity, as well as the increasing
protection order d, constructing a security proof manually becomes relatively
cumbersome, especially considering glitches and transitions. Over the last years,
several tools to formally verify masked implementations in an automated fashion
have been proposed, covering a variety of adversary models. For a detailed
overview and comparison of these tools, we refer to the work of Feldtkeller et
al. [FSG23]. In the following, we want to focus on the techniques applied by
those tools that are used to verify masked hardware implementations in the
robust probing model. In general, to check whether a dth-order masked hardware
implementation is dth-order probing secure, many formal verification tools take
the gate-level netlist of the implementation as an input and either produce a
security proof or point out the respective wires that need to be probed by the



2.7. Formal Verification of Masking 47

adversary in order to recover the sensitive value.

maskVerif One of the first tools to implement an automated formal verification
approach was maskVerif [Bar+15; Bar+19], which computes symbolic leakage sets
for every operation performed by the masked circuit. The leakage set contains all
intermediate computation terms with respect to the circuit inputs, which can be
captured by an adversary by probing the gate output. To check dth-order security,
any combination of d leakage sets is investigated with respect to its dependency
on the sensitive value. maskVerif employs several optimizations to achieve better
performance, mainly targeting the complexity of symbolic expressions. Since
symbolic expressions are formulated based on the circuit inputs, the tool applies
simplifications that remove a certain circuit input from the expression as long
as the probe’s distribution is not affected. These approximations lead to non-
completeness because it might be assumed that attackers can probe more than
what is practically possible, leading to false positives. Over the years, maskVerif
was continuously improved, especially with respect to the number of supported
adversary models, and its performance [Bar+16; Bar+17; Bar+19; Bar+20].

Rebecca In 2018, Rebecca was published by Bloem et al. [Blo+18] in order
to formally verify any-order masked hardware circuits in the robust probing
model. Similar to maskVerif, the tool computes a leakage set for every gate, which
describes the arithmetic expression that can be probed by the attacker. Instead
of deriving the leakage sets symbolically, Rebecca uses estimations based on the
Fourier expansions of Boolean functions [ODo14], which allows to represent the
output of a gate as a multilinear polynomial over the circuit input variables. If the
coefficient of a linear combination of input variables in the polynomial is non-zero,
it means that the gate output correlates with the respective input combinations.
Rebecca checks for leaks by searching for gate outputs which correlate with
all shares of a sensitive variable. For higher-order masking, combinations of
leakage sets (correlation sets) need to be checked, which is accelerated by a
SAT solver. Since correlation sets are estimated, Rebecca also represents a non-
complete verification approach. In the next section, we will give more details on
Fourier-based verification because some works of this thesis make use of it.

Silver Quite a different path is followed by Silver [KSM20; Miil+22], which
computes the joint output distributions of each gate precisely and then performs
the independence check. The exhaustive computation and analysis of probability
distributions is computationally very expensive, and therefore, the tool relies on
binary decision diagrams to speed up the verification. Silver supports a variety
of different adversary models, including the classic/robust probing model, and
can also verify composability properties of masked circuits. While Silver offers
a complete verification approach (false positives are not possible), it eventually
comes at the cost of efficiency and is limited to the verification of smaller gadgets.
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IronMask In 2022, Belaid et al. propose IronMask [Bel+22], which aims at
a complete verification approach that is still efficient. Similar to maskVerif,
the leakage sets are computed symbolically, but it offers a better algorithm for
simplifying the expressions such that no false positives can occur. Consequently,
IronMask is, in many cases, much faster than other complete verification ap-
proaches, especially when verifying higher-order security properties of masked
gadgets or when verifying gadgets with non-linear randomness (gadgets where
randomness is not added linearly, but by performing quadratic operations to mix
input shares and randomness input shares). Besides (robust) probing security
and compositional security notions, it also supports the random probing model,
which is neither addressed by Silver nor by maskVerif.

2.7.3. Fourier-Based Verification

Any formal verification method needs to perform statistical dependency checks to
determine if probing a certain expression reveals anything about the sensitive value.
Rebecca utilizes the Fourier expansions of Boolean functions [BCG13; ODo14],
which is closely related to statistical dependence. Consider a Boolean function
F(X): {=1,1}"* = {—1,1} over a set of input variables X = (z1,z2,...xn), where
-1 represents true and 1 represents false. The Fourier expansion of f represents
it as a multilinear polynomial, that is, the sum of linear combinations of input
variables with respect to a specific Fourier coefficient f:
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The correlation of a Boolean function with regard to its inputs can be read off
directly from the Fourier expansion. The Fourier coefficients tell the strength
and type (positive or negative) of the correlation, while the respective linear
combination includes the variables to which the linear dependency exists. More
formally, a Boolean function does not correlate with 7 C X iff 77 C T it holds
that f(T”) = 0 [XMS88]. For example, the Fourier expansion of an AND function
f(X) = a A b for the input set X = (a,b) considers the linear combinations
{{a, b}, {a}, {b},{}}, and is given by: f(X) = —0.5ab+ 0.5a + 0.5b + 0.5. This
means that the function correlates positively with a and b, has a constant bias,
and correlates negatively with a @ b.

The inputs of a first-order Boolean masked circuit are either the shares of a
sensitive variable s1 and s2, fresh random values, or any public values such as
round constants. The gates in the circuit represent Boolean functions, performing
some computations with respect to the circuit inputs. In order to formally verify
that the circuit is secure, it is necessary to check if any gate correlates to s1 @ s2.
This is done by computing the Fourier expansion of each gate with respect to
the circuit inputs and verifying that the Fourier coefficient of s;s2 is non-zero.
For dth-order verification, it is necessary to test the nonlinear combination of
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any tuple of d gates.

Computing the exact value of the Fourier coefficients is computationally ex-
pensive, and also unnecessary because it is sufficient to know if correlation exists,
and not how strong it is or whether it is negative or positive. Therefore, Rebecca
does not work with the exact Fourier representations, but with correlation sets
instead, which contain all linear combinations of circuit inputs a gate correlates
to. A correlation set C of a gate g computing a function f(X) is described by
the following condition:
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xz, €T

For instance, the correlation set of the AND gate from before is then C(g) =
{{a,b}, {a}, {b},{}}, which refers to the variables an attacker would be able to
probe on the gate output.

Correlation sets can easily be used to create a verification approach that can
deal with glitches. To do so, the attacker’s abilities are extended such that it is
possible to replace any gate in the circuit with a gate that computes an arbitrary
Boolean function, while keeping the original gate’s inputs. Additionally, even
when assuming glitches, the correlation set of any register must only correspond
to the stable value computed in the previous cycle. For example, consider again
the circuit in Figure 5. Without glitches, the correlation set assigned to o7 is
C(o1) = {{s1,r}}, while the correlation set assigned to oz is C(02) = {{s1,s2,7}}.
The circuit is first-order probing secure because the set {si,s2} cannot be
probed in any scenario. However, with glitches, the attacker may replace both
XOR gates by an AND gate, resulting in C(o1) = {{},{s1},{r},{s1,r}} and
Clo2) = {{}, {s1}, {r}, {s2},{s1,7}, {s1,s2}, {51, s2,7}}, which contains {s1,s2},
and hence, correlates to s; @ so = s. To make the circuit secure, o; needs to
be stored in a register in order to “stop” the glitch. The correlation set of o1
would then stay the same, but the correlation set of the register output would be
{{s1,r}}, which changes the correlation set of oz to {{}, {s2}, {s1,7}, {s1, s2,7}},
which is first-order secure.
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Abstract The protection of cryptographic implementations against power anal-
ysis attacks is of critical importance for many applications in embedded systems.
The typical approach of protecting against these attacks is to implement algorith-
mic countermeasures, like masking. However, implementing these countermea-
sures in a secure and correct manner is challenging. Masking schemes require the
independent processing of secret shares, which is a property that is often violated
by CPU microarchitectures in practice. In order to write leakage-free code, the
typical approach in practice is to iteratively explore instruction sequences and
to empirically verify whether there is leakage caused by the hardware for this
instruction sequence or not. Clearly, this approach is neither efficient, nor does it
lead to rigorous security statements.

In this paper, we overcome the current situation and present the first approach
for co-design and co-verification of masked software implementations on CPUs.
First, we present COCO, a tool that allows us to provide security proofs at the gate-
level for the execution of a masked software implementation on a concrete CPU.
Using Coco, we analyze the popular 32-bit RISC-V IBEX core, identify all design
aspects that violate the security of our tested masked software implementations
and perform corrections, mostly in hardware. The resulting secured IBEX core
has an area overhead around 10%, the runtime of software on this core is largely
unaffected, and the formal verification with CoCo of an, e.g., first-order masked
Keccak S-box running on the secured IBEX core takes around 156 seconds. To
demonstrate the effectiveness of our suggested design modifications, we perform
practical leakage assessments using an FPGA evaluation board.

1. Introduction

Since the rise of the Internet of Things (IoT), embedded devices are integrated
into a wide range of everyday services. Often, these simple devices are part of
larger software ecosystems, which makes the protection of cryptographic keys
on these devices an essential but challenging task. Physical side-channel attacks,
such as power analysis, allow attackers to extract cryptographic keys by observing
a device’s power consumption [CRR02; KJJ99; QS01]. To prevent such attacks,
embedded devices typically employ dedicated countermeasures on the algorithmic
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level. The most prominent example of such algorithmic countermeasures against
power analysis is masking, essentially a secret sharing technique that splits input
and intermediate variables of cryptographic computations into d+1 random shares
such that the observation of up to d shares does not reveal any information about
their corresponding native value [Bar+17; Bel4+17; Cnu+16; GM17; GMK16;
ISW03; Rep+15].

Masking schemes typically have in common that they rely on certain assump-
tions such as independence of leakage, i.e., independent computations result in
independent leakage [Ren+11]. However, as pointed out by many academic works
in the past, such assumptions are typically not satisfied on CPUs. Coron et
al. [Cor+12] were among the first who showed that, e.g., memory transitions in
the register file or RAM can leak the Hamming distance between two shares,
thereby reducing the protection order of masking schemes on CPUs. Later
publications follow up on these observations [Gro+16a; MMT20; PV17], and
amongst others, formulate the so-called order reduction theorem [Bal+14]. This
theorem states that dth-order protection under the assumption of independent
leakage reduces to L%J—th protection if effects like memory transitions are taken
into account. Consequently, and without further assumptions on the hardware,
achieving second-order protection using masked software implementations can
require computations with up to 5 shares.

This is a very significant overhead, and also the reason why the goal in practice
is to find strategies to cope with the leakage caused by the underlying CPUs and
to achieve dth-order protection with d + 1 random shares. In order to test if such
implementations indeed provide the desired security level in practice, research
on the verification of masked cryptographic implementations has gained a lot
of attention during the last years. The existing works can be roughly divided
into two sets: works based on empirical verification, and works based on formal
verification.

On the empirical side, authors have studied masking-related side effects of
certain microprocessors via leakage assessments and then built corresponding
hardened software implementations [Gro+16a; PV17]. While their resulting
masked implementations do in fact maintain their theoretical protection in
practice, they also come with a noticeable performance overhead (by up to a
factor of 15) that is caused by the necessary software tweaks. Since leakage
assessments are quite labor-intensive, tools like PINPAS [Har+4-03], or more
recently, ELMO [MOW17] have been developed that can emulate power leakage
for certain microprocessors. The authors of ROSITA [She+21] have pushed this
automation even further by also automating the software patching process after
leakage detection. A quite different take on providing side-channel protection
on CPUs is presented by Gross et al. [Gro+16b], who propose a masked CPU
design that can perform unprotected software implementations in a side-channel
protected manner. Similar work exists for RISC-V processors [MGH19], also on
instruction set architecture level [Gao+21; KS20; Reg+09].
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On the formal side, tools like Rebecca [Blo+18] and maskVerif [Bar+19] repre-
sent the first steps toward formal verification of masked implementations. Both
tools are mainly tailored to hardware implementations; maskVerif does offer
some support for software implementations but (1) can only deal with code
that is written in a special intermediate language, and (2) uses a probing model
that only considers simple CPU side-effects such as register overwrites. More
recently, Belaid et al. presented Tornado [Bel+20], a compiler that automati-
cally generates masked software implementations that are secure in the same
model. A more fine-grained software verification approach that utilizes anno-
tated assembly implementations is presented by Barthe et al. [Bar+21], while
with Silver [KSM20], Knichel et al. promise improved verification accuracy and
performance for hardware implementations.

Our Contribution So far, the verification of masked software implementations
was only done in simplified settings that require modified software implemen-
tations and do not consider a wider range of side-effects, such as glitches at
the gate level, that occur when software runs on an actual CPU. There still
exists a noticeable gap between correctness proofs and the resulting practical
protection for masked software implementations. We close this gap by providing
the following contributions:

e We present COCO, a tool inspired by Rebecca, that can formally verify
the security of (any-order) masked, RISC-V assembly implementations
that are executed on concrete CPUs defined by gate-level netlists. Coco
essentially provides hardware-level verification including glitches for software
implementations with constant control flow.

e Using CocCoO, we analyze the design of the popular 32-bit IBEX' core and
identify all hardware design aspects that could prevent the leakage-free
execution of our test suite of masked software implementations on this
CPU.

e Based on this analysis, we present design strategies for CPU and memory,
that with low hardware overhead, eliminate most of our discovered flaws in
hardware, while leaving behind a few select and easy-to-check constraints
for masked software implementations.

e We show the practicality of this work by verifying a variety of masked
assembly implementations, including various types of (higher-order) masked
AND-gates, a second-order masked Keccak S-box [GSM17], and a first-order
masked AES S-box implementation [BP12]. We also show examples where
CocCo identifies flaws in broken masked software implementations and
reports the corresponding execution cycle, as well as the location of the

Thttps://github.com/lowRISC/ibex


https://github.com/lowRISC/ibex

2. Verifying Software Implementations on Hardware 57

leakage source within the IBEX netlist. To show the effective robustness of
our secured design, we perform leakage assessments on an FPGA evaluation
board.

e We publish Coco and our secured IBEX on Github?.

Outline In Section 2, we present COCO, a tool that can formally verify the
leakage-free execution of masked software implementations directly on CPU
netlists. Section 3 explains how we analyze the popular 32-bit RISC-V IBEX
core using COCO, the discovered issues, and the resulting hardware modifications
which enable leakage-free software execution. In a similar spirit, Section 4 takes
a look at data memory and proposes solutions for how SRAM can be added
to a CPU core such that it can be included in CoOCO’s verification. Section 5
describes CocO’s verification workflow in detail and presents various verification
runtime benchmarks as well as the practical evaluation. We conclude our work
in Section 6.

2. Verifying Software Implementations on
Hardware

In this section, we describe how we built CocCo0, a tool inspired by Rebecca [Blo+18],
for the verification of masked software implementations directly on CPU netlists.
More concretely, we show how the problem of verifying masked software im-
plementations can be mapped to a hardware verification problem by treating
software as a sequence of control signals that dictate the data/control flow within
a CPU. This approach comes with the advantage that we can directly verify
assembly implementations and observe a wider range of side-effects that could
reduce the protection order of the tested software implementations. Previous
works in this direction require modified software implementations and only con-
sider a select amount of CPU side-effects that have been discovered in empirical
evaluations [Bar+19; Bar+21].

First, we cover necessary background on masking and Rebecca. We then show
that the classical probing model [ISWO03] is not suitable for hardware/software
co-verification and propose the so-called time-constrained probing model that can
be seen as a stricter version of previously used models for software verification.
We then discuss all improvements that we performed on top of Rebecca, such
that hardware/software co-verification becomes feasible, ultimately leading to
Coco. Coco’s complete verification flow is described in Section 5.

2https://github.com/IAIK/coco-alma,
https://github.com/IAIK/coco-ibex
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2.1. Background on Masking

Masking is a prominent algorithmic countermeasure against power analysis
attacks [Cha+99]. In a nutshell, masking is a secret-sharing technique that
splits intermediate values of a computation into d + 1 uniformly random shares,
such that observing up to d shares does not leak any information about the
underlying value. The used masking scheme determines the number of masks d,
and results in a dth-order masking scheme. In classical Boolean masking, the
sharing of a native variable s, when split into d 4+ 1 random shares sq . .. s4, must
satisfy s = s @ ...® sq. Hereby, sg...sq_1 is chosen uniformly at random while
Sqg=80D...Bsq—1Ds. This ensures that each share s; is uniformly distributed
and statistically independent of s. For example, in a first-order masking scheme
(d = 1), the secret variable s is split up into two shares sy and si, such that
s = 80 @ s1. sg is chosen runiformly at random, while s1 = s @ sq.

When implementing masked cryptographic algorithms, dealing with linear
functions is trivial as they can simply be computed on each share individually.
However, implementing masking for non-linear functions requires computations
on all shares of a native value, which is more challenging to implement in a secure
and correct manner, and thus the main interest in literature [Bar+17; Bel+17;
Cnu+16; GM17; GMK16; ISW03; Rep+15].

2.2. Background on REBECCA

Rebecca [Blo+18] is a tool for the formal verification of masked hardware im-
plementations. Simply speaking, given the netlist of a masked hardware circuit,
together with labels that indicate which input shares belong together, Rebecca
can determine if the separation between shares is preserved throughout the circuit.
More formally, Rebecca checks if a circuit is secure in the glitch-extended version
of the original probing model by Ishai et al. [[SW03], which we refer to as the
classical probing model. In general, the probing model defines the attacker’s
abilities in terms of the number of used probing needles, which are placed on
a wire in a circuit and allow to observe the respective value from the wire. In
the classical probing model, an attacker can place up to d probing needles in a
circuit, which allows the observation of up to d intermediate values throughout
the computation. A circuit is said to be dth-order protected if an attacker who
combines the recorded information cannot infer information about native values.

The Verification Flow of REBECCA Rebecca operates on the netlist of a
pipelined masked hardware circuit. A masked hardware circuit consists of linear
gates (XOR, XNOR), non-linear gates (AND, OR), registers and constants, that are
all connected by wires. Inputs are gates with indegree zero, such as the clock
signal or the input state of a cipher.

The circuit inputs are annotated with labels to express their purpose in the
masking scheme, which can either be a share, a mask, or public. A share represents
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a share of a secret value, a mask is a fresh uniformly-distributed random value, and
public means that it is not important for the masked implementation. These labels
are propagated through all gates of the circuit, following a list of propagation
rules. The circuit is not secure in the classical probing model if there is a gate
that correlates with a native secret, i.e., allows an attacker probing the gate to
deduce information about the native secret.

Rebecca is able to prove the glitch-resistance of masked hardware circuits.
Glitches may arise in the combinatorial logic, and are caused by various physical
hardware properties, including different wire lengths. Rebecca takes glitches
into account by modeling the stable and transient correlation of gates. Stable
correlations refer to the final values of the signals, whereas transient correlations
refer to all intermediate signal values before the circuit stabilizes.

Fourier Expansions and Leakage Checks In order to check for correlation,
Rebecca uses correlation sets. A correlation set is bound to a specific gate in
the circuit and describes which information an attacker can learn by placing
a probe on the gate. These sets are derived from the Fourier expansion of
Boolean functions [ODo14]. Fourier expansions represent Boolean functions as a
polynomial over the real domain {1, —1}. Examples of Fourier expansions are
shown in Appendix A.

A function correlates to a linear combination of its inputs if the correlation
term representing the linear combination has a non-zero correlation coefficient.
Rebecca applies a very conservative over-approximation of these coefficients and
derives correlation sets from these. Correlation sets contain terms with non-zero
correlation coefficients while omitting the exact value of the coefficients. A
first-order leakage test for a secret s checks whether a correlation set of any gate
contains a term where all shares of s are present without being masked by a
random value (a mask or an incomplete sharing of another secret). Explicitly
constructing the correlation sets and performing these checks is infeasible, which
is why Rebecca encodes everything as a pseudo-Boolean formula and checks for
satisfiability with the SMT solver Z3 [MBO08].

2.3. Probing Models for Software Verification

The complexity of a power analysis attack is determined by the number of
intermediate values that an attacker needs to learn from a power trace by placing
probing needles (probes) in a circuit. The number of probes corresponds to
the order of an attack and the attack complexity grows exponentially with the
order [Cha+99]. The classical probing model for hardware allows an attacker to
observe all values and transitions at a chosen location within a hardware circuit,
and therefore does not express this increase of complexity, but corresponds to a
much more powerful attacker. For example, consider the case where an attacker
is probing the write port of a CPU register file. Then, an attacker will always
observe all intermediate values and can break masking schemes with arbitrary
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protection order. Consequently, authors have fallen back to more restrictive
probing models for the verification of masked software implementations.

Tools like maskVerif or Tornado are based on a probing model in which a
dth-order attacker on software implementations can observe up to d intermediate
values of the computation (4 transition effects). However, this implicitly excludes
the attacker from observing more than two intermediate values at one probing
location, even though CPU registers very likely contain multiple intermediate
values throughout the software execution. Even though the essence of higher-
order attacks is captured, it fails to represent that observing combinations of
more than two intermediates is possible in practice.

Time-Constrained Probing Model We introduce the Time-Constrained Probing
Model to model the capabilities of an attacker who performs power analysis
attacks of a given order. The time-constrained probing model constrains the
classical probing model such that the complexity of higher-order attacks is
represented. In addition, it captures hardware effects and leads to situations
where an attacker can observe more than two intermediate values at one probing
location. Hardware effects, like glitches, occur frequently in practice and have
been shown to be exploitable in the context of masked implementations [Fau+18;
Moo+19; NRS11].

In the time-constrained probing model, an attacker possesses d probes. Each
probe can be used to measure information in one specific clock cycle and at
one specific location. The attacker can distribute the d probes spatially and
temporally. Hence, the attacker can perform d measurements at different locations
in the same clock cycle, or probes at the same location in different clock cycles,
or a mix of both. A masked software implementation is dth-order secure in
the time-constrained probing model if an attacker cannot combine the recorded
information to learn anything about native values.

2.4. Co-Verification Methodology

While Rebecca is limited to the verification of pipelined masked hardware circuits,
Coco aims at the co-verification of software and hardware, i.e., verifying the
execution of masked software implementations directly on a processor’s netlist.
Consequently, COCO requires some knowledge about how concrete programs
influence the data/control flow within the CPU. We then need to extend Rebecca
such that the verification method is aware of the software execution.

In the following, we first briefly outline the workflow of Coco, broken into 4
steps. Steps 1-2 give intuition into how the execution of software can be combined
with an otherwise purely hardware-focused verification method. Steps 3-4 then
describe CocCO’s verification method. The remainder of this section describes
Step 3 in more detail.

Step 1 We use Verilator [Sny22] to execute a masked assembly implementation
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Table 1.: Definition of the stable (S%) and transient (T%) correlation sets of gate
x in cycle t. We use the operator ® as the element-wise multiplication
of two correlation sets.

Gate type of x Definition of St Definition of T
Constant {1} {1}
Negation z=-a St T}
Register T <Ra 5371 §ffl ® §g
XOR r=a®b ~ o~

- St ® St T @ T}

XNOR r=a®b a=rh a®1p

AND r=aAb ~ ~ —~ ~

St ® S} T @ T}

OR z=aVb a® 5 a®T
Multiplexer z=c?a:b §£ ® (SLUSh) fct ® Té ® fbt

on a given CPU hardware design via a cycle-accurate simulation. From the
simulation, we extract a so-called execution trace which contains concrete values
for all CPU control signals in all execution cycles. We require implementations
with a constant control flow using Boolean masking and therefore, these control
signals are the same for all inputs to that software implementation.

Step 2 We annotate which registers or memory locations hold the shares of a
native value at the start of the software execution. Additionally, we need to
specify the masking order of the software implementation and the number of
cycles that should be verified.

Step 3 We capture the correlations of each logic gate and register in the processor
by constructing correlation sets throughout each clock cycle. For this purpose,
we improve and extend the set of stable and transient propagation rules used
by Rebecca. Most importantly, we reformulate them such that they can be
made execution-aware. Knowing the exact values of control signals at each
point during the execution allows CoCO to simplify the correlation sets under
certain circumstances. In turn, we obtain a tighter over-approximation and
reduce erroneous leakage reports.

Step 4 We encode the resulting correlation sets as a propositional Boolean
formula and use a SAT-solver to check for leakage. In case the implementation
is insecure, the exact gate in the netlist and execution cycle is reported. Tracking
correlation sets naively is infeasible since their size grows exponentially with
the number of secret shares and masks. Our encoding includes the circuit
structure, correlation propagation rules and security constraints. Although
Rebecca already applies this approach, their SAT encoding is incompatible with
our execution-aware propagation rules and not efficient enough for circuits as
large as processors.
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Execution-Aware Stable Correlation Sets In Coco, we apply an
over-approximation of the Fourier expansions of Boolean functions by build-
ing execution-aware correlation sets S% which track the non-zero correlation
terms of gate x in cycle ¢t. For reasons of simplicity, we also define the biased
correlation set §i ={1} U SL. In Step 2 of the verification process, we decide
on the initial correlation terms by providing labels for registers and memory
locations. For example, if we label register = as the first share s; of the secret
s, then its initial correlation set is SO = {s1}. Correlation terms of consecutive
gates are derived by propagating these labels through the whole circuit, using
the definitions of stable correlation sets, until the initial registers are reached
again. The register’s labels are updated accordingly and the propagation restarts.
This process is repeated for every cycle, until the execution finishes.

Table 1 shows the definitions of stable correlation sets S5 used by Coco.
Constants only correlate to the constant term 1. Negations only change the
sign of the coefficients in the Fourier expansion, so the correlation set stays the
same. Registers inherit the stable correlation set their input had at the end of
the last cycle. The stable correlation set of linear gates (XOR, XNOR) is computed
as the element-wise multiplication (®) of the correlation set of the gate inputs.
Similarly, the definition for non-linear gates is calculated as the element-wise
multiplication of the biased correlation set of the gate inputs.

Unlike Rebecca, our verification tool supports multiplexers. Therefore, in
Equation 1, we propose the Fourier expansion of multiplexer gates.

1 1 1 1
MUX F(c?a:b)= = —-b— - = 1
U (c?a:b) 2a—|— 2b 2ac—|— 2bc (1)
A detailed derivation of the coefficients is given in Appendix A2. Consequently,
the correlation set for multiplexers combines the stable correlation sets of all
inputs.

The resulting over-approximation S% is sound but not always tight. This
means that the stable correlation set contains at least all correlation terms with
non-zero coefficients, but might also contain terms that have a zero coefficient.
In other words, all real leaks are always detected, but sometimes leaks could
falsely be reported. Unlike Rebecca, COCO tightens the over-approximation and
circumvents the necessity to apply the full sets in some cases, which reduces the
amount of false positives. The propagation rules for gates which have at least one
public input can, depending on the concrete value of the input, be simplified by
substituting correlation sets with constants. The concrete values can be obtained
from the execution trace. For example, if there exists a mulitplexer ¢ 7 a : b
and we know that c is public and has the concrete value FALSE, the result of the
multiplexer will only correlate to terms in Sé,
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Register
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Figure 1.: Example of simplifications made to the propagation rule of an AND
gate in three consecutive cycles, exploiting execution-awareness.

Execution-Aware Transient Correlation Sets Hardware effects like transitions
and glitches cause information leaks, which cannot be captured by stable cor-
relation sets. Therefore, we introduce transient correlation sets T2 for a gate x
in cycle t and the biased representation ﬁ’é ={1}u T, T contains at least all
the correlations an attacker can observe throughout the duration of one cycle.
Additionally, it contains spurious terms that make efficient calculations easier
while still yielding an over-approximation, albeit a less tight one.

The definitions of transient correlation sets 7% are shown in Table 1. For
constants and negations, the definition of the correlation sets is identical to
the stable case. An attacker probing a register can learn the current stable
value, the old stable value, and their linear combination due to transition leakage.
Therefore, probing a register does not reveal any transient information, as registers
synchronize the circuit and do not change throughout a clock cycle. Non-linear
and linear gates leak the same amount of information in the transient case.
Glitches can cause a linear gate to forward either of its inputs because they do
not necessarily update simultaneously. Similarly, due to the transition from the
previous stable signal value to the current transient signal value, an attacker
can observe both, as well as their linear combination. The over-approximation
in Table 1 does not state this directly. Instead, this is implied by the transient
correlation sets for registers, which make sure that an attacker probing any gate
also sees the old stable value of that gate. Therefore, as S,tl_l C T¢, gates using
a as an input observe both old and new signal values of a. In the transient
case, COCO treats multiplexers similarly to linear and non-linear gates. Our
over-approximation just assumes that a multiplexer leaks all possible linear
combinations of the transient values of all of its inputs.

Just like stable correlation sets, transient correlation sets are also affected by
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concrete signal values obtained from the execution trace. However, glitches make
simplifications due to execution awareness harder and less effective. They are still
possible, as long as we keep track whether a given signal can cause a glitch or not.
We use a method similar to what was proposed by Thompson et al. [TM04] to
track the stability of a given signal. This method is summarized by the following
rules:

e Registers that have not changed their value during a transition from cycle
t — 1 to cycle t cannot produce glitches, as their signals are inherently
stable.

e If all inputs of a logic gate are stable, the output of the logic gate cannot
cause glitches either.

e Non-linear gates and multiplexers can still produce stable signals, even if
one of its inputs is unstable. This depends on the gate’s physical properties,
which can prevent glitches, e.g. AND gates with one unstable and one stable
FALSE input, OR gates with one unstable and one stable TRUE input.

The gate stability propagates through the circuit for any given clock cycle,
starting at registers and continuing until the stability of all gates is determined.
After computing which circuit gates produce stable signals, we use this to apply
simplifications to transient correlation sets using the same method as for stable
correlation sets.

Example of Execution-Aware Simplifications Consider an AND gate z = a A b,
where b is the output of a register and a is calculated by some combinatorial logic,
as shown in Figure 1. For simplicity, assume that the value of b is public, and that
the value of a, as well as the stable and transient correlation sets, do not change
throughout cycles n to n+ 2, i.e., S = SPH = §7+2 and TP = T2+ = 7012,

From the execution trace we know that b = 1 in cycle n and b = 0 in cycles
n+ 1 and n + 2. Knowing b allows us to apply the simplifications Sy = S}
and S;”rl = S;L+2 = {1}. Now consider the same circuit when glitches are
present, and assume that b = 1 was a stable signal in cycle n. In cycle n + 1,
it is possible that the signal from a arrives at = before the new value b = 0.
Therefore, the simplifications due to execution awareness cannot be applied and,
T+l — T — TP, However, in cycle n + 2, we can apply the simplification
because the value of b is stable and, thus, TP 12 = {1}.

3. Problems and Fixes in the IBEX Core

In this section, we first describe the RISC-V IBEX core, our target processor. We
analyze the RISC-V IBEX core using COCO to identify implementation details
that prevent the leakage-free execution of masked software implementations.
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Afterwards, we propose corresponding fixes, either directly in hardware, or as a
constraint for masked software implementations. The outcome of our analysis is
a secured hardware design of the IBEX core. We discuss secure options for data
memory in Section 4 and then verify the entire design in Section 5.

When executing a masked software implementation on IBEX, secret shares are
initially stored in the register file and the data memory. The instructions of
the program work on the shares by changing them and moving them through
the CPU and the memory system. All these actions cause potential leakage. In
order to analyze and detect these leakage sources, we work with a comprehensive
set of masked software implementations that includes (higher-order) masked
AND-gates, a second-order masked Keccak S-box, and a first-order masked AES
S-box implementation. All test programs are written in RISC-V assembly and
then executed on the IBEX core, producing a cycle-accurate execution trace. The
execution trace in combination with the exact storage location of the secret shares
(registers or memory locations) is then processed by Coco, which automatically
runs the verification and reports leakage sources by specifying the exact cycle and
gate in the netlist. We then manually inspect the gate in the netlist, introduce
the corresponding hardware fixes and re-evaluate the design until no leaks were
dectected anymore.

Our analysis has revealed several leakages caused by the IBEX core. First, Coco
has confirmed the typical problems of masked software implementations that have
already been identified by previous works, such as overwriting or successively
accessing shares that correspond to the same native variable [Bal+14; Bar+15;
PV17; She+21]. While fixing such problems in hardware would, in principle, be
possible, it would be very costly. We decided to accept these leakages and instead
write all our masked implementations in a way such that they fulfill the following
two constraints:

Clcore Shares of the same secret must not be accessed within two successive
instructions.

C2core A register or memory location which contains one share must not be
overwritten with its counterpart.

However, although these design principles prevent known leakage sources, COCO
has revealed many more leakages. In particular, it identified leakages in the
register file, the computational units (ALU, MD, and CSR) as well as in the
LSU. We now discuss all of these identified problems for the different components
of the CPU and present corresponding solutions in hardware to prevent these
leakages.



66 Chapter 3. Coco: Co-Design and Co-Verification of Masked Software

3.1. Targeted Processor Platform

The IBEX core? is a free and publicly available 32-bit CPU design that features a
two stage in-order single-issue pipeline that is divided into Instruction Fetch (IF)
and Instruction Decode/Execute (ID4+EX). Its performance is roughly compa-
rable to the ARM Cortex-M0. The main components of IBEX are the register
file, the Arithmetic Logic Unit (ALU), the Load-Store Unit (LSU), a unit for
multiplications and divisions (MD), the Control and Status Register (CSR) block,
and several functional units for processor control, including the decoder and
controller.

For our analayis we use IBEX core commit 863fb56eb166d. We configure
IBEX to use the RV32I instruction set and the C (compressed instructions), M
(multiplication/division) and Zicsr (control and status register) extensions. Other
features like physical memory protection and the instruction cache are disabled.

We select IBEX as the target core because it has a relatively simple microarchi-
tecture, which makes it easy to demonstrate COCO and explain the hardware fixes.
Although the core complexity is rather low, it still contains the most important
components which are part of every modern processor, for example the register
file. Additionally, the IBEX core has gained a lot of attention recently as beging
part of the PULP Platform [ETH] and the OpenTitan project [low19].

However, we want to stress that CoCcO can be used to analyze any other
processor, as long as the netlist is available in either Verilog or System Verilog
and the masked software implementations have a constant control flow. This
includes also larger RISC-V cores, for example the 32-bit CV32E40P (formerly
RI5CY) [Opea] and the 64-bit CVA6 (formerly Ariane) [Opeb], but also other non-
RISC-V processors, for example the ARM Cortex-M4. Note that the netlist does
not necessarily have to be open source. For example, users in industry to which
the netlist of the ARM Cortex-M4 was disclosed, could use Coco to perform
verification of ARM-based masked assembly implementations. Additionally, the
problems found in the IBEX core are conceptually the same in larger cores, since
the basic building blocks are the same. Therefore, the proposed solutions can
also be easily mapped to larger cores.

3.2. Register File

The register file of the IBEX core consists of 32 32-bit registers, labeled x0-x31,
where x0 is hard-wired to the value 0. Although there exist multiple options
of how concrete register files could be constructed, on a conceptional level, the
design will be similar to the sketch shown in Figure 2a. There are two read ports
(A and B), and a write port, that are controlled by 5-bit address signals. The 32
registers are connected to a multiplexer tree of depth five, whose selection signals
are the respective bit of the read address. If an instruction writes a value to a
register, the 32-bit write data either originates from the ALU, the CSR Unit,

Shttps://github.com/1owRISC/ibex
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Figure 2.: Original and secured register file of the IBEX core.

or the LSU. A multiplexer before each register controls if the register content is
updated, depending on the write-enable signal, which is derived from the address.

Problem: Switching Wires in the Multiplexer Tree The transition from one
secret share to another may be observable on a wire connecting two levels of the
multiplexer tree. This happens primarily whenever two secret shares are read in
consecutive cycles, but also when accessing registers unrelated to secret shares.
For instance, assuming that the secret shares are in registers x1 and x2, reading
register x3 in the first cycle and x4 in the second cycle causes the fifth bit of the
read address to switch from one to zero. An attacker observes leakage on the
output wire of the first LO multiplexer, which switches from x1 to x2.

Problem: Glitchy Address Signals The read and write address signals are not
guaranteed to be glitch-free since they come out of combinatorial logic. We
identify the transitions of the wires in the multiplexer tree as a source of leakage
because it can switch from the value of a secret share in the register to the data
written to any other register. Additionally, transitions from one secret share to
another can be observed on the output of the multiplexers before a register.

Problem: Unintended Reads The IBEX core reads data from the register file
in every instruction, even in cases were the current instruction does not require
any operands. For example, 1w x1, 5(x20) will result in a read to registers x20
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and x5 because bits 15-19 and 20-26 of an instruction are always interpreted as
operand addresses.

Solution: Register Gating All three described problems are difficult to address in
software since their effects often depend on the concrete hardware layout. A pure
software solution could eliminate the problem of unintended reads, but becomes
more complex as the length of a program grows and is completely unfeasible for
larger implementations. Software mitigations are insufficient to solve the problem
of glitchy address signals and transition leakage in the multiplexer tree. Therefore,
we fix this problem in hardware using a gating mechanism for each register, as
shown in Figure 2b. After each register, we place an AND gate, that takes the
register value as the first input operand. The second operand of this AND gate is
the register read address, encoded into a 32-bit one-hot signal, where each bit
represents the gate value for a single register. Consequently, the whole multiplexer
tree can be replaced by a simpler tree of OR gates. From a verification aspect, we
discuss this solution in Figure 1. In this concrete example, the one-hot encoded
enable signal is stored in the register while the combinatorial logic represents
the CPU register. Since at most one bit is set in the one-hot signal, at most one
register gate is opened, and either the correct register value or zero can be read
from the register file. This gating mechanism prevents the problem of switching
wires in the multiplexer tree, and unintended reads because we only enable gating
when the instruction requires a read. We prevent glitches on the one-hot signal
by computing it in the IF stage, and storing it in an intermediate register so that
it is guaranteed to be stable when it reaches the ID4+EX stage. We apply the
gating mechanism to both read ports. Likewise, register writes are also gated
with a separate pre-computed value in a one-hot register by placing an AND gate
before the write multiplexer.

3.3. Computation Units

Computation units such as the ALU, MD, and CSR are directly connected to
read ports of the register file. The results produced by them go directly into a
multiplexer, selecting the intended computation result for the register write port.
In other words, the IBEX computation units are always active, even when they
are not required by the current instruction.

Problem: Always-Active Computation Units Assume the b-bit secret s is shared
into two shares sg = (s0,1,...50,5) and s1 = (s1,1,...51,), such that s = sg @ s1.
Traditionally, sg and s1 are both stored in one register each, but there are other
ways the bits of shares can be stored. For example, in 2017, Barthe et al. [Bar+17]
proposed parallel implementations of higher-order masking schemes, where sg
and s; are distributed over b registers r1,...r,. In their scheme, the first bit of
T stores sg 1, while the second bit stores s7 1.
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The standard IBEX core does not allow leakage-free implementations of such
masking schemes since parts of ALU, MD, and CSR units are always active
and combine the bits of each read port signal. More concretely, when using a
parallelized masking scheme, the execution of a simple bit-wise and instruction
leaks since, e.g., the adder unit combines the bits from the first input operand,
and thus might leak s 1 © s1,1.

Solution: Computation Unit Gating The problem of always-active computation
units is very hard to mitigate in software. Therefore, we use a gating mechanism
in hardware similar to the one in the register file. More concretely, we use
additional AND gates at the inputs of each computation that are connected
to respective enable bits, which are precomputed in the IF stage and depend
on the next instruction. This also has the other positive side-effect that the
reduced circuit activity results in an overall lower power consumption of the
CPU, reducing the overall switching activity in the circuit.

3.4. Load/Store Operations

The LSU implements a state machine that is responsible for communicating with
the external memory. The state machine mainly handles the correct interaction
with data/instruction memory including misaligned memory accesses.

Problem: Hidden LSU State Accessing 32-bit words at addresses that are
not 32-bit aligned always results in two consecutive fetch operations of the
corresponding memory words. An internal register is then used to buffer the first
memory word until the second memory word is available. This internal buffer is
only updated once a misaligned memory access occurs. Programs can, therefore,
cause unintended leaks by loading a share into the LSU buffer. The value in this
buffer will then potentially be combined with all values that traverse the LSU
from this time on.

Solution: Clear Hidden LSU State We can avoid this leakage source in software
by performing a misaligned memory access to a non-secret value, which clears
the LSU buffer. However, we solve this problem in hardware since it does not
produce any additional overhead, and no additional software design constraints
are necessary. A memory access executed by the IBEX core requires at least two
clock cycles. In the last cycle, the read memory word is given back to the LSU.
In fact, clearing the hidden LSU buffer in the first cycle, i.e., at the beginning of
a memory access, eliminates this leakage source.

3.5. Hardware Overhead

In order to analyze the additional hardware overhead of the security fixes imple-
mented in our design, we compare the chip area in kGE as well as the maximum
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Table 2.: Area consumption of the IBEX core in kGE. The area consumption of
the whole design (Total) and parts (register file, IF stage) are reported.
The area consumption of the ID+EX stage is omitted because there is
no overhead. The total area overhead of the design with all security
fixes enabled is around 10%.

Design Total Register File IF stage
Total Overhead | Total Overhead | Total Overhead
#1 Base design 20.2 - 9.8 - 3.0 -
#2 BD + secure register read | 20.5 1.5%| 94 —41%| 3.6 29 %
#3 BD + secure register write| 21.9 84%| 11.0 122%| 3.4 13%

#4 BD + secure register read-| 22.1 9.4%| 10.7 9.1% 4.0 33.3%
/write

#5 BD + disabled | 20.4 0.9% 9.8 0% 3.1 3.3%
MD/ALU/CSR unit
#6 Secured design 22.2 9.9%| 10.7 9.1%| 4.0 33.3%

operating frequency of the IBEX base design with our secured design. We use Ca-
dence Genus Synthesis Solution 19.11-s087_1 for synthesis. The used technology
is f130LL.

We disable the ungroup_ok option for all modules in the core, which preserves
the hierarchy of the design. This allows us to investigate the area consumption
of every submodule on its own, although it might prevent certain optimizations.
We can also exclude the area consumed by SRAM and the instruction ROM from
the analysis since they do not belong to the IBEX core.

Table 2 shows the area consumption of the IBEX core in different configurations.
The unmodified IBEX core (design #1) requires in total 20.2kGE. Enabling
secure register reads by gating (design #2) increases the total chip area by
1.5 %. This is mainly due to the additional two 32-bit registers required in the
IF stage. The size of the register file even decreases, because OR gates replace
the multiplexer tree. However, register writes introduce more area overhead due
to the additional AND gates. In design #b5, main overhead comes from the four
1-bit gating-registers in the IF stage and the AND gates used for gating in the
total core overhead. In summary, all our security fixes increase the total area of
the IBEX core by 9.9 %.

We do not expect a major latency overhead of our modifications. In the core,
we mainly shifted the address decoding from ID to IF stage, which might slightly
increase the latency of the IF stage. The same holds for the ID stage, where the
multiplexer tree is replaced by a tree of OR gates and a layer of additional AND
gates. The computation unit gating and clearing the hidden LSU state will also
affect latency in the ID stage. Latency considerations according to the SRAM
are discussed in Section 4. However, we keep a detailed investigation as an open
research question for the future.
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Figure 3.: Two options of adding SRAM to our IBEX core.

4. Problems and Fixes in Data Memory

In this section, we discuss how data memory, more specifically SRAM, can be
integrated into our secured IBEX core so we can formally prove the leakage-free
execution of masked software implementations for the entire system. Typically,
microprocessors such as ARM Cortex-M devices feature a Harvard architecture,
which means that dedicated memory modules are used for data/instruction
memory (based on SRAM/Flash technology). Especially on low-end devices,
without sophisticated branch prediction and cache architectures, this design
choice improves overall performance since simultaneous memory accesses to both
memory modules are possible. For our purposes, dealing with instruction memory
is comparably easy since instructions only dictate the data/control flow. They
are not directly involved in any computations and are thus not labeled as shares
in our verification. Hence, from a hardware perspective, we do not need to take
any special precautions when adding instruction memory to our IBEX core.

The situation becomes more complicated for data memory, as it plays an impor-
tant role for masked software implementations that cannot hold all intermediate
values of a computation in its register file. At first glance, one could consider
applying the same design strategy, as used for the register file (cf. Figure 2b),
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also to the data memory. However, one-hot encoding does not scale well with
larger address spaces and would result in impractical hardware overhead.

Consequently, we need to discuss options that keep the hardware overhead
reasonable while still allowing correctness proofs for the entire CPU design. In
the following, we discuss two such options that utilize partially one-hot encoded
address signals and result in different trade-offs between hardware overhead and
the number of rules that need to be followed by masked software implementations.
The first option utilizes one-hot encoding in the upper address bits, i.e., for
selecting SRAM blocks, and does not make any assumptions on the inner workings
of the SRAM blocks. The second option describes how one-hot encoding in the
lower address bits can be used to build “glitch-free” SRAM blocks that can then
easily be added to our IBEX core without any hardware overhead.

4.1. MSB One-hot Address Encoding

The first viable option of using partial one-hot encoding for data memory involves
using one-hot encoding for the higher bits of the address signal, as illustrated in
Figure 3a. In this example, we consider the case of a low-end 32-bit device with
32KB of RAM that can be addressed on word granularity with 13-bit address
signals (i.e., using bits 2 to 14 from the original 32-bit signal). First, we extract
13 bits from the original 32-bit address signal. This 13-bit signal is then further
split up into a 5-bit block address (later expanded to a 32-bit one-hot signal)
and an 8-bit word address for selecting a word within one SRAM block. This
design choice ensures that no glitches can occur across SRAM blocks, yet they
could still occur between the words of a single SRAM block. More concretely,
when considering a masked software implementation that operates on a secret
s, represented by the shares s = s; @ s2, then our construction results in the
following software constraints for SRAM usage:

Clsram Storing both, s; and so, in separate SRAM blocks is fine as long as they
are not accessed in immediate succession.

C2sram Storing s; and s within the same SRAM block can result in potential
leaks and thus needs to be avoided.

The hardware overhead of utilizing one-hot encoding in the higher address bits
is mainly determined by the additionally needed one-hot encoder circuitry and
one 40-bit register. On the other side, when comparing Figure 3a to Figure 3b,
one can also see that the MUXx-tree, used for selecting the SRAM output, can be
replaced by a simpler, and thus cheaper OR-tree. Overall, and when compared
to the typical area of SRAM blocks, we do not expect any noticeable hardware
overhead of this construction. From a latency perspective, there is no delay as
long as the one-hot encoding can be performed in the cycle before the actual
lookup. We expect this to hold for most designs.
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active word. The bit line BL; connects bits at location ¢ from all words.
The negated BL signal, together with the differential sense amplifier
(SA), help achieving stable output values faster.

4.2. LSB One-hot Address Encoding

Another option of utilizing partially one-hot encoded address signals consists of
using one-hot encoding only for certain less significant bits of the address signal,
as illustrated in Figure 3b. In this case, the 13-bit address signal is divided
into an 8-bit block address (for specifying the SRAM block) and a 5-bit word
address that is later expanded to a 32-bit one-hot signal (for specifying a word
within an SRAM block). This construction will, similarly to the register file, as
discussed previously (cf. Section 3.2), eliminate glitches between words of the
same SRAM block, except for the case when they are accessed in immediate
succession. Consequently, when operating with the shares s; and sz, masked
software implementations need to follow the following constraints:

Clsram Storing both, s; and s2, within the same SRAM block is fine as long as
they are not used in immediate succession.

C2sgam Storing sy and sg in different SRAM blocks can result in potential leaks
and thus needs to be avoided.

When looking at the standard design of SRAM cells in Figure 4, one can observe
that the word line (WL) needs to be a one-hot encoded signal while each bit
line (BL) is connected to one bit location of all words within one SRAM block,
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thereby essentially functioning as an OR gate. On a conceptional level, this
is similar to the construction in Figure 3b, were we use additional registers to
ensure a stable WL signal.

In other words, if a given SRAM block has a layout that already achieves
internally stable WL signals in practice then no hardware modifications are
required and an ordinary MUX-based output selector can be used. Of course, it
is generally not easy to tell if, or to what extent, an off-the-shelf SRAM block
fulfills this requirement since they are full custom and partially analog blocks.
In a typical SRAM row decoder design, an individual WL signal is derived by a
single, wide NOR gate with a fan-in that is equal to the number of bits in the
word address (see Section 2.7 in [PS08]). Roughly said, if the address signal is
stable, then the low combinatorial depth of the row decoder likely only causes
small glitches that could then be compensated with the custom circuit layout.
Besides that, stable WL signals are also desirable from a power and latency
perspective since (1) each WL signal can drive up to 64 transistors, glitches can
hence significantly impact the power profile, and (2) the time until the differential
sense amplifier (SA) output is stable strongly depends on the presence of glitches
on the WL signals, which in return reduces the maximum operating frequency.

5. Co-Verification with Coco

In this section, we discuss the details of the workflow of CocCo, our verification
tool, and report the runtime effort for each step. We evaluate COCO using several
benchmarks, including first-order and higher-order masked implementations
executed by the secured IBEX processor and show that Coco can efficiently verify
those. We run all our evaluations using a 64-bit Linux Operating System on an
Intel Core i7-7600U CPU with a clock frequency of 2.70 GHz and 16 GB of RAM.
Additionally, we practically evaluate our design using a first-order t-test on a
SAKURA-G FPGA evaluation board.

5.1. Verification Flow

The verification flow implemented by COCO consists of four steps, as illustrated
in Appendix B. The four steps are divided into three preprocessing steps (1)-
(3), and the final verification step (4). The preprocessing steps are needed to
join the masked assembly implementation of the cipher with the IBEX System
Verilog sources into one single VCD execution trace, which is then used during
verification. For all our experiments, we use the secured IBEX processor, which
consists of the secured core and memory, as described in Sections 3 and 4. In
detail, the verification flow is as follows:

(1) The masked implementation of the target cipher is compiled using the 32-
bit RISC-V assembler. The resulting binary file is then converted into a
Verilator [Sny22] testbench.
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(2) We use Yosys [Woll6] to parse the hardware model, a set of System Verilog
files, of the secured IBEX processor. Yosys (Yosys Open SYnthesis Suite) is
an open-source framework which synthesizes and optimizes the model and
produces a netlist of the circuit in Verilog format and as a graph, with gates
as nodes and wires as edges.

(3) We run Verilator using the testbench created in (1) and the circuit netlist
created in (2). It produces an execution trace of the masked cipher executed
by the secured IBEX processor in VCD format.

(4) In the last step, the actual verification is done using a Python script. The
script’s input are the circuit graph, the VCD execution trace and the verifi-
cation configuration. The verification configuration consists of the register
label file, which specifies which registers or memory locations contain shares
of a secret and which contain fresh randomness, the verification mode (stable
or transient), the number of cycles which should be verified and the order
of the masked cipher. Finally, the verification process outputs whether the
execution is leakage-free or not, together with the cycle and gate number in
which the leakage occurred.

Since the System Verilog support of Yosys is limited, we use the Symbiotic
EDA Edition of Yosys (0.8+472), which works with a frontend of Verific in order
to support System Verilog. Verilator 4.010 is used to create the execution traces.
A Python script is used to create the SAT formulas, which are later solved by
CaDiCalL 1.0.3.

In our experiments, we cannot work with real SRAM blocks for data RAM.
Usually, one would use pre-build and pre-configured SRAM modules and instan-
tiate them with a macro in the Verilog code. However, in that case, we can
neither trace the behavior of the block during execution nor label memory cells.
Therefore, we create a Verilog hardware model according to the LSB one-hot
address encoding scheme, as described in Figure 3b, which behaves like a real
SRAM module. The module is divided into 16 blocks consisting of 8 32-bit
words each. Furthermore, we configure IBEX core to use 1kilobyte of instruction
memory for all test cases except the DOM AES S-box, where we use 4 kilobytes.

5.2. Evaluation of Preprocessing Steps (1) - (3)

CoCO’s preprocessing steps aim at preparing all resources for the verification. The
runtime of the testbench creation (1) takes about 0.04s for all our experiments.
The runtime of the tracing part (3) is determined by the circuit size and number
of cycles it needs to execute the masked software implementation with IBEX and
takes 0.003s per cycle. The parsing step (2) has to be run only once for the
whole secured IBEX and takes about 7min and depends mostly on the circuit
size, including the size of instruction and data memory.
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Table 3.: Verification of masked software implementations on secured IBEX using
Coco. ¥ indicates intentionally broken implementations. Testcases
with reg. omit memory accesses and perform all computations using
registers. Runtimes stem from single-threaded executions on an Intel
Core i7 notebook CPU with 16 GB of RAM.

Name Runtime Leaking Input Fresh Verif. Runtime
(cycles) Cycle Shares Randomness | Stable Transient
First-order
DOM AND reg. [GMK16] 13 - 4 X 32 bit 32 bit 3s 11s
DOM AND reg.%X 13 12 4 x 32 bit 32 bit 2s 12s
DOM AND [GMK16] 39 - 4 x 32 bit 32 bit 9s 32s
ISW AND reg. [ISWO03] 13 - 4 x 32 bit 32 bit 5s 13s
TI AND reg. [NRROG6] 17 - 6 x 32 bit - 5s 17s
Trichina AND reg. [Tri03] 19 - 4 X 32 bit 32 bit 5s 19s
DOM Keccak S-box reg. [GSM17] 89 - 10 X 32 bit 5 X 32 bit 25s 2.6 m
DOM Keccak S-box reg.% 88 70 10 x 32 bit 5 X 32 bit 20s 2m
DOM Keccak S-box [GSM17] 219 - 10 X 32 bit 5 X 32 bit 1m 3.9m
DOM AES S-box [BP12] 1900 - 16 x 16 bit 34 X 16 bit 18m 4.75h
Second-order
DOM AND reg. [GMK16] 34 - 6 X 32 bit 3 X 32 bit 9s 43s
DOM Keccak S-box [GSM17] 474 - 15 x 32 bit 15 x 32 bit 3m 1.3h
Third-order
DOM AND reg. [GMK16] | 65 - | 8x32bit  6x32bit] 44s 2.5m

The result of (2) is a netlist of the secured IBEX processor in graph repre-
sentation. The IBEX core, excluding data and instruction memory, consists of
almost 27000 gates. It is important to note that our hardware design is orders
of magnitudes larger than designs considered by other verification tools. For
example, Rebecca [Blo+18] performs verification on hardware circuits consisting
of at most 200 registers and 3000 non-linear gates, while maskVerif [Bar+19] and
Silver [KSM20] consider circuits with up to 300 and 1000 probing positions.

5.3. Evaluation of the Verification Step (4)

The verification results of the masked software implementation run on the secured
IBEX processor, and their verification runtime are shown in Table 3. The table
states the testcase in RISC-V assembly and how many cycles the execution takes.
We report the number of labels provided by the user, divided into shares and fresh
randomness. It is very important to note that each of these shares or random
values is either 32 bit or 16 bit wide. Other verification methods often argue that
a hardware circuit computing a masked cipher treats each bit in the same way,
so it is sufficient to view a 32-bit register as one single share. However, in the
IBEX processor, this is not the case, since logic in different computation units
tends to treat each register bit differently. Therefore, we must label and check
all 32 bits individually.

The selection of masked circuits covers different masked GF'(2) multipliers
(AND gates), including the Domain-Oriented Masking (DOM) AND, Ishai-Sahai-
Wagner (ISW) AND, Threshold Implementation (TI) AND and Trichina AND,
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but also larger implementations like the Keccak S-box and the AES S-box.
Furthermore, we show that it is feasible to verify second-order and third-order
implementations. Our benchmarks focus on the verification of non-linear parts
of cipher implementations, similar to Rebecca, maskVerif and Silver, although
the linear parts could easily be added to the implementation. COCO verifies all
tested first-order masked multipliers in transient mode in less than 20s. Larger
testcases, for example, the DOM AES S-box, can be verified in a few hours.

In addition, we want to point out that errors in implementations can be found
efficiently. Implementations marked with ¥ refer to implementations which
cause side-channel leakage when executed with the secured IBEX because (1)
masking is either done incorrectly on the algorithmic level, or (2) masking is
correct on the algorithmic level but software constraints are not satisfied. DOM
AND reg.® is a first-order DOM multiplier based on [GMK16], in which fresh
randomness is added to the shares too late. The stable verification reports an
error in cycle 12 in a gate belonging to the ALU. DOM Keccak S-box reg.X,
based on [GSM17], does not follow constraint C2core. This flaw is reported by
transient verification in cycle 70 and appears directly on the read port of the
register file. The verification runtime of an insecure implementation is similar to
that of a secure implementation because the verification terminates as soon as
the leakage check for any share fails.

The total verification runtime can be split into the construction and solving
of the SAT formula. In our experiments, solving the SAT formula requires
considerably less time than constructing the SAT formula, which is linear in the
number of gates in the netlist, i.e., the number of registers and the size of the
combinatorial logic between these registers. Hence, for moderate increases of the
problem size, for example through larger cores having multiple ALUs or additional
pipeline stages, we expect the verification time to increase linearly. Compared to
Rebecca, which is limited to the verification of pure hardware implementations,
the hardware/software co-verification approach of COCO employs more aggressive
optimization measures by simplifying correlation sets through concrete values
from the execution trace, and can therefore more easily deal with scalability
issues.

5.4. Practical Evaluation

The purpose of COCO is to verify the security of masked software implementations
at the level of gate-level netlists of the underlying hardware. The main application
for the tool are ASIC designs of processors, where Coco allows to perform a
verification of the final netlist of a design before tape-out. The fabrication of an
ASIC is clearly beyond the scope of this paper. However, in order to show that
our approach indeed leads to secure implementations in practice, in this section
we map a sample of a verified netlist to an FPGA and perform an empirical
analysis.

Several things need to be considered when doing this mapping. When syn-
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Figure 5.: T-test scores of the original (left) and the secured (right) register file
during the execution of a first-order DOM Keccak S-box using 100 000
power traces.

thesizing hardware designs for FPGAs, the resulting netlist does not contain
typical CMOS building blocks but rather, among others, lookup tables (LUTSs)
that are configured to match the original hardware design on a logical level but
not on netlist-level. This is especially problematic since FPGA synthesis tools
tend to merge multiple logic gates into single, typically 3 to 6-bit LUTs. The
resulting hardware will still be equivalent from a pure logic perspective, however,
certain characteristics such as the strict separation of registers in our secured
register file can get lost in the translation process. Therefore, we manually map
the ASIC netlist of the original and the secured IBEX core to FPGA netlists
that match the ASIC netlists as closely as possible. This step involves, amongst
others, ensuring that every logic gate is represented by a single dedicated LUT.
Since this process is mostly manual, and thus very time consuming, we decided
to focus our leakage assessment only on the most important parts of the secured
IBEX which are needed to execute cryptographic implementation: the register file
and a simple ALU.

In our experiments, we compare the execution of a masked Keccak S-box
computation using (1) the basic register file as it can be found in the original
IBEX core, (2) the secured register file including (one-hot encoded) gated reads
and writes (cf. Section 3.2). Following the guidelines of Goodwill et al. [Goo+11],
we use Welch’s t-test to show practical first-order protection of first-order masked
software implementations. The basic idea is to measure the significance of the
difference of means of two distributions by constructing two trace sets, one
with random inputs and one with constant inputs. In the case of a masked
implementation it means that the secret, native inputs are fixed, while the masks
and shares are generated randomly. The null-hypothesis is that both trace sets
have equal means, i.e., they cannot be distinguished from each other. The null-
hypothesis is rejected with a confidence greater than 99.999% if the absolute
t-score t stays below 4.5.

For our experiment, we execute the register-only (reg.) variant of the DOM
first-order masked Keccak S-box, as introduced in Table 3. In order to measure
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the power consumption, we use the SAKURA-G board [GIS14] equipped with
a Xilinx Spartan-6 FPGA. We connect the board to a PicoScope 6404C at
312.5 Ms/s sampling rate, the IBEX components operate at a clock frequency of
8 MHz.

Figure 5 shows the results of our leakage assessment using 100 000 traces. The
left presents the t-test results for the original, unprotected register file during the
execution of the first-order DOM Keccak S-box. As expected, the t-test shows
significant peaks over the 4.5 border which indicates first-order side-channel
leakage. The right presents the t-test results for the same code when running on
our secured version of the register file. Here, the leakage assessment reveals no
significant peaks, which indicates that our secured design works as expected.

6. Conclusion

In this paper, we presented COCO, the first tool for co-design and co-verification
of masked software implementations on CPUs. Coco takes a CPU netlist,
together with a masked assembly implementation, and then formally verifies
its leakage-free execution down to the gate-level. While previously presented
software verification approaches mainly work on algorithmic level and model only
a few select CPU side-effects, Coco0 can detect any CPU design aspect that could
reduce the protection order of masked software implementations.

We show the practicality of our work, by analyzing the popular 32-bit RISC-V
IBEX core with Coco. We detect various design aspects that reduce the protection
order of our tested software implementations and propose respective fixes, mostly
in hardware. Our resulting secured IBEX core has an area overhead of about 10%,
the runtime of software on this processor is largely unaffected, and the formal
verification with CoCo of an, e.g., first-order masked Keccak S-box running on
this core takes around 156 seconds. We demonstrate the effectiveness of the
proposed design modifications in a practical evaluation on an FPGA.

Acknowledgements

We thank the anonymous reviewers for their valuable suggestions and comments,
which helped in improving the paper. This work was supported by the TU Graz
LEAD project ”Dependable Internet of Things in Adverse Environments”, and
the Austrian Research Promotion Agency (FFG) via the K-project DeSSnet,
which is funded in the context of COMET — Competence Centers for Excellent
Technologies by BMVIT, BMWFW, Styria and Carinthia, via the FERMION
project (grant nr 867542), and via the project IoT4CPS. This work has received
funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 681402).



80 Chapter 3. Coco: Co-Design and Co-Verification of Masked Software

Appendix A. Fourier Expansions of Boolean
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Figure 6.: Verification flow of Coco. The workflow consists of four steps, the
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In the end, COCO either confirms that the execution is secure or points
out the flaw(s) in a specific gate, in a specific cycle.
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Abstract Physical side-channel attacks like power analysis pose a serious threat
to cryptographic devices in real-world applications. Consequently, devices im-
plement algorithmic countermeasures like masking. In the past, works on the
design and verification of masked software implementations have mostly focused
on simple microprocessors that find usage on smart cards. However, many other
applications such as in the automotive industry require side-channel protected
cryptographic computations on much more powerful CPUs. In such situations,
the security loss due to complex architectural side-effects, the corresponding
performance degradation, as well as discussions of suitable probing models and
verification techniques are still vastly unexplored research questions.

We answer these questions and perform a comprehensive analysis of more
complex processor architectures in the context of masking-related side effects.
First, we analyze the RISC-V SweRV core — featuring a 9-stage pipeline, two
execution units, and load/store buffers — and point out a significant gap between
security in a simple software probing model and practical security on such
CPUs. More concretely, we show that architectural side effects of complex CPU
architectures can significantly reduce the protection order of masked software,
both via formal analysis in the hardware probing model, as well as empirically
via gate-level timing simulations. We then discuss the options of fixing these
problems in hardware or leaving them as constraints to software. Based on these
software constraints, we formulate general rules for the design of masked software
on more complex CPUs. Finally, we compare several implementation strategies
for masking schemes and present in a case study that designing secure masked
software for complex CPUs is still possible with overhead as low as 13%.

1. Introduction

Cryptographic primitives are primarily designed to withstand mathematical
attacks in a black-box setting. However, as soon as these primitives are deployed
in the real world, they find themselves in a grey-box setting in which an attacker
may observe additional physical side-channel information, such as instantaneous
power consumption that can be used to extract secrets like cryptographic keys.
One particularly powerful example of such a side-channel attack, differential
power analysis (DPA), was introduced in 1999 by Kocher et al. [KJJ99]. In
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this type of attack, the adversary observes a device’s power consumption while
encrypting several known plaintexts, and can then extract sensitive information
using statistical analysis.

The typical approach of protecting against these attacks is to implement
algorithmic countermeasures, like masking [Bar+17; Bel+17; Cnu+16; GM17;
ISWO03; Rep+15]. The main idea of masking is to make computations independent
from the actually processed data. For this purpose, masking schemes split input
and intermediate variables of cryptographic computations into d + 1 random
shares such that observations of up to d shares do not reveal any information
about the native (unmasked) value. The security of such dth-order protected
computations relies, amongst others, on the assumption of independent leakage,
i.e., independent computations result in independent leakage [Ren+11]. However,
many academic works in the past have shown that such assumptions are typically
not satisfied on ordinary CPUs, for example, memory transitions in the register
file or RAM can leak the Hamming distance between two shares [Bal+14; Cor+12;
Gro+16; MMT20; PV17]. In general, one can work around these problems using
two different strategies. Works like [Bar+21; Gig+21; Gro+16; PV17] show that
one can design dedicated masked software implementations that take specific
characteristics of the microprocessor into account, e.g., by never processing shares
of the same variable in immediate succession. Alternatively, one can follow the
lazy engineering approach, accept a certain loss of masking protection order due to
architecture side-effects and compensate for that by using a protection order that
is higher than theoretically required. This strategy was more formally analyzed
by Balasch et al. [Bal+14] who also formulated the so-called order reduction
theorem. This theorem states that, when considering simple register-based CPU
architectures, the security of a dth-order masked software implementation reduces
to L%J-th order if transition-based leakage is taken into account.

Building efficient and correct masked software implementations is generally
difficult since one either needs to (1) carefully patch implementations for specific
microprocessors [Bar+21; Gro+16; PV17], or (2) invest in masking orders that
are a lot higher than required [Bal414]. In both cases, the runtime of the resulting
masked software implementations is significantly increased and subsequent man-
ual leakage assessments are needed to confirm that the performed modifications
have the desired effect, which is a quite labor-intensive and error-prone task. This
situation becomes only ever more difficult with increasing processor complexity.
For example, the effects of multiple ALU pipeline stages, forwarding logic, super-
scalar building blocks, caches, and complex logic for handling loads/stores on
masked software implementations have not been analyzed in this detail before.
One reason for that might be the sheer complexity of application-level processors
that usually consist of superscalar building blocks and multi-stage pipelines.
On such processors, identifying and understanding masking related side-effects
can barely be done manually anymore. Here, automated analysis methods that
can give concrete conditions under which masked software implementations can
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guarantee a certain protection order on such CPUs are more relevant then ever.

In this context, a recent work by Gigerl et al. [Gig+21] studies the simple
IBEX core with CocCoO, a tool that can verify the correct execution of masked
software implementations on given CPU netlists, while considering all possible
architectural side effects. Simply speaking, COCO treats an entire CPU design
as a hardware circuit and then tracks all the shares of executed masked soft-
ware implementations over several cycles using methods that are inspired by
Rebecca [Blo+18]. One result of their analysis is a slightly modified secured
IBEX core on which masked software implementations can preserve their theoretic
protection order in practice if a few simple software constraints are followed.
While this result is certainly interesting for applications like smart cards where
low computing power is sufficient, many other IoT or automotive use cases require
the usage of significantly more powerful processors. This raises a number of
questions about the performance, as well as the theoretic and practical security
of masked software on more complex CPUs.

Our contribution We answer these questions by providing the following contri-
butions:

o We generate several generic higher-order masked cryptographic software
implementations using Tornado and show with Coco that there is little
hope that such implementations can even provide 1st-order protection on
more complex CPU cores. We demonstrate this based on the dual-issue
9-stage RISC-V SweRV core.

e In addition to the formal analysis of COCO, we perform gate-level simu-
lations to demonstrate that architecture-based glitch effects are visible in
practice and reduce the security of masked software by multiple orders.
This points out a significant gap between security in the simple software
probing model and practical security, and further motivates the verification
of masked software on concrete CPU netlists in a more hardware focused
probing model.

e We then further analyze the components of SweRV that do not exist in
simpler cores, identify new problems, and discussed possible solutions in
software or hardware.

e Based on this analysis, we formulate more general rules for designing masked
software that takes into consideration properties such as the pipeline length,
the amount of execution units, or architectural buffers. We also present
arguments why relying on the lazy engineering approach alone, as proposed
by [Bal+14], does not seem viable anymore in case of more complex CPUs.

e Finally, we present a case study that compares how efficiently our derived
software constraints can be met with different implementation strategies.
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Maybe somewhat surprisingly we show that, with knowledge about a
processors netlist, one can build secure and efficient masked software for
SweRV-like cores with overhead as low as 13%.

Outline In Section 2 we cover relevant background on masking and the verifica-
tion of masking, including the basic working principles of Coco and Tornado. In
Section 3, we describe the evaluation setup for the analysis of more complex CPUs
with CoCo, present some initial verification results and describe the significance
of these in a practical evaluation. In Section 4, we present a detailed analysis of
SweRV architecture, describe all hardware components that can pose problems
to masked software implementations and propose viable solutions. In Section 5,
we list the generic software constraints and evaluate their overhead in Section 6.
We conclude our work in Section 7.

Open Source We plan to publish both, our modified SweRV core, as well as the
corresponding software implementations that are used in this paper on github .

2. Background
2.1. Masking

Masking has become one of the first-choice measures to defeat power-analysis
attacks on algorithmic level. In general, masking is a secret-sharing technique
which splits intermediate values of a computation into d+1 shares. The shares are
uniformly random, such that an attacker who observes up to d shares cannot infer
any information about the underlying native value. A dth-order Boolean masking
scheme splits a native variable s into d + 1 random shares sg ... sq, such that
$=80B...P sq. The values sg...s4_1 are chosen uniformly at random while
54 =250D ... D sq—1 D s. Consequently, each share s; is uniformly distributed
and statistically independent of the native value s.

Implementing linear functions when designing masked cryptographic imple-
mentations is trivial, as they can simply be computed on each share individually.
However, non-linear functions (S-boxes) are not as simple, since computations
involve multiple shares of a native value at the same time, which is more difficult
to implement in a secure and correct manner. Therefore, the main interest
in literature lays on masked implementations of non-linear functions [Bar+17;
Bel+17; Cnu+16; GM17; GMK16; ISW03; Rep+15]

2.2. Formal Verification of Masking

In general, masked implementations must ensure that each intermediate value of
a computation is statistically independent of any native values. The verification

lhttps://github.com/barbara-gigerl/sw-masking-swerv
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of this property is usually done with the help of a security model that specifies the
abilities of an attacker. Typically, it is assumed that the ability of the attacker
is to place a certain amount of probes in a computation, that allow monitoring
concrete values at those locations.

Formal Verification of Hardware Implementations. The classical probing model
by Ishai et al. [ISWO03] is the most commonly used security model for masked
hardware circuits and it’s accuracy in modeling real world attacks has been
confirmed by many works [Fau+10; RP10]. Here, an attacker is allowed to place
up to d probes at any location in a circuit, which can be used to observe the
corresponding gates/wires permanently. A masked hardware implementation is
considered dth-order secure if an attacker cannot learn any information about
the native values by combining all d observations. Examples of tools that can
verify classical probing security for cryptographic hardware implementations
are are REBECCA [Blo+18], Silver [KSM20], and maskVerif [Bar+19]. These
tools are mainly tailored to the verification of masked hardware (ASIC/FPGA)
implementations. maskVerif does offer some support for software implementations
but (1) can only deal with code that is written in a special intermediate language,
and (2) only considers simple CPU side-effects such as register overwrites.

Formal Verification of Software Implementations. On software side, the research
community has also published many methods and tools to automatically generate
or verify masked software implementations [Bar+15; Bar+16; Bay+13; EWS14;
Mos+12; Zha+18]. More recently, Belaid et al. proposed Tornado [Bel4-20], a
tool that takes a high-level description of an unmasked cryptographic function,
generates a corresponding (any-order) masked C implementation, and verifies
its probing security. Tornado’s verification itself is based on tightPROVE+, an
extension of tightPROVE [Bel+17]. tightPROVE+ performs the verification of
masked software in the register probing model. This model allows an attacker to
place probes on individual words of a processor’s register file, and to use them
for one cycle each during the execution of a masked software implementation.
Hereby, it is assumed that the probed registers cause independent leakage, in
other words, no additional potential side effects of a processors architecture, such
as glitches or register overwrites, are considered [Ren+11].

More precise verification tools, that e.g. also cover transition leakage have
been presented in [Ath+20; Bar+21; WSW19], while with Coco, Gigerl et al.
have recently presented a tool that can verify the correctness of masked software
implementations while considering possible architectural side effects of a given
CPU netlist [Gig+21].

2.3. Coco

Coco is a tool for the co-design and co-verification of masked software implemen-
tations on CPU netlists [Gig+21]. It formally verifies the security of (any-order)
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masked assembly implementations that are executed on concrete CPUs, defined
by gate-level netlists. COCO’s verification strategy is inspired by Rebecca but
extended in a way such that the verification of masked software, when running on
hardware, is converted into a pure hardware verification problem. This involves
not only the addition of control-flow awareness but also several performance
improvements since entire CPUs are usually significantly larger designs, when
compared to pure hardware implementations of cryptographic functions. Coco
does not only capture transition-based effects, but in principle any glitch-related
hardware side-effects that can be derived from a CPU netlist. This is also for-
malized in the so-called time-constrained probing model, in which an attacker can
use each probe to measure any specific gate/wire for the duration of one clock
cycle that can be chosen independently for each probe.

Verification Flow In the following, we briefly outline the workflow of Coco,
broken into multiple steps. Steps A and B explain how the execution of software
can be combined with an otherwise purely hardware-focused verification method.
Step C then describes the application of COCO in a bit more detail.

A. Yosys [Woll6] is used to parse the given CPU design into a gate-level netlist.
The masked assembly implementation together with the netlist is then
given to Verilator [Sny22], which produces a cycle-accurate simulation of
the execution in form of an execution trace. The execution trace contains
concrete values of all CPU control signals during the software execution.

B. Registers or memory locations in the CPU netlist receive annotations
(labels) that indicate the location of shares and randomness at the start of
the software execution.

C. The CPU netlist, execution trace, initial labeling and desired verification
order is given to the verifier, which propagates the labels through the CPU
netlist, for as many cycles as the software execution takes. In case Coco
detects that a specific gate in the netlist leaks information about a native
value (by observing a combination of shares of the same native value), e.g.
due to implementation mistakes or architectural side-effects, the exact gate
in the netlist and the execution cycle is reported as a leak. For a more
detailed description of this verification method we refer to the original
publication [Gig+21].

2.4. RISC-V SweRV Core

The SweRV processor family [Ted19] was first introduced by Western Digital
in 2019 and designed for data-intensive applications like storage controllers and
industrial IoT. As of today, there are three different variants of the processor:
the EH1, the EH2 and the EL2 [Wes19]. The EH1 features a 32-bit superscalar
9-stage pipeline, while the EH2 basically adds a second thread with a dedicated
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Figure 1.: Pipeline stages of SweRV [Wesa]

register file and instruction fetch buffer. The EL2 is a smaller version of the EH1
with only 4 pipeline stages and one execution unit.

In our experiments, we use the SweRV EH1 core?, which implements the RISC-
V RV32IMC instruction set and has nine pipeline stages [Wesal, as sketched in
Figure 1. The first three pipeline stages (Fetchl, Fetch2, Align) are responsible
for loading instructions from the instruction memory and storing them into the
fetch buffer. In the Decode stage, the instructions are decoded and prepared for
execution. The execution happens in pipeline stages 5-7, either in the Load-Store
Unit (DC1,DC2,DC3), the multiplication unit (M1, M2, M3) or the ALUs (EX1,
EX2, EX3). The EH1 core has a dual-issue pipeline, which means that in each
clock cycle, the processor can decode two instructions and send them to two
different ALUs. In the last two pipeline stages, Commit (EX4) and Writeback
(EX5), the final result is stored in the register file. There are several peripherals
attached to the core via an AXI4 bus, including the SRAM and instruction and
data closely-coupled memories. The core operates in-order, except for loads which
might get executed earlier when the value is needed in the pipeline.

According to Western Digital, the SweRV EHI1 core can be operated at fre-
quencies of up to 1 GHz [Wesb] and its performance can be compared to an ARM
Cortex A15, making it outperform other RISC-V processors like the Berkely
BOOM core [The]. This makes EH1 an interesting target to analyze the effects of
more complex CPU architectures on masked software implementations. Another
reason why we chose SweRV EH1 is CoCO0’s current requirement of CPU designs
to be written in Verilog or System Verilog.

2https://github.com/chipsalliance/Cores—SweRV
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3. Generic Masked Software on SweRV

In this section we perform an initial analysis of generic (higher-order) masked
software implementations on the SweRV EHI1 core and show that, even after
applying the same hardware modifications as proposed for IBEX in [Gig+21], a
more complex CPU architecture introduces additional problems that can reduce
the protection of masked software by serveral orders. In Section 3.1, we describe
a few small hardware modifications that we carry over from Gigerl et al.’s secured
IBEX to SweRV, that would otherwise lead to identical problems on SweRV.
In Section 3.2 we describe modifications we made to COCO’s verification flow
itself so that it can better handle CPU designs that are significantly larger than
IBEX. In Section 3.3, we generate generic, up to 4th-order masked software
implementations of the Keccak S-box using Tornado, verify their execution on
the secured SweRV using Coco, and conclude that there is little hope that such
implementations can achieve even just 1st-order protection. Finally, we present
additional empirical evidence of the impact of architectural glitches on masked
software via several gate-level timing simulations in Section 3.4.

3.1. Modifications of SweRV

Gigerl et al. have analyzed the simple 32-bit RISC-V IBEX core in terms of
software masking-related side effects. As a result of their analysis, they pointed
out three hardware components that can cause unintended combinations of shares
during the execution of masked software implementations that are completely
invisible from software perspective: the register file, the Arithmetic Logic Unit
(ALU), and the Load-Store Unit (LSU). Not surprisingly, the SweRV core has
similar problems, which is why we briefly discuss how we map these proposed
hardware fixes from IBEX to the SweRV core in the following. The resulting
secured SweRV core will then serve as the base of our further analysis. We expect
that the total area overhead of the hardware modifications for the SweRV core is
very similar to the IBEX core as analyzed in [Gig+21], which was about 2kGe.
Since the SweRV core is much larger, this overhead is insignificant.

We use SweRV core commit 499378d0c67ab11965 as the baseline for our mod-
ifications. For our analysis, we disable closely-coupled memories for instructions
and data, but enable the instruction cache. We do this since (1) the instruction
cache is large enough to hold all implementations that we intend to test, (2)
we want to analyze the “worst-case” in which the CPU can fetch instructions
without delay, thereby achieving the maximal possible amount of instructions
(and side-effects) in the pipeline stages. Hence, when running a verification
with Coco, we execute each software implementation twice, once to load it into
the instruction cache from instruction memory, and once to perform the actual
verification.
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Register File Ordinary register file implementations consist of a group of register
words (32 x 32bit for RV32IMC) plus addressing logic for reading two words
and writing one word within one clock cycle. This addressing logic is usually
implemented via multiplexer trees that select source and destination registers
depending on the currently decoded instruction. As previously shown for IBEX,
these selector signals are usually calculated by combinatorial logic within the
same cycle as the actual read/write event. Consequently, within a single clock
cycle, differences in signal propagation delays can cause glitches on these selector
signals, which in return can cause a read/write port to unreliably switch between
multiple register words until the selector signals at all multiplexers are stable?.
This is problematic for masked software implementations as they hold many
shares in the register file that must be kept strictly separated from each other.

The proposed solution for this problem is to replace multiplexer trees with OR
trees while introducing a one-hot encoded gating mechanism for each value that is
calculated in the previous clock cycle and buffered in a additional register [Gig+21].
This mechanism ensures that glitches on a read/write port can only ever happen
between the operand of two consecutive instructions. In the SweRV core, we face
the same problems and fix these by applying the same register gating concept.
The main difference here is the fact that SweRV features four read and three
write ports, compared to IBEX’s two read and one write port. Gating the read
and write ports for SweRV works almost straightforward, except for the third
write port, which is used for data from the memory, and requires a dedicated
solution (cf. subsubsection 4.2).

Concurrent ALU Computations Cores like IBEX and SweRV always concurrently
calculate simple operations like AND, XOR, ADD, SHIFT in the execution stage
and later only forward the result that is actually needed by the currently executed
instruction. This is not a problem for most masking techniques, however there do
exist some masking techniques that store individual shares of the a native value in
the same register word[Bar+17]. This is okay as long as all computations keep the
individual bits of a register word separate from another, e.g., by performing only
bit-wise operations such as AND and XOR. Operations such as ADD or SHIFT
on the other side do combine bits of individual operands and can thus create
side-channel leakage, even if the results of these computations are ultimately
discarded.

The suggested solution for the IBEX core is to implement a gating mechanism
that ensures that only the intended computation is performed. This mechanism
can also be easily carried over from IBEX to SweRV.

3Even if the selector signals were stable, e.g. by calculating and buffering them in
the previous clock cycle, there is still no guarantee that this signal arrives at all
multiplexers in stable condition in the next clock cycle due to different wire lengths.
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Data Memory Storing shares in the data memory leads to similar problems with
glitches in the addressing logic as for the register file. In theory, one could again
use the same one-hot encoded gating mechanism as discussed before, however,
this approach does not scale well for the large address ranges that are required
for data memory. Consequently, Gigerl et al. propose a trade-off that consists
of using only partially one-hot encoded addresses for data memory which can
be implemented with an area overhead that is indeed negligible when compared
to the area of SRAM blocks themselves. The downside of this trade-off is that
only memory words within certain address ranges (blocks) are properly separated
from each other. This is sufficient as long as a block is large enough to hold all
the shares that need to be kept isolated from each other during the execution of
masked software implementations.

We apply the same LSB one-hot address encoding to SweRV’s data memory.
Since the SweRV core reads 64 bit from the memory in one cycle instead of 32-bit,
we gate memory words on 64-bit granularity.

3.2. Modifications of Coco

In this section we briefly outline modifications that we have made to Coco’s
verification workflow so that it can better handle large CPU designs. These
modifications first and foremost reduce SweRV’s circuit size which in return also
significantly reduces COCO’s verification runtime.

Removal of Unused Logic As mentioned before, we ensure that instructions
can be directly loaded from the instruction cache during Coco’s verification. We
only ever use the slower instruction memory in a read-only fashion to fill the
instruction cache and can, for the pure purpose of CoCO’s verification, remove
any unused logic that would allow writes to data memory, which reduces the
circuit size by about 29%.

Control Wire Tagging The initial version of Coco effectively treats each wire
of a CPU netlist equally and does not distinguish control from data wires. In
reality, only a small fraction of wires can actually affect the data that is processed
by a masked software implementation in such a way that side-channel related
problems could occur. Therefore, we adapted Coco such that it is possible to
tag wires as explicit control signals. During the verification, Coco will then
simply ignore these wires instead of applying the laborious process of constructing
empty SAT equations for them. Clearly, this tagging needs to be done carefully
such that we do not later overlook any architecture side-effects during Coco’s
verification. Since manual tagging of individual wires is infeasible for entire CPU
designs, we instead only do this in a course-grained manner and only in cases
where we can easily deduce that there will be no consequences for the processed
data of software with constant (data-independent) control flow. More precisely,
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we tag the instruction memory, instruction cache and signals depending solely on
those as control signals automatically.

3.3. Initial Analysis of the SweRV Core

In this section we present our initial analysis of several higher-order masked soft-
ware implementations on the secured SweRV core that already includes all hard-
ware modifications that were proposed in the previous analysis of IBEX [Gig+21].
First, we use Tornado to generate generic, up to 4th-order masked C implementa-
tions of the Keccak S-box that are formally verified in Tornado’s register probing
model, meaning that an attacker observing up to d intermediate values (of the
algorithm) is not allowed to learn information about native values. We then
analyze the execution of these implementations on SweRV using COCO to get an
impression of how many more issues can be detected in COCO’s time-constrained
probing model, in which an attacker, able to observe up to d wires/gates in the
CPU netlist throughout one clock cycle each, is not allowed to learn information
about native values.

Since COCO can only deal with assembly implementations by default, we create
an assembly wrapper around the Tornado-generated C functions and adapt the
work flow accordingly. We then analyze these implementations using Coco, while
targeting the verification of 1st-order protection. Unfortunately, the verification
results show that none of the tested implementations can even reach just 1st-
order protection. Upon first inspection of the reported problems, we can see that
multiple additional issues still exist within SweRV that can significantly reduce
the protection order of our tested software implementations. For example, the
forwarding logic in SweRV’s 9-stage pipline is reported by Coco as one of the
main culprits for the loss of multiple protection orders in the time-constrained
probing model.

3.4. Empirical Evaluation

In order to empirically confirm the problems identified by Coco in the SweRV core,
we perform and analyze gate-level simulations in this section. More concretely,
we perform gate-level timing simulations of the forwarding logic within SweRV’s
pipeline (see Figure 3) using multiple cell libraries to better illustrate how
problems in the time-constrained probing model can relate to practical problems.
Our evaluation reveals that glitches in the forwarding logic can lead to independent
occurrences of up to five shares on one wire within one clock cycle, and combined
occurrences of up to three shares at the same time. We note that while the exact
behaviour of glitches strongly depends on the used standard cell library, all of our
tested standard cell libraries report leaks leading to a reduction in the masking
order between three and five.
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Setup We use signal traces from the post-synthesis simulations of the SweRV
core netlist. The synthesis process maps logic gates in the netlist to suitable
cells in the standard cell library, which defines the exact behavior and delay of
each cell. We investigate and compare four different open-source cell libraries®,
o0su035, osu018, osu050, and gscl4dbnm. The mapping process is performed by
Yosys[Wol16], before running the simulation with Modelsim to obtain an execution
trace of our test program.

The same test program is used in all four evaluation scenarios. The test
program works with a native value split into 10 shares, which corresponds
to a 9th-order masked implementation. First, the test program executes 10
instructions, each operating on exactly one share. This effectively stores each
share to its own register in a specific pipeline stage. Second, the test program
executes an instruction referring to a previously computed result, which sends
the shares in the pipeline registers to the bypass logic, which finally forwards the
correct share to the ALU. It should be noted that the program is correctly masked
on algorithmic level because exactly one share is processed per instruction.

Results Figure 2 shows what information an attacker can observe by probing
the wire fwd_data in SweRV’s forwarding logic for the duration of one clock cycle
using different cell libraries. Each plot additionally shows the corresponding clock
signal and contains marks that indicate at which point in time a specific share (or
combination of shares) is visible until the value of the wire has stabilized. Since
the analyzed time window in each plot is different (due to different propagation
delays) we have applied suitable horizontal scalings to improve readability.

From these plots we can see that an attacker can always observe at least three
shares (Figure 2d), and at most five shares (Figure 2a-c) within one clock cycle
when probing the fwd_data wire. Sometimes, shares do not appear independently,
but also in combination with other shares. For example, in Figure 2a, the
attacker first observes si, and then s; in combination with s3. Note that
both, the occurrence of multiple shares independently within one cycle, or the
occurrence of combinations of shares at any point in time breaks the assumption
of independent leakage.

Clearly, this evaluation is not exhaustive. Every technology, every cell library,
and every different placement of a design, leads to different timing properties
and differences in the exact leakage. Also concrete ASIC or FGPA prototypes
are just instances of particular configurations. The exact quantification of the
leakage, i.e. determining the number of traces that are needed for exploitation
in a particular configuration, is not in the scope of this paper. In fact, it is also
not clear if it would be possible to find a representative configuration and setup
that would allow more than making a statement on leakage for one particular
realization in one particular setup. A worst case setup would be a library with

“https://github.com/RTimothyEdwards/qflow/tree/master/tech
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delay settings that lead to the observation even all 10 shares in a single clock
cycle.

Instead of focusing on more specific instances, the focus of our analysis in this
section was on showing that problems identified using Coco actually lead to
critical signal transitions in the design. Given the empirical confirmation of critical
signal transitions, we therefore use Coco as a reference for the identification
of critical design elements in the design of SweRV. With Coco we are able
to formulate a generalized statement about the security of a masked software
implementation in the time-constrained probing model, which is independent of
a specific technology or platform.

4. Analysis of Problems on SweRV

As shown in our previous analysis of generic (higher-order) masked software
implementations, the hardware components of more complex CPUs can cause
a significant reduction in the protection order. In this section, we discuss these
problematic components in the secured SweRV core that already has the IBEX-
patches applied (cf. Section 3.1). We divide these problems into big and small
problems, based on how many shares may be combined, since, as we show later
in Section 5, one can follow different strategies to deal with them. A component
causes a big problem when more than two shares can be potentially combined.
A small problem indicates that a component can combine at most two shares.
For each potential leakage source, we discuss the options of making further
modifications in hardware or shifting this problem as a constraint to masked
software implementations.

4.1. Pipelines and Execution Units

The dual-issue SweRV EH1 core features nine pipeline stages and can process two
instructions per clock cycle. Accordingly, the fetch/decode stages (1-4) can handle
multiple instructions at the same time, the execution/writeback stages (5-9) exist
twice, while the lesser used multiply (5-7) and load/store stages (5-7) exist only
once (c.f. Figure 1). The dual issue design also requires a register file with
four read ports and three write ports. Since symmetric cryptographic software
implementations are usually implemented with constant (data independent)
control flow, which is also the case for all our tested software implementations,
only the later execution/writeback stages (5-9) get in touch with actual data and
can thus cause potential side-channel related problems.

A typical optimization in pipelined CPU designs is the usage of forwarding
logic, also known as bypass-logic, that can redirect the result of an instruction
from a later pipeline stage to a previous stage without needing to wait for the
result to be written into the register file. Forwarding significantly reduces the
occurrence of pipeline stalls in cases where one instruction uses an operand that
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Figure 3.: Pipeline stages 4-9 in SweRV. Shares reside in the register file (M), are
then sent to the ALU () before being buffered in pipeline registers
(", W, B, M). Forwarding values from the pipeline registers to the
ALU is possible in each stage and handled by the multiplexer M1, and
the respective select signal M1select.

was only just calculated by the previous instruction. In the context of masking,
this architectural design causes problems in two different points.

Figure 3 shows a simplified depiction of SweRV’s pipeline stages 4-9. The
multiplexer M1 is responsible for selecting which data is used as input for EX1,
the first of the execution stages. This data either comes from the register file
(GPR), the (LSU), or from any of the later execution stages due to forwarding
logic. The select signal of this multiplexer, M1select, is computed in the respective
pipeline stage from combinatorial logic and is therefore susceptible for glitches.
Consequently, an attacker probing the output of M1, fwd_data, could, in the
worst case, observe all of M1’s possible inputs within one clock cycle until the
select signal stabilizes. This means that if multiple shares of the same native
value are in different pipeline registers, a combination of those can be observed at
fwd_data in the same clock cycle. On top of that, since two different instructions
are executed by SweRV at the same time, fwd_data can also combine data from
the other execution unit. Exactly this problem was also seen in our empirical
evaluation in Section 3.4.

In software, special care is also needed for control transfer instructions like
conditional jumps. The instructions beq, bne, blt and bge perform conditional
branches on data but are typically not used in (symmetric) cryptographic im-
plementations to avoid potential timing side channels. Still, they can be used
together with the unconditional jump instructions jal and jalr to implement
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loops or function calls. In the context of masking, these instructions can cause
problems which are invisible via e.g. the control flow graph of the software.
Since the SweRV core decodes two instructions per cycle, the jump is potentially
decoded with the instruction which comes code-wise after it. If this instruction
operates on shares, and there are still shares of the same native value in the
pipeline, a leak occurs, before the CPU realizes a change in the instruction pointer
caused by the branch two cycles later. The instructions in these two cycles must
be unrelated instructions, which requires in total four unrelated instructions.

Possible Hardware Solutions One could first consider to solve this problem in
hardware by using a trick similar to the one used to prevent unintended glitches in
the multiplexer tree of the register file. For example, one could gate the output of
each pipeline register with a bit indicating whether the respective value should be
forwarded back to the first execution stage (5) or not. This would further require
individual gate-bits to be glitch-free, i.e., to be computed in the previous clock
cycle and buffered in a register. The problem with pre-computing gate-bits is
that those values are typically only available in the same cycle like the forwarding
signal. One can overcome this problem by introducing additional pipeline stages
in between the execution stage, however, this would significantly impact the
overall performance of the core, also in cases where ordinary non-masked software
is executed. Since we do not consider such a performance degradation to be a
viable option, we next explore if those problems can better be dealt with on
software-level.

Possible Software Solutions For a masked software implementation to not be
affected by the side-effects of SweRV’s forwarding logic, it must ensure that at
no time there are two or more shares corresponding to the same native value
in any execution stage of either execution unit. For example, if we consider the
execution of two instructions, each of which uses a different share of the same
native value, then one would need to ensure that there are 2 x 6 + 1 unrelated
instructions between them. Hereby, an amount of 6 instructions is needed to clear
all execution stages (5-9) of one execution unit, that then has to be doubled since
SweRV has two execution units in total. Unrelated instructions are instructions
processing data unrelated to any share (for example a nop), or shares from another
native value.

While such a software constraint can significantly decrease the performance
of masked software implementations, it is a solution that does not impact the
performance of ordinary non-masked software. Nevertheless, as we will show
later in Section 6, it is still possible to implement efficient masked software
implementations fulfilling this constraint if the right masking/implementation
techniques are used.
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Software Constraints for ALU Operations

e (Pipeline Stages and Ezecution Units) Two instructions using different
shares of the same native value must be separated by 6 x 2 + 1 unrelated
instructions.

Combination of up to 13 shares possible (big problem).

e (Control transfer instructions) Control transfer instructions, which are
preceded by instructions processing shares, must be followed by 4 unrelated
instructions.

Combination of up to 4 shares possible (big problem).

4.2. Management Components of Data Memory

The SweRV core manages communication to the data memory via the Load-Store
Unit (LSU). The LSU is a component between the CPU and the memory to
ensure low memory latency by providing buffers and a dedicated pipeline for
store operations. Our analysis shows, that the LSU Bus Buffer, responsible for
saving values of recent loads or stores, similar to a data cache, turns out to be a
major source of leakage which potentially combines multiple shares (big problem).
Furthermore, the dedicated store pipeline, components in the data memory
interface, back-to-back memory accesses and the dedicated register file write port
for memory accesses potentially combine two shares (small problems). For each
of these problems, we discuss possible solutions in hardware and software.

LSU Bus Buffer

Since data memory is connected to the SweRV core over an AXI4 bus, which can
potentially introduce a considerable amount of latency, the LSU implements the
so-called the LSU Bus Buffer, which works in principle like a small data cache.
The LSU Bus Buffer consists of eight elements that are used to temporarily store
the values of recent load or store events. Each element additionally stores the
target address, an age, and a state, since the LSU uses a state machine to manage
the buffer entries. Initially, all element states are set to Idle, meaning that they
are ready to receive data, and their age is set to 0. While executing the memory
access, the state and age are updated accordingly, until the memory access is
finished and the element enters the Idle state again. However, the element is
not removed from the buffer until the buffer is full and the oldest element is
overwritten.

In the context of masked software implementations two problems arise in the
LSU Bus Buffer. First, it is problematic if one share of a native value in the
buffer and is overwritten with its counterpart, which might happen, e.g., when
loading two shares from the data memory. This is not only a problem for load
operations within short succession but can also occur if these operations are far
apart since buffer elements are not cleared once their state goes back to Idle.
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# Reset state/age of buffer elements
fence

# Load share 1 from address 0z20

lw x1, 0x20

# Reset state/age of buffer elements
fence

# Dummy overwrite of buffer element 1
1w x0, (x0)

# Reset state/age of buffer elements
fence

# Load share 2 from address 0z40

lw x2, 0x40
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Figure 4.: Example of flushing the LSU buffer to clear it from shares

Second, if multiple shares of the same native value are stored in the buffer at
the same time but at different locations, one can observe similar side-effects
as originally described for ordinary register files (c.f. Section 3.1). The second
problem could in principle be solved in hardware by applying a similar gating
mechanism as for the the register file. However, in case of the LSU buffer, such a
solution requires an additional register layer for pre-computing stable one-hot
encoded signals, which decreases the performance of all software.

Instead, we can solve this problem on software-level by ensuring that the
buffer holds at most one share per native value, which additionally prevents the
problem of overwriting shares. When doing so, we could ideally target individual
elements of the buffer such that a share can easily be overwritten with dummy
data whenever needed. However, the LSU buffer is completely invisible from a
progammer’s perspective, which is also why there is no easy way to manipulate
specific elements from software side. The choice of which buffer element is
overwritten is determined by the element age, which depends not only on time,
but also instruction dependencies, data addresses and the element state. While
one could formulate a software constraint that takes all of these factors into
consideration, we do not consider this a worthwhile solution due to complexity.
Instead, we propose a software solution utilizing RISC-V’s fence, that while
introducing a 2-5 cycle overhead for each usage, is significantly easier to use in a
correct way. In general, a fence can be used to ensure a certain order of memory
operations by stalling the CPU pipeline unless previous load/store operations
are finished. For the LSU Bus Buffer this means that all buffer elements are
set to Idle with age 0. However, the stored values are not cleared, which must
be done manually by executing load/store instructions dealing with unrelated
data. The fence ensures that these loads and stores are inserted consecutively
into the buffer, i.e., starting at the first slot and ending at the last slot, finally
overwriting all buffer elements. It is recommended to place a second fence after
this load/store sequence, before loading or storing further shares. Figure 4 shows
a short exemplary code snipped, in which a share is stored in the buffer and later
cleared.
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Store Pipeline Stages

Before being stored to memory, data values pass through three dedicated pipeline
stages in the LSU (c.f. Figure 1), which are exclusively updated when a store
happens. A share used as an operand in a store instruction will therefore hang
in the pipeline until it is overwritten by the data of the next store. This is
problematic if the data of the next store is a share from the same native value. In
order to avoid this problem, it is sufficient to ensure that at least one unrelated
store operation is performed between two stores that transfer two shares of the
same native value.

Data Memory Interface

SweRV reads 8 bytes from the external data memory module in one cycle, and
then selects the parts which are effectively needed according to the load address
and load instruction (1w, 1h or 1b). Glitches in the selection signal can lead
to problems if two shares of a native value are stored in the same 8-byte data
memory word. A hardware gating mechanism is again not viable since it would
increase latency, which is why we suggest to store shares of the same native value
not within the same 8-byte word.

Back-to-back Memory Accesses

SweRV is able to execute memory accesses in a back-to-back fashion, i.e., in two
consecutive cycles. Given a data memory layout that utilizes partially one-hot
encoded addresses (c.f. Section 3.1), an additional problem can occur if shares
s;, s; are stored stored in block b1 at indices 4, j respectively, and one accesses
unrelated data at indices 4, j in another block b2 in two consecutive cycles. The
the output of b1, even though ignored, will switch from s; to s; in two consecutive
cycles. Preventing this kind of leakage can be done by paying special attention
to the block indices during each memory access, or reserving one “neutral” index
within blocks that never holds any shares and thus can be used for inserting a
dummy load.

Register file gating for Data from Memory

Register file write ports of the SweRV core need to be gated by a stable gate bit
(c.f Section 3.1). Computing the gate bit is straightforward for all write ports
except for the one dedicated to data loaded from memory, since it depends on a
potentially glitching write enable signal derived from the LSU bus buffer entries.
First, we gate the write data with the stable register write address only, which
means the preliminary gate bit is set for all registers which have loads pending
in the LSU bus buffer. In the next cycle, the write enable value is then used
to select the final, correct write register. This solution requires the software to



5. Deriving Generic Software Rules 109

ensure that no other pending load in the LSU bus buffer writes to a register,
which contains another share from the same native value.

Software Constraints for Memory Operations

e (LSU Bus Buffer) Two memory accesses processing two shares must be
separated by a fence, followed by a load of unrelated data, followed by a
fence.

Combination of up to 8 shares possible (big problem).

(Store Pipeline Stages) Two stores storing two shares must be separated by
a fence, followed by a store of unrelated data, followed by a fence.
Combination of up to 2 shares possible (small problem).

(Data Memory Interface) Shares must be stored in the same memory block,
but not within an 8-byte word.
Combination of up to 2 shares possible (small problem).

(Back-to-back memory accesses) Either one 8-byte region per block at index
i is not used to store shares and between any two loads, a load to this
region is performed, or if a share s; is stored at index i and s; is stored at
index j in a block, no back-to-back accesses to any addresses mapping to
index ¢ and j are performed.

Combination of up to 2 shares possible (small problem).

(Write port 2 of the register file) If a share s; is stored in register x; and s;
is stored in memory, then there must not exist another load at the same
time which writes to register x;.

Combination of up to 2 shares possible (small problem).

5. Deriving Generic Software Rules

In this section, we propose generic rules for the design of masked software
implementations that are intended to run on more complex CPUs like SweRV.
These rules take into account features like pipeline length, the number of execution
units, and the size of load/store buffers, and are based on the software constraints
defined in Section 4. We also discuss the lazy engineering approach by Balasch
et al. [Bal4+14] and demonstrate that, while entirely relying on this approach in
our setting is not recommended, it can still be a worthwhile trade-off that can
eliminate many smaller problems, that would otherwise all need be dealt with in
software.

5.1. Generic Rules for Masked Software

A CPU can be described by numerous characteristics, ranging from the archi-
tecture width to register file size to cache sizes. Our analysis in Section 4 shows
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that, when considering the implementation of masked software implementations,
the following characteristics are especially important:

e The amount of pipeline stages p
e The amount of execution units e

e The size of data buffers.

Pipelines and Execution Units Forwarding logic, also known as bypass-logic,
is a common optimization in pipelined CPUs which we identify to be a big
problem for masked software implementations. In the worst case, each pipeline
stage forwards its current content to the first stage, where it can be effectively
combined with data from all stages due to glitches. Assuming a pipeline length
p = p; + pg, where p; is the number instruction fetch stages and p, is the number
of decode/execute stages (processing actual data), this problem can be avoided by
ensuring that at least pg + 1 unrelated instructions are executed between any two
instructions processing the shares of the same native value. We have observed
this problem on the SweRV core (p; = 3, pg = 6) but it also affects simpler cores
such as the CV32E40P (formerly known as RI5CY) that is roughly comparable to
an ARM Cortex M4 [Ope]. This core features a 4-stage pipeline (p; = 1, pg = 3),
and would therefore still require a “padding” with four unrelated instructions.

On top of that, more powerful CPUs like SweRV often feature a superscalar
architecture, including e.g. a dual-issue pipeline, that allows executing two
instructions per clock cycle. This is achieved by having e execution units in
parallel, all of which have their own fetch/decode/execute stages. In those cases,
forwarding is not only possible between stages of the same execution unit but
also across them. This additionally increases the required amount of padding to
e X pg+1.

Data Buffers and Caches Besides pipeline stages, another big problem for
masked software implementations is the existence of data buffers that are invisible
from a programmers perspective. Defining generic rules for these components
is somewhat harder as their exact behavior can differ quite a lot depending on
their concrete implementation. However, typically when considering SweRV’s
LSU buffer or many other cache designs, these components can cause shares
to essentially get stuck at certain locations within the CPU where they then
represent an additional source of leakage from this time onward. While such
problems can be resolved in hardware, e.g. as shown for the register file (c.f.
Section 3.1), this is only really a viable option in cases where these hardware
modifications do not increase latency, which is also why we need to deal with
SweRV’s LSU buffer side effects in software. In general one needs to ensure that,
whenever a share is transferred over an unmodified buffer, none of the other
buffer entries contain shares that correspond to the same native value. How this
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can be achieved is implementation dependent. In the easier case, a mechanism
to clear the buffer contents could be implemented in hardware, which is however
not always efficient since it would also affect unmasked data. In the harder case,
one has to make use of dummy loads/stores to clear all unwanted values.

Rules Here we summarize the most important rules for masked software on
application-level processors. As we explain in Section 5.2, many of the other
smaller problems are probably better dealt with using the “lazy engineering”
approach.

R1 Two instructions processing shares from the same native value must be
separated by e X pg 4+ 1 unrelated instructions.

R2 Whenever a share is transferring through a buffer, none of the other buffer
entries must contain shares that correspond to the same native value.

Naturally, at this point one could also ask how these rules would look like on even
more complex CPUs with multi-level caches, out-of-order execution, or speculative
memory accesses. For example, the 64-bit out-of-order RISC-V BOOM core would
be a potential target for further analysis. However, when considering the analysis
of such CPUs we currently see quite a few problems that are not necessarily easy
to overcome. First, out-of-order execution will violate our assumption of having
software with constant control flow, meaning that verifying a program’s execution
once might not be indicative of future runs. Second, the effects of, e.g., large cache
hierarchies will likely cause problems where corresponding software constraints
would become too complex to implement with reasonable effort and overhead.
Nevertheless, we argue that physical attacks like power analysis are most relevant
only for devices in the range from microprocessors to application processors.
An attacker having physical access to a desktop/server could anyway use other
methods, like cold boot attacks, to compromise a system more efficiently.

5.2. The Cost of Lazily Engineering

Until now, the verification of masked software implementations is mostly done
using rather simple security models like the value-based or register-based leakage
model. While such models are certainly useful to detect some problems, many
other works also show that processors do emit leakage that is not captured
by these models [Bal+14; Gao+20; Gro+16; MMT20; PV17]. Balasch et al.
[Bal+4-14] formalize this behaviour in their order-reduction theorem, which states
that on simple CPUs, the security of dth-order masked software in the value-based
leakage model reduces to L%J—th order in the transition-based leakage model.
In other words, as a rule-of-thumb for a “lazy” software engineer, they suggest
to double the security-order of a masked implementation to achieve the desired
security-order in a model that more accurately reflects reality.
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While these works focus on rather simple microprocessors, our analysis has
shown that on more complex application-level processors, the reduction of se-
curity order can be significantly higher. When deriving the expected security
reduction of lazy engineering on application-level processors, the main point to
consider is the component that can potentially combine the most shares. In
the case of our modified SweRV this component would be the forwarding logic
of the CPU pipeline. According to our generic rules, a processor executing
algorithmically correct masked software, might combine up to e X pg + 1 shares
in its pipeline. Consequently, without any further assumptions, the CPU could
create all combinations of any choice of e X pg + 1 shares, which corresponds to

an order reduction of {Wi-&-l .

To give a concrete example, when relying entirely on lazy engineering, one
would in theory require at least a 13th-order masked implementation for actual
1st-order security on SweRV in the time-constrained probing model. While we
do not expect an easily exploitable order reduction this large when performing
physical power measurements of SweRV (c.f. Section 3.4), we also want to stress
that these architectural side effects should not be underestimated. For example,
works like [MMT20] show that, already on simple microprocessors, a generic 2nd-
order masked software implementations can very well loose both of its protection
orders in practice. If we add to that the fact that SweRV’s architecture has the
potential to unintentionally combine many more shares at many more locations,
one can expect that quite a few masking orders will also be required in case of
SweRV. Given that masking imposes a runtime overhead that is quadratic in
the masking order, such very high-order implementations might however still
not be a desirable solution, especially in automotive applications with real-time
requirements. As we show later, in such cases, we recommend utilizing lazy
engineering only for eliminating small problems while tackling big problems using
more effective implementation/masking strategies that we describe in Section 6.

6. Evaluation

In this section we demonstrate that, despite the fact that cores like SweRV can
cause significant problems for masked software implementations in general, one
can still design fine-tuned, secure versions with very small overhead. First, we
explain how one can use a parallel instead of the usual serial coding strategy to
significantly reduce the performance impact of software constraints that require a
separation between processing shares of the same native value. We then explain
how one can utilize Threshold masking schemes, and by extension also the core
idea of lazy engineering, to design masked software for SweRV that is secure,
efficient, and easy to implement. More concretely, we show that the runtime
overhead of e.g. a masked Keccak S-box implementation providing lst-order
security on SweRV, when compared to a corresponding implementation ignoring
all software constraints, can be as little as 13%.
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Table 1.: Runtime comparison of masked software implementations on the SweRV

core. Plain implementations do not consider software constraints, and
thus lose all protection orders. Secure implementations are handcrafted
for SweRV, consider all required constraints, and can thus preserve
their claimed protection order. NOPs indicate the required amount
of nop’s or dummy loads/stores. Testcases marked with reg. do not
perform any memory accesses, i.e., all data is in the register file at the
beginning/end of the computation.

Plain Secure
Implementations Implementations
I t Fresh Instr- Instr- Verificati
Name npu res. Cycles nstr- Cycles nstr- NOPb erirncation
Shares |Randomness uctions uctions! Runtime
Tornado-generated Implementations
ISW Keccak S-box 10 x 32 bit| 5 x 32 bit 163 330 -
ISW Keccak S-box, 15 x 32 bit| 15 x 32 bit || 1272 | 810 -
2nd order
ISW Keccak S-box, 20 x 32 bit| 30 x 32 bit || 2124 | 1121 -
3rd order
ISW Keccak S-box, 25 x 32 bit| 50 x 32 bit || 4406 | 3309 -
4th order
AND Gate Implementations
DOM AND reg. [GMK16]|4 x 32 bit 32 bit 10 8 33 48 40 1.4m
ISW AND reg. [ISWO03] 4 x 32 bit 32 bit 10 8 32 48 40 57s
TI AND reg. [NRRO6] 4 x 32 bit - 14 15 37 54 39 1.1m
Trichina AND reg. [Tri03]| 4 x 32 bit 32 bit 9 8 34 46 38 1.28 m
DOM AND reg., . .
2nd order [GMK16] 6 X 32 bit| 3 x 32 bit 20 21 86 148 127 3.2m
DOM AND reg., . .
3rd order [GMK16] 8 X 32 bit| 6 x 32 bit 33 42 250 295 235 9.6 m
Serial/Parallel Implementations
DOM Keccak S-box reg., . .
serial [GSM17] 10 x 32 bit| 5 X 32 bit 83 95 240 418 333 8.4m
DOM Keccak S-box reg., |1 35 bit| 5 x 32 bit || 36 60 81 | 144 | 79 3.7m
parallel
DOM Keccak S-box, . . . . y P
serial [GSM17] 10 x 32 bit| 5 X 32 bit 174 140 550 624 464 22.38m
DOM Keccak S-box, 15 x 32 bit| 15 x 32 bit || 283 | 250 2050 | 1465 | 283 1.5h
2nd order, serial
Threshold Implementations

TI Keccak S-box, reg. 15 x 32 bit - 66 105 72 126 15 3.5m
TI Ascon (1 round) 15 X 64 bit - 721 863 1621 | 1153 | 290 1.18h
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Evaluation Setup All of our tested implementations are hand-written assembly
code, except for the Tornado-generated C implementations that are compiled
with the compiler flag -01. For the verification and performance benchmarks we
used the cycle accurate simulation of SweRV’s netlist within Coco. Coco itself
was executed on a 64-bit Linux operating system on an Intel Core i7-7600U CPU
with a clock frequency of 2.70 GHz and 16 GB of RAM. We configure SweRV
with data memory ranging from 256 byte to 2 KB, adapted as required by the
respective testcase. The instruction memory and instruction cache is configured
to be 2 KB for each test case.

The SweRV configuration using 256 byte of data memory, after applying the
optimizations described in Section 3.2, results in a circuit with 420000 gates, of
which 108 000 are registers and 97 000 are non-linear gates. A detailed breakdown
of these numbers can be found in Appendix B. This makes the hardware design
of SweRV orders of magnitudes larger than the IBEX design which was studied
in [Gig+21], and consisted of only 27000 gates.

Software Implementation Package To measure the overhead imposed by differ-
ent software constraints, we construct a comprehensive set of masked software
implementations. First, we take a look at several examples of masked AND gates,
which represent the simplest non-linear function (degree 2). More concretely, we
analyze 1st-order implementations of the Ishai-Sahai-Wagner (ISW) AND [ISW03],
the Trichina AND [Tri03], the Threshold Implementation (TT) AND [NRRO6], and
up to 3rd-order masked variants of the Domain Oriented Masking (DOM) AND
[GMK16].

We then investigate masked S-box implementations which represent the non-
linear layer within symmetric cryptographic computations, and use masked
AND-gates as basic building blocks. Here, we focus on 1st- and 2nd-order masked
implementations of the Keccak S-box, which has a prominent use in the SHA-3
hash function. Furthermore, we provide TI variants of the Keccak S-box [Ber+11],
as well as one complete round (linear + non-linear layer) of the Ascon cipher
[Dob+16].

In Table 1 we list plain implementations, which are correct in the value-based
leakage model, but do not consider any of SweRV’s software constraints, and are
thus also not secure on this core when verified by COCO in the time-constrained
probing model. In contrast, secure implementations fulfill all required constraints
can thus be verified successfully for their claimed protection order on SweRV. For
each implementation, we report SweRV’s execution runtime in cycles, as well as
the number of executed instructions. Additionally, for secure implementations, we
report the number of unrelated instructions (NOPs), that are needed to achieve
the required amount of time separation between the processing of shares of the
same native value, as stated by the individual software constraints.
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6.1. Serial vs. Parallel Implementations

Many modern symmetric cryptographic primitives have a mathematical de-
scription based on simple Boolean functions that can be easily mapped into
a corresponding software/hardware implementation. For example, the Keccak
S-box (as used in SHA-3) operates on a state consisting of five lanes, each of
which is combined with two other lanes using a sequence of simple AND, XOR, and
NOT operations to compute the corresponding output lane. The most straightfor-
ward way of implementing this S-box in software is to take a set of three lanes,
processing them, storing the resulting output lane, and repeating these steps
until the computation of all five output lanes is finished.

If we now consider a masked implementation, where each input/output lane is
represented by two (or more) shares, the same implementation strategy can be
used, except for the fact that the sequence of Boolean operations needs to be
adapted such that (1) shares of the same native value (lane) are never directly
combined, (2) the (native) output is still the same. If we further consider a soft-
ware constraint that requires a certain amount of unrelated instructions between
processing shares of the same native value, one can imagine that additional nop
instructions will need to be introduced for this purpose. Alternatively, one could
consider a parallel implementation, where one interleaves the computation of the
five output lanes such that nop’s can be replaced with computations on shares of
other lanes. We give an example that illustrates the runtime difference between
serial and parallel implementations in Appendix A. This runtime difference is
also quite visible in Table 1. For example, the parallel DOM Keccak S-box
implementation (81 cycles) is three times faster than its serial counterpart (240
cycles).

One potential downside of parallel implementations is the fact that they increase
the maximum amount of intermediate values that need to be kept track of.
Especially in case of higher-order masked implementations, a processor’s register
file might not be large enough to hold this increased amount of intermediate values.
The resulting register spilling then requires additional load/store operations that
also need to comply with software constraints and can thus eliminate any potential
gain of this approach. To illustrate the overhead of memory operations, we have
included a serial implementation of the Keccak S-box that initially loads all
shares from memory and computes the S-box. If we compare the runtime of
this implementation (550 cycles) to the serial implementation that performs
computations without intial memory operations (240 cycles), we can observe a
runtime overhead of about factor two.

6.2. Threshold Implementations

Threshold implementations (TI) [NRRO6], is a provable secure masking scheme
that splits non-linear functions into multiple incomplete component functions.
More concretely, in TI, each component function fulfills the non-completeness
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property, meaning that its computation is independent of at least one of its
input shares. One consequence of incompleteness is that TI schemes require
computations with at least three shares in order to provide 1lst-order security.
At the same time, this incompleteness guarantees that any combination of
intermediate values during the computation of one component function can
combine at most two out of three shares of any native value, therefore leaving
1st-order security intact.

In the context of implementing secure and efficient masked software implemen-
tations for SweRV, TT turns out to be beneficial in two ways. First, the “lazy”
characteristic of TI allows us to ignore all small problems that can combine
at most two shares. Second, a TI description of Keccak, for example as shown
in [Bil413], also gives a description of three S-box component functions, each
of which only contain instructions that operate on an incomplete set of shares.
Hence, when implementing TT Keccak in software, one can calculate the linear
layer in sequence for each share, and the non-linear layer in sequence for each
component function. Then, one only really needs to pay attention to big problems
when switching the calculation from one component functions to another. This
significantly simplifies the software development process as big problems can
only really occur twice per Sbox computation.

In Table 1, we show a TI implementation of the Keccak S-box (72 cycles) which
has almost no overhead compared to the corresponding plain implementation (66
cycles). Compared to a plain parallel DOM implementation, the overhead of a
secure TT implementation is still only a about a factor of two, while being at lot
easier to implement. With TT Ascon, we also present runtimes of implementations
that compute an entire cipher round (linear + non-linear layer). The choice of
using Ascon for this comparison is motivated by the fact that Ascon uses a S-box
very similar to Keccak, and a linear layer that is significantly easier to implement
in assembly than in case of Keccak. From the reported numbers we can see that
only 290 additional nops are needed to make this implementation conform to the
required software constraints. While the cycle count of the secure implementation
is still about twice as large as in the plain case, we want to stress that most of
this overhead (= 900 cycles) is due to software constraints for data memory since
three shares of Ascon’s state do not quite fit into the register file anymore.

7. Conclusion

In this work, we have performed a comprehensive analysis of more complex CPU
architectures in the context of masking-related side effects. First, we showed
that on cores like SweRV, there exists a significant gap between security in
a simple software probing model and practical security for masked software.
We underlined this point both via a formal analysis in the hardware probing
model and via empirical analysis based on gate-level timing simulations. We
then further analyzed the components of SweRV in the hardware probing model,
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identified new problems, and discuss possible solutions in terms of software
constraints. Ultimately, while there exist many hardware components that can
reduce the security of masked software due to architectural side-effects, we show
that there only exist a few components that could reduce the security of masking
schemes by multiple orders. Hence, when considering the implementation of
efficient masked software for such CPUs, we recommend to use a combination
of TI/lazy engineering to deal with small problems while only addressing the
few large problems directly in the software implementation. In that case, the
performance overhead of software constraints can be as low as 13% while the
resulting implementation can be fully formally verified on our secured SweRV in
the hardware probing model. If 2nd-order protection is desired, one could again
rely on T1/lazy engineering for small problems, here however the additional cost
of this approach might not justify this convenience anymore. When aiming for
even higher protection orders, one likely needs to consider all software constraints
directly in the implementation to keep the runtime overhead manageable.
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Appendix A.

1 # Shares lane 0: z2, 1 # Shares lane 0: z2,
2 # z3 2 # z3

3 # Shares lane 1: z4, 3 # Shares lane 1: z4,
4 # z5 4 # z5

5 # o 5 # o

6 # Randomness: w12, 6 # Randomness: w12,

7 # 13, x14, 7 # z13, z14,

8 # z15, z1 8 # 15, 16

9 # Lane 0 9 # NOT

10 not x17, x2 10 not x17, x2

11 and x24, x17, x5 11 not x18, x4

12 xor x24, x24, x12 12 not x19, x6

13 and x25, x3, x4 13 not x20, x8

14 xor x25, x25, x12 14 not x21, x10

15 and x27, x17, x4 15 #DOM-AND - Instr 1
16 xor x27, x27, x24 16 and x22, x17, xb
17 and x28, x3, x5 17 and x23, x18, x7
18 xor x28, x28, x25 18 and x24, x19, x9
19 xor x27, x27, x10 19 and x25, x20, x11
20 xor x28, x28, x11 20 and x26, x21, x3
21 # Lane 1 21 #DOM-AND - Instr 2
22 not x17, x4 22 xor x22, x22, x12
23 and x24, x17, x7 23 xor x23, x23, x13
24 xor x24, x24, x13 24 xor x24, x24, x14
25 and x25, x5, x6 25 xor x25, x25, x15
26 [N 26 xor x26, x26, x16
27 #Lane 2 27 #DOM-AND - Instr 3
28 28

Figure 5.: Comparison between serial and parallel DOM Keccak S-box
Appendix B.

Table 2.: Circuit size of the SweRV core (256 byte of data memory, 2KB of
instruction memory / cache) before and after optimization (Removal of
unused instruction memory logic)

Raw circuit | Optimized circuit
Registers 108129 108 043
Linear Gates 8 828 8708
Non-linear Gates 133415 97222
Not-Gates 3518 3248
Multiplexers 335294 203107
Total 589 188 420332




References

119

References

[Ath+-20]

[Bal+14]

[Bar-+15]

[Bar+16]

[Bar+17]

Konstantinos Athanasiou, Thomas Wahl, A. Adam Ding, and Yunsi
Fei. “Automatic Detection and Repair of Transition-Based Leakage
in Software Binaries”. In: Software Verification - 12th International
Conference, VSTTE 2020, and 13th International Workshop, NSV
2020, Los Angeles, CA, USA, July 20-21, 2020, Revised Selected
Papers. Ed. by Maria Christakis, Nadia Polikarpova, Parasara Srid-
har Duggirala, and Peter Schrammel. Vol. 12549. Lecture Notes in
Computer Science. Springer, 2020, pp. 50-67.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz,
and Francois-Xavier Standaert. “On the Cost of Lazy Engineering for
Masked Software Implementations”. In: Smart Card Research and
Advanced Applications - 13th International Conference, CARDIS
2014, Paris, France, November 5-7, 201}. Revised Selected Papers.
Vol. 8968. Lecture Notes in Computer Science. Springer, 2014, pp. 64—
81.

Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub. “Verified Proofs of
Higher-Order Masking”. In: Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I. Ed. by Elisabeth Oswald and Marc
Fischlin. Vol. 9056. Lecture Notes in Computer Science. Springer,
2015, pp. 457-485.

Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. “Strong
Non-Interference and Type-Directed Higher-Order Masking”. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016.
Ed. by Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi. ACM, 2016, pp. 116-129.

Gilles Barthe, Frangois Dupressoir, Sebastian Faust, Benjamin
Grégoire, Francois-Xavier Standaert, and Pierre-Yves Strub. “Paral-
lel Implementations of Masking Schemes and the Bounded Moment
Leakage Model”. In: Advances in Cryptology - EUROCRYPT 2017
- 36th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I. Ed. by Jean-Sébastien Coron and Jesper
Buus Nielsen. Vol. 10210. Lecture Notes in Computer Science. 2017,
pp. 535-566.



120

Chapter 4. Software Masking on Superscalar Pipelined Processors

[Bar+19]

[Bar+21]

[Bay+13]

[Bel+17]

[Bel+-20]

[Ber+11]

[Bil+13]

[Blo+18]

Gilles Barthe, Sonia Belaid, Gaétan Cassiers, Pierre-Alain Fouque,
Benjamin Grégoire, and Frangois-Xavier Standaert. “maskVerif:
Automated Verification of Higher-Order Masking in Presence of
Physical Defaults”. In: Computer Security - ESORICS 2019 - 24th
European Symposium on Research in Computer Security, Luzem-
bourg, September 23-27, 2019, Proceedings, Part I. Vol. 11735. Lec-
ture Notes in Computer Science. Springer, 2019, pp. 300-318.

Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt,
Clara Paglialonga, and Lars Porth. “Masking in Fine-Grained Leak-
age Models: Construction, Implementation and Verification”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021.2 (2021), pp. 189—
228.

Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo
Ienne. “Sleuth: Automated Verification of Software Power Analysis
Countermeasures”. In: Cryptographic Hardware and Embedded Sys-
tems - CHES 2013 - 15th International Workshop, Santa Barbara,
CA, USA, August 20-23, 2013. Proceedings. Ed. by Guido Bertoni
and Jean-Sébastien Coron. Vol. 8086. Lecture Notes in Computer
Science. Springer, 2013, pp. 293-310.

Sonia Belaid, Fabrice Benhamouda, Alain Passelegue, Emmanuel
Prouff, Adrian Thillard, and Damien Vergnaud. “Private Multiplica-
tion over Finite Fields”. In: Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part III. Vol. 10403.
Lecture Notes in Computer Science. Springer, 2017, pp. 397-426.

Sonia Belaid, Pierre-Evariste Dagand, Darius Mercadier, Matthieu
Rivain, and Raphaél Wintersdorff. “Tornado: Automatic Gener-
ation of Probing-Secure Masked Bitsliced Implementations”. In:
EUROCRYPT (8). Vol. 12107. Lecture Notes in Computer Science.
Springer, 2020, pp. 311-341.

Giulio Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van
Assche. The Keccak Reference. 2011.

Begiil Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent
Rijmen, and Gilles Van Assche. “Efficient and First-Order DPA
Resistant Implementations of Keccak”. In: CARDIS. Vol. 8419.
Lecture Notes in Computer Science. Springer, 2013, pp. 187-199.

Roderick Bloem, Hannes Grof, Rinat Iusupov, Bettina K&nighofer,
Stefan Mangard, and Johannes Winter. “Formal Verification of
Masked Hardware Implementations in the Presence of Glitches”. In:
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic



References

121

[Cnu+16]

[Cor+12]

[Dob+16]

[EWS14]

[Fau+10]

[Gao+20]

[Gig+21]

Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II. Vol. 10821. Lecture Notes in Computer Science. Springer,
2018, pp. 321-353.

Thomas De Cnudde, Oscar Reparaz, Begiil Bilgin, Svetla Nikova,
Ventzislav Nikov, and Vincent Rijmen. “Masking AES with d+1
Shares in Hardware”. In: Cryptographic Hardware and Embedded
Systems - CHES 2016 - 18th International Conference, Santa Bar-
bara, CA, USA, August 17-19, 2016, Proceedings. Vol. 9813. Lecture
Notes in Computer Science. Springer, 2016, pp. 194-212.

Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline
Renner, Matthieu Rivain, and Praveen Kumar Vadnala. “Conver-
sion of Security Proofs from One Leakage Model to Another: A
New Issue”. In: Constructive Side-Channel Analysis and Secure
Design - Third International Workshop, COSADE 2012, Darmstadt,
Germany, May 3-4, 2012. Proceedings. Vol. 7275. Lecture Notes in
Computer Science. Springer, 2012, pp. 69-81.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schlaffer. Ascon v1.2. Submission to the CEASAR Competition.
https://ascon.iaik.tugraz.at/files/asconvi2.pd. Retrieved
on February 4th, 2021. 2016.

Hassan Eldib, Chao Wang, and Patrick Schaumont. “Formal Verifi-
cation of Software Countermeasures against Side-Channel Attacks”.
In: ACM Trans. Softw. Eng. Methodol. 24.2 (2014), 11:1-11:24.

Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and
Vinod Vaikuntanathan. “Protecting Circuits from Leakage: the
Computationally-Bounded and Noisy Cases”. In: Advances in Cryp-
tology - EUROCRYPT 2010, 29th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
Monaco / French Riviera, May 30 - June 3, 2010. Proceedings. Ed.
by Henri Gilbert. Vol. 6110. Lecture Notes in Computer Science.
Springer, 2010, pp. 135-156.

Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. “Share-
slicing: Friend or Foe?” In: TACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020.1 (2020), pp. 152-174.

Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and
Roderick Bloem. “Coco: Co-Design and Co-Verification of Masked
Software Implementations on CPUs”. In: 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021. Ed. by
Michael Bailey and Rachel Greenstadt. USENIX Association, 2021,
pp. 1469-1468.


https://ascon.iaik.tugraz.at/files/asconv12.pd

122

Chapter 4. Software Masking on Superscalar Pipelined Processors

[GM17]

[GMK16]

[Gro+16]

[GSM17]

[ISW03)

[KJJ99]

[KSM20]

[MMT20]

Hannes Grofl and Stefan Mangard. “Reconciling d+1 Masking in
Hardware and Software”. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings. Vol. 10529. Lecture
Notes in Computer Science. Springer, 2017, pp. 115-136.

Hannes Grof}, Stefan Mangard, and Thomas Korak. “Domain-
Oriented Masking: Compact Masked Hardware Implementations
with Arbitrary Protection Order”. In: Proceedings of the ACM Work-
shop on Theory of Implementation Security, TISQCCS 2016 Vienna,
Austria, October, 2016. ACM, 2016, p. 3.

Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra,
Erik Schneider, and Lejla Batina. “Bitsliced Masking and ARM:
Friends or Foes?” In: Lightweight Cryptography for Security and Pri-
vacy - 5th International Workshop, LightSec 2016, Aksaray, Turkey,
September 21-22, 2016, Revised Selected Papers. Vol. 10098. Lecture
Notes in Computer Science. Springer, 2016, pp. 91-109.

Hannes Grof, David Schaffenrath, and Stefan Mangard. “Higher-
Order Side-Channel Protected Implementations of KECCAK?”. In:
Euromicro Conference on Digital System Design, DSD 2017, Vienna,
Austria, August 30 - Sept. 1, 2017. IEEE Computer Society, 2017,
pp. 205-212.

Yuval Ishai, Amit Sahai, and David A. Wagner. “Private Circuits:
Securing Hardware against Probing Attacks”. In: Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2008, Pro-
ceedings. Vol. 2729. Lecture Notes in Computer Science. Springer,
2003, pp. 463-481.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power
Analysis”. In: CRYPTO. Vol. 1666. Lecture Notes in Computer
Science. Springer, 1999, pp. 388-397.

David Knichel, Pascal Sasdrich, and Amir Moradi. “SILVER - Sta-
tistical Independence and Leakage Verification”. In: Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I.
Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12491. Lecture Notes
in Computer Science. Springer, 2020, pp. 787-816.

Lauren De Meyer, Elke De Mulder, and Michael Tunstall. “On
the Effect of the (Micro)Architecture on the Development of Side-
Channel Resistant Software”. In: TJACR Cryptol. ePrint Arch. 2020
(2020), p. 1297.



References

123

[Mos+12]

[NRRO6]

[Ren+11]

[Rep+15]

[RP10]

[Sny22]

Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tun-
stall. “Compiler Assisted Masking”. In: Cryptographic Hardware
and Embedded Systems - CHES 2012 - 14th International Work-
shop, Leuven, Belgium, September 9-12, 2012. Proceedings. Ed. by
Emmanuel Prouff and Patrick Schaumont. Vol. 7428. Lecture Notes
in Computer Science. Springer, 2012, pp. 58-75.

Svetla Nikova, Christian Rechberger, and Vincent Rijmen. “Thresh-
old Implementations Against Side-Channel Attacks and Glitches”.
In: Information and Communications Security, 8th International
Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006,
Proceedings. Vol. 4307. Lecture Notes in Computer Science. Springer,
2006, pp. 529-545.

OpenHW Group. OpenHW Group CV32E/0P User Manual: Pipeline
Details. https://cv32e40p.readthedocs.io/en/latest/pipeline/,
Retrieved on January 26th, 2021.

Kostas Papagiannopoulos and Nikita Veshchikov. “Mind the Gap:
Towards Secure 1st-Order Masking in Software”. In: Constructive
Side-Channel Analysis and Secure Design - 8th International Work-
shop, COSADE 2017, Paris, France, April 18-14, 2017, Revised
Selected Papers. Vol. 10348. Lecture Notes in Computer Science.
Springer, 2017, pp. 282-297.

Mathieu  Renauld, Frangois-Xavier  Standaert, Nicolas
Veyrat-Charvillon, Dina Kamel, and Denis Flandre. “A Formal
Study of Power Variability Issues and Side-Channel Attacks for
Nanoscale Devices”. In: Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia, May
15-19, 2011. Proceedings. Vol. 6632. Lecture Notes in Computer
Science. Springer, 2011, pp. 109-128.

Oscar Reparaz, Begiil Bilgin, Svetla Nikova, Benedikt Gierlichs,
and Ingrid Verbauwhede. “Consolidating Masking Schemes”. In:
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceed-
ings, Part I. Vol. 9215. Lecture Notes in Computer Science. Springer,
2015, pp. 764-783.

Matthieu Rivain and Emmanuel Prouff. “Provably Secure Higher-
Order Masking of AES”. In: Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara,
CA, USA, August 17-20, 2010. Proceedings. Vol. 6225. Lecture Notes
in Computer Science. Springer, 2010, pp. 413-427.

Wilson Snyder. Verilator. https : //wuw . veripool . org/wiki /
verilator. Retrieved on February 2nd, 2021. 2022.


https://cv32e40p.readthedocs.io/en/latest/pipeline/
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator

124

Chapter 4. Software Masking on Superscalar Pipelined Processors

[Ted19]

[The]

[Tri03)]

[Wesa|

[Wesb]

[Wes19]

[Wol16]

[WSW19)

[Zha+18]

Ted Marena, Western Digital. The Journey of RISC-V Implementa-
tion. https://documents.westerndigital.com/content/dam/doc—
library/en_us/assets/public/western-digital/collateral/
white-paper/article-journey-of-RISC-V-implementation.pdf,
Retrieved on January 16th, 2021. 2019.

The Regents of the University of California. RISCV-BOOM: The
Load/Store Unit (LSU). https ://docs . boom~- core . org/en/
latest/sections/load-store-unit.html, Retrieved on January
27th, 2021.

Elena Trichina. “Combinational Logic Design for AES SubByte
Transformation on Masked Data”. In: TACR Cryptol. ePrint Arch.
2003 (2003), p. 236.

Western Digital. RISC-V SweRV EHI1 Programer’s Reference Man-
ual. https://github. com/chipsalliance/Cores-SweRV/blob/
master/docs/RISC-V_SweRV_EH1_PRM.pdf, Retrieved on January
16th, 2021.

Western Digital. RISC-V: high performance embedded SweRV core
microarchitecture, performance and CHIPS Alliance. https: //
riscv . org/wp - content /uploads /2019 /04 /RISC-V _SweRV _
Roadshow-.pdf, Retrieved on January 16th, 2021.

Western Digital. RISC-V and Open Source Hardware Address New
Compute Requirements. https://documents.westerndigital.com/
content /dam/doc - library/en _us/assets/public/western-
digital/collateral/tech-brief/tech-brief-western-digital-
risc-v.pdf, Retrieved on January 16th, 2021. 2019.

Claire Wolf. Yosys Open Synthesis Suite. http://wuw.clifford.
at/yosys/. Retrieved on February 2nd, 2021. 2016.

Jingbo Wang, Chungha Sung, and Chao Wang. “Mitigating power
side channels during compilation”. In: Proceedings of the ACM Joint
Meeting on Furopean Software Engineering Conference and Sympo-
stum on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2019, Tallinn, Estonia, August 26-30, 2019. Ed. by Marlon
Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo. ACM,
2019, pp. 590-601.

Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. “SClnfer:
Refinement-Based Verification of Software Countermeasures Against
Side-Channel Attacks”. In: Computer Aided Verification - 30th Inter-
national Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Ozford, UK, July 14-17, 2018, Proceedings,
Part I1. Ed. by Hana Chockler and Georg Weissenbacher. Vol. 10982.
Lecture Notes in Computer Science. Springer, 2018, pp. 157-177.


https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/article-journey-of-RISC-V-implementation.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/article-journey-of-RISC-V-implementation.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/article-journey-of-RISC-V-implementation.pdf
https://docs.boom-core.org/en/latest/sections/load-store-unit.html
https://docs.boom-core.org/en/latest/sections/load-store-unit.html
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://riscv.org/wp-content/uploads/2019/04/RISC-V_SweRV_Roadshow-.pdf
https://riscv.org/wp-content/uploads/2019/04/RISC-V_SweRV_Roadshow-.pdf
https://riscv.org/wp-content/uploads/2019/04/RISC-V_SweRV_Roadshow-.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-western-digital-risc-v.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-western-digital-risc-v.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-western-digital-risc-v.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-western-digital-risc-v.pdf
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/

Secure Context Switching of
Masked Software Implementations

Publication Data. Barbara Gigerl, Robert Primas, and Stefan Mangard. “Secure
Context Switching of Masked Software Implementations”.
In: AsiaCCS. 2023.

Contribution. The author of this thesis proposed the concepts, performed all
the experiments, made the implementations and wrote most of the text.

125



126 Chapter 5. Secure Context Switching of Masked Software

Secure Context Switching of Masked Software
Implementations

Barbara Gigerl!, Robert Primas!, Stefan Mangard!
I Graz University of Technology

Abstract Cryptographic software running on embedded devices requires protec-
tion against physical side-channel attacks such as power analysis. Masking is a
widely deployed countermeasure against these attacks and is directly implemented
on algorithmic level. Many works study the security of masked cryptographic soft-
ware on CPUs, pointing out potential problems on algorithmic/microarchitecture-
level, as well as corresponding solutions, and even show masked software can
be implemented efficiently and with strong (formal) security guarantees. How-
ever, these works also make the implicit assumption that software is executed
directly on the CPU without any abstraction layers in-between, i.e., they focus
exclusively on the bare-metal case. Many practical applications, including IoT
and automotive/industrial environments, require multitasking embedded OSs
on which masked software runs as one out of many concurrent tasks. For such
applications, the potential impact of events like context switches on the secure
execution of masked software has not been studied so far at all.

In this paper, we provide the first security analysis of masked cryptographic
software spanning all three layers (SW, OS, CPU). First, we apply a formal
verification approach to identify leaks within the execution of masked software
that are caused by the embedded OS itself, rather than on algorithmic or mi-
croarchitecture level. After showing that these leaks are primarily caused by
context switching, we propose several different strategies to harden a context
switching routine against such leakage, ultimately allowing masked software
from previous works to remain secure when being executed on embedded OSs.
Finally, we present a case study focusing on FreeRTOS, a popular embedded OS
for embedded devices, running on a RISC-V core, allowing us to evaluate the
practicality and ease of integration of each strategy.

1. Introduction

Embedded devices have become omnipresent in IoT, automotive, and industrial
applications and often interact with their physical environment. This raises
the need for strong cryptographic primitives to preserve private and secure
operations. Embedded devices need to be protected against both theoretical and
physical attacks. Theoretical security refers to guarantees such as the resistance of
cryptography against mathematical attacks, while physical security counteracts
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adversaries in physical proximity who observe a device’s physical properties
during computation. In 1999, Kocher et al. [KJJ99] presented Differential Power
Analysis (DPA), which allows for extracting secrets like cryptographic keys from
a device. DPA is performed by observing a device’s power consumption, which
correlates with the processed data. Since then, masking has become a very
popular and well-studied countermeasure to defeat such attacks on algorithmic
level [Bar+17; Bel+17; Cha+99; Cnu+16; GM17; GP99; ISWO03; Rep+15].
With masking, each secret variable of a cryptographic computation, such as
the encryption key, is split into d + 1 random shares. Consequently, the power
consumption of the device does not correlate with the unshared secret but with
the d+ 1 random shares, which exponentially increases the difficulty of recovering
the unshared secret. One particular advantage of masking is that it is provably
secure, i.e., it can be proven that an attacker cannot reveal any information about
the unshared secret by combining up to d shares.

In the past, many works have pointed out a significant gap between the
theoretical and practical security of masked implementations [Bal4+12; Gig+21;
PV17], often caused by physical effects such as glitches and transitions. Masking
schemes generally assume that independent computations result in independent
leakage, which is not necessarily the case in a practical software or hardware
implementation. In other words, a masked software implementation that has
been formally proven to be d-th order secure in theory might not reach this
security level when executed on a CPU. Many works in the past have discussed to
which extent the CPU microarchitecture can compromise the security of masked
software implementations. Prominent root causes of order-reducing leakage in
masking are register or memory overwrites, which leak the Hamming distance
between two shares [Bal+14; BDV21; Cor+12; PV17]. On top of that, many
more such potential problems have been identified that essentially boil down
to implementation specifics of the register file, SRAM, load-store logic, data
caches, or bypass mechanisms in the CPU pipeline [Gig+21; GPM21; Gro+16;
MMT?20]. In order to solve these problems efficiently, works like [Gig+21; GPM21]
emphasize that modifications on software level are necessary while additional
hardware changes of the CPU are advisable. Eventually, both the CPU hardware
and the masked software implementation need to fit together to obtain secure
execution that preserves the theoretical security of the masking.

In practice, with the exception of the most basic microcontrollers or IoT devices,
embedded devices execute software within an (embedded) OS alongside other
tasks which include bus or network communications, and sensor data acquisition
and processing. In the case of resource-constrained embedded devices, one often
chooses dedicated embedded OSs, including real-time operating systems (RTOS),
over fully-fledged operating systems such as Linux. FreeRTOS [Ama22] is a very
popular choice for such an embedded OS because it provides a wide range of
supported platforms, a large community, and is publicly available (open-source).

So far, works on the practical security of masked software implementations
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focus on the bare-metal case and therefore assume total control over the execution
of software on a CPU [Bar+21; CGD18; Gig+21; GPM21; MOW17; MPW22;
PV17; She+21a; She+21b]. More concretely, they assume that the masked
software is not interrupted during execution. The interference of multitasking
OSs, especially context switching, that leads to a violation of this assumption
has not been considered in previous analysis efforts at all. Still, context switches
occur at high frequencies, e.g., due to periodic (timer) interrupts, and in some
cases, their occurrence can even be controlled by the attacker. Consider, for
example, the following setting, in which an attacker first requests a certain
cryptographic operation via a common communication interface and causes an
IO interrupt at a later point in time by sending an additional request. The
attacker can easily observe repeated executions of the cryptographic operation
in which context switches cause additional leakage, allowing to easily mount
straight-forward attacks like DPA on the additionally created leakage in the
power side-channel [KJJ99].

As a countermeasure, one could consider the option of disabling interrupts
during the execution of masked software; however, this option is unrealistic
in practice due to (1) the starving of other relevant tasks like sensor data
acquisition/processing or Bluetooth/UART/MQTT network communication, and
(2) the generally strict scheduling requirements of RTOS systems that allows
meeting timing constraints [AG21; BSH12; ZLG09]. There does exist one work by
Balasch et al. [Bal+15] from 2015 demonstrating successful DPA attacks on an
AES implementation executed by a Linux operating system on an ARM Cortex-
A8, and discussing the security of masked software in this setting. The authors
show that also the masked version of the AES is not leakage-free. However, it
remains unclear whether the empirically found leakage is caused by the CPU
microarchitecture, the OS, or even the masking algorithm itself. On top of that,
they also do not propose a solution that can reliably prevent the observed leakage.

Contributions. The security of masked software implementations running as
a task/process within an embedded OS has not been evaluated so far. It is
hence unclear to what extent specific OS features like interrupts, scheduling,
and context switches cause leakage in such situations and what corresponding
protection mechanisms can be put into place at what cost. We close this gap by
providing the first in-depth analysis of masked software executed by an OS on a
CPU. The main contributions of this work are as follows:

e We provide the first formal analysis of masked software which runs as a
task in an embedded OS on a CPU. Using a toy example, we show that the
main problems are caused during context switching by either overwriting
shares in memory, or transitions on memory/register file read/write ports
(Section 4).

e We propose several possible strategies to solve these problems, resulting in
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a formally verified context switching routine hardened against side-channel
leakage that requires no assumptions on the current location of shares in
the register file. This allows masked software, verified for correctness in the
bare-metal case, to preserve security when executed on an embedded OS. For
each strategy, we provide a comparison of their advantages, disadvantages,
and performance overhead (Section 5).

e We present a case study of masked software running as a task in FreeRTOS
on a RISC-V CPU. In this case study, we show that the problems identified
in our analysis also exist in FreeRTOS and that these problems can be fixed
efficiently by the proposed strategies. (Section 6).

e We make the evaluation setup and all software artifacts available on
GitHub'.

2. Background

In this section, we first give necessary background information on the masking
countermeasure. We briefly introduce Coco, a formal verification tool to prove
that the execution of (bare-metal) masked software on a given CPU netlist is
secure. For our work, we use COCO as a leakage detection mechanism, as well
as to formally verify the security of our countermeasures. Finally, we provide a
short introduction to embedded operating systems.

2.1. Masking

Power analysis attacks exploit the fact that the power consumption of a cryp-
tographic device depends on the processed data, such as a secret key [CRR02;
KJJ99]. The masking countermeasure breaks this dependency by randomizing
sensitive intermediate values processed by the device [Cha+99; GMK16; GP99;
NRRO6]. Each sensitive variable used in a cryptographic computation is split
into d 4+ 1 random shares, such that the observation of up to d shares does not
reveal any information about the corresponding sensitive value.

In the case of a dth-order Boolean masking scheme, the shares sg ...sy must
satisfy s = s9 @ ... ® sq, where @ stands for the exclusive OR (XOR) operation.
Hereby, sq...sq—1 are chosen uniformly at random, while sg = sg P ...s4_1 P
s, which ensures that each share s; is uniformly distributed and statistically
independent of s. For example, a first-order masking scheme (d = 1) splits up a
sensitive variable s into two parts sg and s1, such that s = sg @ s1, sg is chosen
uniformly at random, and s; = s @ sg.

Throughout the entire implementation, a proper separation of shares and of
the output of the component functions needs to be ensured not to violate the

lhttps://github.com/barbara-gigerl/sw-masking-rtos
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d™-order independence, which is commonly expressed in the probing model of
Ishai et al. [ISWO03]. In the probing model, the attacker has the ability to probe
up to d intermediate results of the masked implementation. An implementation
is said to be secure if the probing attacker cannot gain any statistical advantage
in guessing any secret variable by combining the probed results in an arbitrary
manner. While this share separation can be easily ensured for functions which
are linear over GF(2") — for example, the masked calculation of x @ y can be
performed share-wise (z; @ y;) — the secure implementation of nonlinear functions
usually requires the introduction of fresh randomness.

The probing model can directly be applied to masked hardware circuits, in
which the attacker can place probes on individual gates and wires, which then allow
observing all values at the chosen location for an infinite amount of time. However,
the probing model is less suitable for masked software implementations executed
by a CPU. For example, the attacker could simply place one probe on the read or
write port of the register file and then observe all intermediate values (including
shares), which allows breaking masked software of arbitrary protection order.
Instead, recent works refer to the time-constrained probing model [Gig+21] for
masked software implementations, which puts a time restriction of one clock cycle
on each probe. More formally, the attacker who possesses d probes can distribute
these both spatially and temporally, allowing them to perform measurements at
different locations in the same clock cycle, the same location in different clock
cycles, or a mix of both. For example, a first-order attacker (d = 1) in the
time-constrained probing model can only probe register file read or write ports
for the duration of one clock cycle.

Besides algorithmic correctness of masking schemes in a respective probing
model, the practical security of masked cryptographic algorithms also strongly
depends on implementation specifics in hardware [AGO1l; Cnu+16; GMK16;
GSM17; MMT20; NRRO6] and software [Bal+14; Bel4+20; Gro+16; Wan+15].
We discuss the case of secure software masking in more detail in the following.

2.2. Practical security of masked software

The security of masked software implementations depends on the assumption
that independent computations result in independent leakage [Bal+14; Cha+99;
GP99]. However, many works have shown that this property is often violated
in practice when executing masked software (bare-metal) on CPUs [Bal+14;
Gig+21; GPM21; MMT20; MPW22; PV17]. The main reason for this is physical
side-effects in the CPU, for example, glitches and transitions, which lead to
unintended combinations of shares during execution. For example, Coron et al.
[Cor+12] show that when a share is overwritten by another share of the same
sensitive variable, the power consumption correlates with the combination of
both, leading to leakage. In practice, this can be observed when overwriting
shares stored in a CPU register or the SRAM. Gigerl et al. [Gig+21; GPM21]
report that glitches within the control logic used to address the read/write logic
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of the CPU register file might make leakage-free register file accesses impossible.
Additionally, they show that shares of the same sensitive variable must not be
read or written consecutively, independently whether they are stored in the
register file or memory, due to transitions on the respective read/write ports.
As a result, they construct a side-channel hardened version of the RISC-V IBEX
core (secured IBEX), which allows leakage-free execution of masked software in
bare-metal mode as long as a few simple software constraints are followed. In
our work, we exclusively work with masked software implementation following
these constraints and use the secured IBEX core as a reference platform for our
experiments.

2.3. Coco

In order to evaluate the security of masked cryptographic software, one can
either apply empirical or formal verification methods. Empirical verification
involves manually taking power measurements of CPUs during computation,
followed by statistical analysis that tries to extract sensitive information such
as cryptographic keys [CRR02; KJJ99]. The main downside of this approach
is the inability to identify the exact source of leakage in a system, i.e., there is
no possibility to determine if a leak was caused by the CPU microarchitecture
or the masked software implementation. Alternatively, one can use the recently
published tool Coco [Gig+21] to formally verify the security of masked software
executions in the time-constrained probing model on the gate-level netlist of a
CPU. Coco allows to identify concrete gates/wires/registers in the CPU netlist
as leakage sources.

In general, COCO takes as input a masked assembly implementation backed up
with some annotations and the description of a CPU as a gate-level netlist and
then reports whether the execution is leakage-free or not. The annotations (labels)
indicate which registers/memory locations contain shares or fresh randomness at
the start of the software execution. Internally, the tool then starts by simulating
the execution of the software on the CPU hardware in order to obtain an execution
trace, which contains a concrete value for each control signal in the CPU. The
verifier then propagates the annotated labels through the CPU netlist cycle by
cycle while considering the control signals of the execution trace. If Coco finds
a gate in a specific cycle that combines all shares of the same sensitive value, the
gate in the netlist and the cycle is reported as a leak. Using this information,
one can then easily find out whether the leak was caused by the software itself,
or micro-architectural side-effects of the CPU. For more details on the internal
working mechanisms of Coco, we refer to the original publication [Gig+21].

2.4. Embedded operating systems

Embedded systems requiring multitasking make use of an embedded OS, which
runs multiple tasks and manages shared resources such as execution time. Some
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scenarios additionally require real-time capabilities, i.e., that the OS guarantees
that specific tasks or events can be handled in a specific amount of time. Such
operating systems are called real-time operating systems (RTOS), on which we
focus in this work. Events occurring during the execution of an RTOS are often
called interrupts, such as the periodic timer interrupt, which happens at specific
intervals, or non-periodic interrupts caused by IO operations or other external
events. To maintain its real-time capabilities, the OS must react and handle
the interrupt appropriately. Therefore, it activates the scheduler to select the
next task to be run and performs a context switch or task switch. In order to
do so, information related to the task in the task control block (TCB) needs
to be saved, which also contains the working state (context), including general
purpose and floating point registers. During a context switch, the TCB needs to
be saved and restored from memory. The memory area which contains the TCB
is called the TCB memory slot, which is often part of the tasks’s working stack
assigned by the OS on startup. RTOSs are currently being used in all kinds of
applications, including smart watches, traffic light systems, and home energy
monitoring. FreeRTOS [Ama22] is among the most popular RTOSs, and is built
into, e.g., Amazon’s AWS IoT, Tesla’s electric cars, and Bosch’s smart home
sensors. Other famous RTOSs include the open-source systems Zephyr [Pro22],
RIOT [Bac+18], TockOS [Lev+17] KataOS [Dev22], but also many closed-source
systems like MQX [Sem22] and PikeOS [GMB22].

3. Attacker model

For our study, we consider a threat model in which an attacker has physical
access to a cryptographic device that runs masked software within an embedded
OS on a microprocessor. Examples of such devices are electronic wallets, smart
cards, or authentication tokens. The attacker’s goal is to leak the cryptographic
key stored on the device, which is used by cryptographic software that already
features sufficient protection against standard differential power analysis (DPA)
using masking countermeasures. The attacker does not need to know specific
details about the attacked device, such as the concrete source code; it is sufficient
to know which cryptographic operation is implemented. To perform the attack,
the attacker (1) connects an oscilloscope to the device such that power/EM traces
can be recorded, (2) triggers the targeted cryptographic operation by sending
an appropriate request via a communication interface, and (3) interrupts the
operation by sending some other request with a specific delay. Consequently, all
interaction with the device is purely passive , and, e.g., no direct control of the
OS runtime is required.

Given a scenario in which an attacker can force interrupts during the execution
of masked software at specific points in time, thereby causing potential masking-
related correctness problems, what remains is to record a sufficient amount of
such computations for a DPA attack to work. The concrete number of power
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traces required by the adversary highly depends on the noise level of the attacked
system, i.e., a combination of the masked software, the embedded OS, and the
microprocessor. Nevertheless, we can look at some previous works that study
the impact of unintentional combinations of shares due to overwrites of shares in
memory or the register port, which is likely to occur during context switches. For
example, as shown by Papagiannopoulos et al. [PV17], about 50 000 traces are
sufficient on an ATMegal63 8-bit microcontroller to detect memory overwrites,
which are the basis of our first proposed attack. The authors also study a form
of transitions on register file read ports, the basis of our second proposed attack,
which can be exploited by only about 5000 traces. In practice, these numbers
can be higher, e.g., if there is some variation in the timing of the execution of
the masked software and the following interrupt. This essentially has a similar
effect on the performance of DPA attacks as algorithmic hiding countermeasures
and hence generally do not increase the amount of required measurements by
more than a quadratic factor.

4. Analyzing Context switches in masked
software

In this section, we identify common problems that could arise when running
masked cryptographic software as a task on an embedded OS. As a starting point,
we use assembly implementations following all constraints from [Gig+21], as well
as their secured IBEX core for our experiments. The assembly implementations
are formally verified for correctness in bare-metal mode using Coco. We then
manually insert additional assembly instructions at certain locations to represent
a realistic context switch routine. We investigate potential leakage using Coco,
which finally reveals two major sources of leakage introduced by context switches.
In the following, we provide a more detailed description of our experiment setup
and the identified problems.

4.1. Experiment setup

We construct a toy example modeling two tasks to demonstrate the general
problem of context switches related to masked software. The first task is executing
a masked Keccak S-box (used, e.g., in SHA-3, Shake or Ascon), while the other
one is performing unrelated non-cryptographic computations. The toy example
is then verified when running on the secured IBEX core. In the following, we give
more details about the concrete software and hardware setup.

The first task (Tspox) executes a 1st-order masked Keccak S-box implementa-
tion protected by Domain-Oriented Masking (DOM) [GMK16]. In general, the
implementation splits up the five 32-bit lanes of the implementation into two
shares and uses secure DOM multiplication gadgets to mask non-linear operations.
The second task (TonT) executes a non-cryptographic computation which is
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Figure 1.: Transition on register file read port during context switch

unrelated to the first task. We choose a simple function that keeps a counter in
a register that is constantly being incremented.

On startup, each task is assigned a specific memory location for the stack
and another memory location for the TCB (the TCB memory slot). In practice,
the TCB is either stored on the top or at the bottom of the task’s working
stack. We reserve register ro (sp on a RISC-V architecture) to store a pointer
to this memory area. We then model the effect of real interrupts by manually
calling context switching routines from Tsgox and TonT at certain points in
time. This represents a practical scenario where, e.g., an attacker first requests a
cryptographic operation via a common communication interface that is then later
interrupted by another IO request after a specific amount of time. The context
switching routine (context switch) itself is based on an existing implementation
included in the FreeRTOS RISC-V port that saves the state of the current task
to memory, changes the stack pointer, and then loads the state of the next task
from memory. We sketch this function in Appendix A and also further discuss it
later in Section 6.1.

We use COCO to investigate the security of our toy example on the secured
RISC-V IBEX core [Gig+21]. Before starting the experiment, we first verify
that the 1st-order Keccak S-box runs securely on the RISC-V IBEX core in
bare-metal mode. Consequently, any leakage we observe originates from the
context switching activity itself and not from issues with the masked software
or the micro-architecture of the IBEX core. In the following sections, we show
that the security guarantees derived from verifying bare-metal software no longer
hold when executing the masked software within a task.

4.2. Transitions on memory/register file read/write port

Whenever a context switch is performed, the register file contents of the current
task are stored to memory register by register in a sequence of store instructions.
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Hence, an attacker probing the register file read port or memory write port for
the duration of one specific cycle can observe pairs of two register values of the
current task. In the second part of the context switch, the register file contents of
the next task are loaded from memory, and the current register file contents are
overwritten. Again, an attacker probing the register file write port or memory
read port can observe pairs of register values of the next task.

If the current task is executing masked software, the register file potentially
contains shares of the same secret distributed over several registers. For example,
in our toy scenario, the five 32-bit lanes of the Keccak S-box are stored in ten
registers, each register containing one share. In Figure 1, we sketch the register
file contents of Tsgox at some point during the execution right before a context
switch. The timing diagram illustrates the information an attacker can observe by
proving the register file read port cycle per cycle. While no critical information
can be deduced from the transitions x; — w9 and xo — x3, the transition
r3 — x4 leaks the Hamming distance between shares 0 and 1 of lane 1, which
refers to the unshared value of lane 1.

4.3. Overwriting shares in memory

The exact memory location of the TCB memory slot is defined when the task is
created and usually remains unchanged throughout the lifetime of the task on the
bottom of the stack. With the general purpose registers being part of the TCB,
every context switch during the execution will overwrite the old register contents
in memory with the new ones. An attacker probing the respective TCB memory
location can therefore observe a transition of the old register value to the new
register value. If the memory location previously contained a certain share and
is then updated with its counterpart, the attacker can probe the unshared value.

We give an illustration of this scenario using our toy example in Figure 2, in
which Tggox starts execution, is then exchanged by TonT, until Tggox resumes.
After Tsgox s second execution, shares stored to memory in the previous context
switch might get overwritten by their counterparts. In detail, the following steps
occur:

@ Tspox starts execution until it gets interrupted, and the context switch routine
is triggered, which saves the register values to the respective TCB memory
slot.

(@ The register file of TonT is restored, and the task continues execution until
the next interrupt.

(® In the context switch, the register values of TonT are saved to the TCB
memory slot of TonT.

(@ The register values of Tsgox are restored from the TCB.
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Figure 2.: Overwriting shares in memory during context switch
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(B Tspox continues the computation. In our case, the Keccak S-Box implementa-
tion exchanges registers x17 and 1 (due to implementation-specific reasons),
i.e., the locations of the two shares of lane 0 are swapped in the register file.
Note that this can indeed be done securely in an implementation, e.g., with
the help of intermediate register clearings.

(6 During the context switch, the registers are saved, and the old TCB contents
of Tggox are overwritten. More precisely, the memory location storing the
old content of register x1 still refers to share 0 of lane 1. The new content
of register x1 is now - after the computation - the other share, which will,
however, be stored in the same memory location. Consequently, share 0 is
overwritten with share 1 in memory. The attacker can again observe the
Hamming Distance between the old and the new register value, which refers
to the unshared lane 1.

4.4. Discussion

Whether the stated problems occur in a practical implementation is still deter-
mined by many different parameters, including the frequency of context switches
(influenced by the timer interrupt frequency and the attacker’s ability to trigger
such), the exact point at which the context switch occurs and the exact location
of shares in the register file. All these parameters make it infeasible to fix these
problems by just adapting the masked software implementation because one
would need to take into account the behavior of the embedded OS (such as the
sequence in which the registers are spilled) and consider a possible context switch
after every instruction. In the next section, we hence aim for more general con-
cepts for secure context switch routines (realized either is software or hardware)
that allows masked software, verified in bare-metal scenarios, to preserve security
when executed on embedded OSs.

A masked software implementation emits leakage if two shares are combined,
e.g., by overwrites and transitions, independently of the concrete masking scheme
used. In our case, Tsgox is protected by DOM [GMK16] as an example, but for
the analysis, it would be irrelevant which masking scheme is used. In general,
DOM has been used both in hardware [GMK16; Gru+21; GSM17; Kni+22;
low19], but also in software [Gig+21; GPM21]. Threshold Implementations (TT)
[NRROG6], Ishai-Sahai-Wagner (ISW) [ISW03], and the Unified Masking Approach
(UMA) [GM18] are other examples of masking schemes which have been applied to
both hardware and software implementations. Several works on masked software
implementations following no specific schemes exist, which are usually optimized
for a concrete cryptographic algorithm [Gou+18; GR17; Gro+16; OS05; RP10].
Which scheme to follow depends on the optimization constraints (for example,
speed, code size, register sizes, available RNG) of the design. The security of
a masked software implementation is, however, not influenced by the concrete
technique used because, in any masking scheme, combining two shares will lead
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Table 1.: Comparison of basic strategies

Basic strategy Protection against Modifications Overhead
Transitions TCB OS CPU Memory Runtime
on RW memory (TCB) (context
port overwrites switch)
No protection % % - - 128 byte 125 cycles
Dummy operations after yes no 128 byte 183 cycles
every load/store v (+0%) (+46%)
Interleaved context yes no 128 byte 125 cycles
switch v »® (+0%) (+0%)
TCB clearing yes no 128 byte 183 cycles
* v (+0%) (+46%)
Rotating TCB memory yes no 128 byte + 145 cycles
slots * v N e (F16%)
Randomness-refreshed yes no 132 byte 201 cycles
loads and stores (SW) * v (+3%) (+61%)
Randomness-refreshed yes yes 132 byte 143 cycles
loads and stores (HW) * v (+3%) (+14%)
to leakage.

5. SCA-secure context switching

In this section, we discuss basic strategies to prevent the problems identified in
Section 4 and obtain a context switching mechanism that allows masked software,
verified in bare-metal scenarios, to preserve security when executed on embedded
OSs. The strategies are not specific to a particular embedded OS implementation
but should rather give generic concepts which can be integrated into any embedded
OS. We provide an in-depth comparison of the different basic strategies, discuss
the overhead in terms of memory and runtime, and evaluate their advantages
and disadvantages. We formally prove that each strategy allows leakage-free
context switching using COCO by integrating each strategy into the toy example
introduced in Section 4. The given basic strategies are divided into two categories,
either helping against transitions or memory overwrites. Additionally, we discuss
why solving these problems on software level (by increasing the masking order)
is neither efficient nor feasible in practice.

In Table 1, we give an overview of the strategies, which we will in the following
describe more in detail. The table shows for each strategy which problem is
addressed, whether modifications are necessary on OS- or CPU-level, and states
the overhead compared to the plain, unprotected context switch, which takes 125
cycles to execute on the secured IBEX core. To determine the memory overhead,
we compare the size of the (potentially modified) TCB to the original TCB
(128 byte).
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5.1. Basic strategies against transitions

In Section 4, we identified the problem of transitions on memory/register file
read/write ports. In the following, we discuss two strategies to prohibit this prob-
lem, dummy operations after every load/store and interleaved context switches.
In addition to verification of these strategies in the toy example, we add a second
verification scenario to strengthen the proposed security guarantees. In the second
scenario, we label all 28 registers as shares of the same native value, perform
the hardened context switch with these registers and then check if the execution
provides 27th-order security. By that, we can show that the constructed secure
context switch is indeed SCA-secure independently of the concrete location of
shares in the register file.

Dummy operations after every load/store

The most simple solution to prevent transitions between shares on read/write
ports is to insert dummy operations, such as nop instructions, after every load or
store in the context switch. This ensures that the read/write port is always pulled
to zero between two memory accesses, preventing direct transitions between shares.
While this solution is very simple in terms of integration, its effectiveness and
runtime overhead is strongly determined by the underlying CPU microarchitecture.
On the secured IBEX core, it suffices to put a single nop instruction between
two memory accesses, yielding a runtime overhead of 46%. However, as shown
in works like [GPM21], more complex architectures might require more dummy
operations to prevent such leakages.

Instead of using nop instructions, one could try to use instructions of the
interrupt handling logic which is executed after storing the register contents to
the TCB. While this solution would make the context switching more efficient,
the feasibility of integrating this is into an embedded OS is highly dependent on
the existing context switching/scheduling logic.

Interleaved context switch

A context switch first stores the TCB of the current task selects the next task,
and then loads the TCB of the next task. We alter the sequence of these three
events to perform an interleaved context switch, which first selects the new
task, and then loads/stores the contents of the two involved TCB blocks in an
alternating (interleaved) manner. The interleaved context switch essentially uses
the load operations as dummy operations mentioned in the previous paragraph.
On assembly level, this boils down to alternating store and load instructions, as
sketched in Appendix B.

While this solution requires no additional runtime or memory overhead, it is
very restrictive on the task selection logic, i.e., the scheduler, since all registers
used there must not be used during the task’s execution. For example, consider
a task getting executed, which stores some data into register z19. When it gets
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interrupted, the scheduler is triggered to select the next task, and if it uses register
x10 to do so, the task’s data in the register will inevitably be overwritten and
therefore lost. Therefore, we consider this solution suitable for our toy example
where the task selection works in a very simple round-robin fashion but show in
Section 6 that it is infeasible for most embedded OS due to the complexity of
the scheduling logic.

5.2. Basic strategies against overwrites

In Section 4, we identified the problem of overwriting shares in memory. In the
following, we suggest strategies to prohibit this problem.

TCB clearing

The most naive method to protect against TCB memory overwrites is to clear
the TCB of a task executing masked software before saving the registers, i.e.,
overwriting the memory locations with zeros. For each general-purpose register
that is saved during the context switch, this requires one additional store operation.
The clearing operations can either be executed in one block before storing the
register values or alternating with the actual register store operations, as shown
in Appendix C. If the alternating order is used, it also prevents transitions on
the register file read port. However, transitions on the register file write port are
not prevented. The runtime overhead of a context switch that clears the TCB is
46 %.

Rotating TCB memory slots

On startup, every task is statically assigned a TCB memory slot which is not
changed during execution. In order to prevent overwriting shares in memory,
one must ensure that the task executing the masked software implementation
does not overwrite its own saved registers, which can be done by dynamically
changing the TCB memory slot with every context switch. Since physical memory
is limited on such constraint devices, allocating a new TCB memory slot with
each and every context switch is not feasible. Instead, we need to make sure that
TCB memory slots are reused over time. A TCB memory slot can be reused if
it does not store the most recent TCB of any currently suspended task (older
copies are fine). Consequently, after a task gets interrupted, it must not use its
own current TCB memory slot and no memory slot of any other suspended task.
We ensure this by adding one additional TCB memory slot such that there is
always at least one TCB memory slot that can be reused, and further using a
rotating assignment of TCB memory slots.

In Figure 3, we sketch this concept using our toy example. In the beginning
(@), the two tasks use TCB memory locations TCB #1 and TCB #2 to store
their data. We add TCB #3 to ensure one TCB memory location is always
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Figure 3.: Rotating TCB memory slots

reusable. After Tsgpox has been scheduled once ((2)), it uses the currently
unoccupied TCB #3. It cannot use TCB #1 because it belongs to TcnT, which
is currently suspended, and it cannot (re-)use TCB #2 because it contains its own
old data, and overwriting might lead to leakage. After TonT has been executed,
it uses TCB #2, which previously belonged to Tspox, and overwrites the old
saved TCB of Tspox, thus clearing all shares stored to memory. In the next step,
Tont uses TCB #1 to store its TCB after execution, and Tggox uses TCB #3
(®), leading to a rotating assignment of TCB memory slots.

Although this method comes with almost no time overhead, one additional
TCB memory location (128 byte) must be reserved in memory such that the tasks
do not overwrite each other’s contexts. Additionally, there must be at least one
other task running which can overwrite the old saved TCB of the task executing
the masked software. If this cannot be ensured, one can either insert a dummy
task serving this purpose or extend the kernel in a way such that it clears the
old context on purpose, i.e., if no other task was scheduled. It is important to
note that the overwrite problem persists even though the task executing the
masked software implementation is the only one running in the operating system.
Assume that only Tsgox is actively running, and Ty is sleeping. Whenever
Tspox is interrupted, the working registers will be stored in the TCB. Then,
the scheduler will be run and decides that no other task should be scheduled, and
loads the register values of Tspox again. That is, the registers of a task will
always be stored to memory when an interrupt occurs, independently of whether
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another task will finally be scheduled or not.

Randomness-refreshed loads and stores

TCB memory overwrites can also be counteracted by not storing the plain task
context but by adding 32 bits of randomness to each register before storing it
to memory. The same randomness can be used for all registers saved in the
context switch but must be renewed with every occurring context switch. The
randomness must be removed when restoring the context. A task executing
masked software will therefore overwrite its old context protected with a different
mask. Randomness-refreshed loads and stores can be either implemented in
software, by modifying the context switch routine of the OS, or in hardware, by
extending the respective CPU core.

We construct a software implementation of this method using our toy example.
We assume that there is a certain memory region supplying fresh randomness
upon request, which may be connected to an RNG in practice. When a context
switch occurs, we first fetch 32 bits of randomness from the location using a load
instruction and store it to one of the general-purpose registers. Next, we add
the randomness to every register in the register file using a bitwise XOR before
saving the register to memory. The used random value is then stored to the TCB
of the respective process. When restoring the registers for the process in the next
context switch, the previously used random value needs to first be obtained from
the TCB again. After issuing the load instruction, which restores a specific GPR
value, the random value needs to be added to the GPR register value again in
order to obtain the previous value. We sketch this process in Appendix D. The
memory overhead of this strategy is around 3% because we need to store the
most recently used value of the fresh randomness in the respective TCB, such
that it can be fetched before the next load of registers of the respective task.
The runtime overhead mostly caused by the additional XOR instructions when
storing and restoring the context is 61%. When applying this strategy, at least
one register needs to be reserved for storing the randomness, which must not be
used in the task’s code. Similar to clearing the TCB slot, only tasks executing
masked software, such as Tggox, need to refresh loads and stores in context
switches, but all other tasks can stick to the original routine. In practice, the OS
usually has a notion about the purpose of each task and can, therefore, easily
decide if randomness-refreshing is necessary or not.

Additionally, we provide a hardware implementation of this method, which
eliminates most of the runtime overhead by performing the XOR implicitly in
the load-store unit of the secured IBEX core instead of having to issue a dedicated
XOR instruction every time. For this purpose, we extend the core’s CSR unit by
a 32-bit register which contains the randomness to refresh loads and stores, and
a 1-bit register which indicates whether randomness-refreshed loads and stores
are enabled. We leave the management of the fresh randomness in memory to
the OS, i.e., the OS needs to load fresh randomness from memory to the CSR
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register itself. In the context switch routine, one, therefore, needs two additional
CSRW instructions, one for enabling the countermeasure and one for loading the
randomness to the respective CSR register. Therefore, the runtime overhead of
such a modified context switch is 14%, as shown in Table 1, of which the most
accounts to the management of fresh randomness for both tasks.

5.3. Lazy engineering

In 2015, Balasch et al. [Bal+14] discuss the “lazy engineering” approach of
implementing masked software with a protection order that is higher than the-
oretically required to compensate for a certain loss in practical security due to
micro-architectural side-effects. Assuming that a certain masked software imple-
mentation is (bare-metal) d-th order secure, a standard context switch routine
can generally reduce the security down to |d/2]. For example, a transition on a
register file read/write port essentially creates leakage that combines values of
registers that are loaded/stored in immediate succession. This can, in our case,
cut the number of probes required to observe all shares in half, for which one
compensates with a higher masking order on level of the masked software.

To achieve a first-order secure masked Keccak S-box, we construct a second-
order variant, which provides 1st-order security when using the unprotected
context switch. However, the 2nd-order implementation requires much more
runtime and randomness: While the 1st-order masked Keccak S-Box needs 174
cycles (without context switches) and 160 bits of fresh randomness, the 2nd-
order implementation requires 283 cycles (without context switches), which is an
increase of 63%, and 480 bit of fresh randomness (+300%).

Therefore, we do not consider this solution feasible in practice due to the
exponential overhead for more complex microarchitectures [GPM21]. Especially
for higher masking orders, the overhead caused by lazy engineering grows with
the masking order, while the overhead of the other suggested solutions is the
same independently of the order.

6. Case Study

In this section, we investigate the security of masked software running as a
task in FreeRTOS. In Section 6.1, we introduce our evaluation environment.
In Section 6.2, we discuss that the problems identified in Section 4 can indeed
be found in practice in FreeRTOS using Coco, and how the context switch in
FreeRTOS can eventually be fixed against these problems. In Section 6.3, we
provide combinations of the basic strategies which defend against both transitions
and overwrites and evaluate their performance overhead. While a single hardened
context switch comes with some overhead, the overall system overhead is rather
negligible, given that the frequency of context switches is usually low in practice.
To the best of our knowledge, this is the first analysis of masked software within an
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OS, especially on such a level of detail. This is likely due to the considerable effort
of creating a suitable analysis environment, which we describe in the beginning of
this section. In our case, for example, this involves porting the entire FreeRTOS
to the RISC-V IBEX core, adding peripherals to trigger timer interrupts, and
simulating the synthesized processor netlist when executing the OS in a suitable
simulator for formally verifying it with Coco. We plan to make our evaluation
setup, along with all software artifacts, available in a public repository.

FreeRTOS FreeRTOS is a popular open-source embedded OS used in many
different IoT projects supported by a large community, which makes it the
third most used OS in 2019 [Asp19]. It has been ported to different hardware
architectures and platforms, including ARM, RISC-V, and x86-32 [Ser22a], and
targets small single-core microprocessors in embedded systems. In order to
provide multitasking, the FreeRTOS kernel uses the scheduler to assign processing
time to tasks. The scheduler is usually triggered by a (timer) interrupt or
the yield system call and selects the next task according to a certain policy
that takes into account task priorities and deadlines. For our case study, we
use the standard preemptive scheduling policy (configUSE_PREEMPTION = 1 and
configUSE_TIMESLICING = O ), which means that the task with the highest
priority will be selected by the scheduler [Ser22b].

6.1. Evaluation setup

Ultimately, our evaluation environment should allow both formal verification and
cycle-accurate performance evaluations. Hence, we need to simulate FreeRTOS,
including tasks when running on the secured IBEX core in order to obtain a cycle-
accurate execution trace. Unfortunately, there exists no exact demo allowing such
a simulation, which is why we first need to port FreeRTOS to run on the secured
IBEX core. We base our port on the existing 32-bit RISC-V Spike simulator demo
and make several adaptions, such as changing the addresses of the mtime and
mtimecmp registers. FreeRTOS can only be executed properly in the presence of a
periodic timer interrupt. We use a dedicated hardware module for creating these
interrupts, which is connected to the secured IBEX core. This hardware module
provides access to the mtime and mtimecmp control registers. From a verification
perspective, and compared to the bare-metal case, the interrupt signals provide
just another set of control signals beside the executed software. Our complete
workflow can be sketched as follows:

1. We synthesize the secured IBEX core with Yosys [Woll6] to obtain a gate-level
netlist in Verilog format.

2. We compile FreeRTOS, including all tasks which are later executed.

3. We wrap the synthesized IBEX netlist into a testbench which includes a timer
and a memory model.
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4. We simulate the testbench with Verilator [Sny22], which produces a cycle-
accurate execution trace. This execution trace contains a concrete value
for each control signal in the netlist and can, therefore, directly be used for
performance evaluations.

5. In order to do formal verification with Coco, we additionally create the respec-
tive annotations (labels) indicating the location of shares/fresh randomness at
the beginning of the execution and give these annotations, the netlist of the
secured IBEX, and the execution trace to COCoO.

Besides the execution environment, another central part of the evaluation is the
tasks that are executed by FreeRTOS. In order to demonstrate that the identified
problems occur, we focus on the same scenario as in the previous sections, i.e.,
that the OS runs one task executing a masked 1st-order Keccak S-box (Tspox),
and one task which increments a counter (TonT)-

In order to perform a meaningful performance evaluation of our solution, we,
however, stick to a larger scenario including a complete Ascon round (Tgn¢)
[Dob+16], which uses the Keccak’s S-box core, running beside TcnyT. A complete
Ascon round is likely to be interrupted more often than a single Keccak S-box by
a periodic timer interrupt or external interrupts. Since the performance overhead
of our countermeasures stems purely from the context switching, the results
become more significant. Similar to our toy example, both Tsgox and Tgyc
load the input data (shares) from a predefined memory location, compute the
S-box/Ascon round, and then stores the input data back to the memory.

6.2. Hardening the FreeRTOS context switch

In this section, we describe the challenges of integrating the basic strategies into
FreeRTOS. Protection against both leakage sources in FreeRTOS is achieved by
combining the basic strategies against transitions with those against overwrites.

Preventing transitions Besides the problem discussed in Section 4, we could
identify a second leakage source caused by transitions in the FreeRTOS scheduler.
A context switch can generally be divided into three phases: (1) storing the
TCB of the current task, (2) selecting the next task, and (3) loading the TCB
of the next task. FreeRTOS uses the same code for phases (1) and (3) as
we used in our toy example but has a slightly more complex scheduler, which
potentially creates another source of transition-induced leakage between shares
on the register file write port. For example, our implementation of the Keccak
S-Box was interrupted at a point where registers 20 and x24 each contained
a share of the same native value. The scheduling logic (phase (2)) contains a
section of code that first overwrites 20, and in the next cycle, overwrites 24,
causing a leaking transition on the register file write port. Whether these leaks
occur is, however, highly dependent on both the concrete scheduler logic and
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Figure 4.: Original (left) vs adapted (right) memory layout of FreeRTOS to
support rotating TCB memory slots

the masked software implementation. A generic solution can only be achieved
when ensuring that the general purpose register values of the task are not used
anymore in the scheduling logic, which is why we clear the registers after storing
them to memory.

In Section 5, we discuss interleaved context switches as one possible counter-
measure against transition leakage, which requires selecting the new task (phase
2) before performing storing and loading register values in an interleaved manner.
It is not feasible to integrate this strategy into FreeRTOS because the scheduling
logic would inevitably overwrite many unsaved task registers when running it
before phase (1). Therefore, we instead focus on dummy operations and clearing
registers to defend against transition leakage.

Preventing overwrites We include all four basic strategies to prevent overwrites
of shares in the TCB. Including rotating TCB memory slot requires the most
changes, as the original version of FreeRTOS stores the TCB control data and
the values of the general-purpose registers separately. That is, the control data is
stored on the bottom of the user stack, and the registers on top. We sketch this
in the left part of Figure 4. Hence, the memory location where the registers are
stored possibly changes with every context switch, depending on the height of
the user stack. This makes it impossible to implement TCB memory slot rotation
because when a task uses its stack, e.g., during a function call, it potentially
overwrites another task’s saved registers which were stored there. Instead, we
adapt the layout such that the saved register values are also stored below the
working stack of the task and can, therefore, not be overwritten by a task’s stack
usage (c.f. right of Figure 4). Another challenge is constructing a function find
to the next free TCB memory slot before saving any general-purpose registers of
the task. The function must not use any general-purpose registers, which still
contain the task’s data, because overwriting them would inevitably destroy the
task’s state. Thankfully, we can use registers x3 and x4, which are never saved
during a context switch and are generally unused in FreeRTOS. The original
purpose of these registers is to store the thread pointer and global pointer for
optimizations, which is, however, not supported by FreeRTOS.

Fewer system changes are needed to implement randomness-refreshed loads
and stores, as we simply extend the TCB struct of the OS by a new variable
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Table 2.: Evaluation of variants of SCA-hardened context switching in FreeRTOS

registers +
Randomness-refreshed
loads and stores (HW)

Runtime in cycles Number of Cycles per
context context
switches switch

Context

Total ‘ Tenc ‘ Tont switching

No protection [4149 [ 1859 [ 1221 | 1569 1 4 393 |
Basic strategies

Dummy operations + clear | 5810 | 1366 1564 2880 6 480 (+22%)
registers
TCB clearing 5720 | 1364 | 1648 2717 6 453 (+15%)
Rotating TCB memory 4203 | 1353 1154 1696 4 424 (+7%)
slots
Randomness-refreshed 5836 | 1395 1587 2854 6 475 (+20%)
loads and stores (SW)
Randomness-refreshed 4263 | 1411 1152 1700 4 425 (+8%)
loads and stores (HW)

Combined strategies

Dummy operations + clear | 5978 | 1376 1395 3207 6 534 (4+36%)
registers + TCB clearing

Dummy operations + clear | 5880 | 1349 1478 3053 6 508 (4+29%)
registers 4+ rotating TCB

memory slots

Dummy operations + clear | 7651 | 1416 1782 4453 8 557 (+41%)
registers +

Randomness-refreshed

loads and stores (SW)

Dummy operations + clear | 5940 | 1410 1476 3054 6 509 (4+29%)




148 Chapter 5. Secure Context Switching of Masked Software

task_rand which is updated during the context switch with the used randomness.
Also in this case we make use of 3 and x4 to load, store and xor the respective
random value.

6.3. Discussion

Table 2 shows the overhead of an SCA-hardened context switch when used in
FreeRTOS. To measure the performance overhead, we stick to a complete Ascon
round (Tgn¢), scheduled alternating with T 7. The execution is interrupted
by a periodic timer, which frequency can be controlled from software using the
configTICK_RATE_HZ-define in FreeRTOS. The original configuration of FreeRTOS
specifies a timer interrupt every 100000 cycles which seems plausible considering
that in a real system, context switches will not only be triggered by timers but
also by many more (non-periodic) external interrupts. As there are no external
interrupt sources in our evaluation environment we configure the timer interrupt
to occur every 1000 cycles, which however represents an extremely-high-load
scenario for the system. Given these numbers, one can then easily extrapolate
overheads for scenarios with less frequent context switches.

For each evaluated scenario, we give the total number of cycles needed to
compute a full Ascon round, which is the sum of cycles consumed by Tgnc and
TonT, and cycles spent on context switching. Note that the number of cycles
between two timer interrupts is always constant (1000 cycles), and as the context
switching requires more time, less execution time will be available for the tasks,
and therefore, more context switches will be necessary in total. We also give
the number of cycles required per context switch and the runtime overhead in
percent w.r.t. to the basic scenario (no protection).

Which combination to choose depends on the concrete use case. If OS and
hardware modifications should be kept minimal and low runtime is not so critical,
one should stick to the first option (TCB clearing) because it is very simple to
integrate into any OS. If performance is more critical, rotating TCB memory
slots are the best option, although they require more OS changes and require at
least one other actively running task. Randomness-refreshed loads and stores are
more efficient when implemented with hardware support. In software, there is no
clear advantage compared to TCB clearing or rotating TCB memory slots. As
discussed above, in practice, interrupts are, however, expected to occur much less
frequent than in this case study. We argue that therefore, all of the four suggested
combinations would be suitable because the amount the total runtime of an Ascon
round is increased by applying a secure context switch when interrupted only
once is negligible.

Optimizations Further optimization of the runtime of the individual basic
strategies is most likely not possible on software level, since they are already
written in Assembly language. However, hardware support for clearing the TCB
and all registers could be added and would likely result in a performance gain,
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although the hardware changes are expected to be much larger than the ones
suggested for randomness-refreshed loads and stores. Instead, one could aim
for further optimizations on OS level. In fact, the suggested protections must
only be applied when a task executing masked software is involved in a context
switch. Otherwise, the unprotected (and comparably cheap) context switch can
be executed. An additional flag in the task’s TCB can be used to distinguish
tasks executing masked software from other unrelated tasks.

6.4. Other RTOS

In the following we briefly discuss other open-source RTOS and the possible
security implications on masked software running in a task.

Zephyr, RIOT  Zephyr [Pro22] is an RTOS maintained by the Linux Foundation
for resource-constrained devices with a strong focus on security. RIOT [Bac+18]
is similar to Zephyr but comes with different scheduling strategies and supported
platforms. The Zephyr and RIOT context switching routines apply a different
register order compared to FreeRTOS when storing and loading the register
values, which shows why one could never make assumptions about such aspects
when designing masked software. We expect both OS are vulnerable to the
problems discussed in Section 4, and that our countermeasures can be integrated
in a similar way.

TockOS, KataOS TockOS [Lev+17] and the recently announced KataOS
[Dev22] are written almost completely in Rust, and both are used for Google’s
OpenTitan project, which runs the RISC-V IBEX core. The nature of the TockOS
context switch suggests the same problems as identified above, which can be
solved using the basic strategies except for rotating TCB memory slots. TockOS
keeps all processes isolated from each other using a hardware Memory Protection
Unit (MPU). Rotating TCB memory slots requires the existence of a common
memory region which stores data (register values) of multiple processes, which
hurts the principle of isolation, while the other suggested countermeasures are
compatible with such isolation techniques.

7. Conclusion

In this paper, we provide the first security analysis of context switches for masked
cryptographic software. After showing the fundamental problems created by
context switches on embedded OSs, we propose several different mitigation
strategies in hardware or software. Ultimately, our hardened context switching
routines allow masked software from previous works, verified for security in bare-
metal execution, to remain secure when being executed on embedded OSs. We
present a case study focusing on FreeRT'OS, a popular embedded OS for embedded



150 Chapter 5. Secure Context Switching of Masked Software

devices, running on a RISC-V core, allowing us to evaluate the practicality, ease
of integration, and performance of each strategy. While the runtime of hardened
context switches is certainly noticeable, we expect the overall impact on system
performance to be rather negligible unless the frequency of context switches is
very high.
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Appendix A. Unprotected context switch

1 task_switch:

2 sw x1, (sp)

3 sw x2, 4(sp)
4 sw x3, 8(sp)
5 sw x4, 12(sp)
6 # ...

7 # Select next task

8 # ...

9 1w x1, (sp)
10 1w x2, 4(sp)
11 1w x3, 8(sp)
12 N
13 ret

Appendix B. Interleaved context switch

1 task_switch_interleaved:
2 mv sp, x30 # Reserve =30, never use in code
3 # ...

4 # Select next task

5 # ...

6 sw x1, (x30)

7 1w x1, (sp)

8 sw x2, 4(x30)

9 1w x2, 4(sp)

10 sw x3, 8(x30)

11 1w x3, 8(sp)

12 sw x4, 12(x30)

13 1w x4, 12(sp)

14 e

15 ret

Appendix C. TCB clearing
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1 task_switch_clear_tcb:

2 sw x0, (sp) #x0 1is constantly tied to 0
3 sw x1, (sp)

4 sw x0, 4(sp)

5 sw x2, 4(sp)

6 sw x0, 8(sp)

7 sw x3, 8(sp)

8 sw x0, 12(sp)

9 sw x4, 12(sp)

10 #

11 # Select next task
12 # ...

13 1w x1, (sp)

14 lw x2, 4(sp)

15 1w x3, 8(sp)

16 e

17 ret

18

Appendix D. Randomness-refreshed loads and
stores (SW)

1 task_switch_rand_refresh_sw:

2 1li x30, addr_prng

3 # Reserve z30, mnever wuse in code

4 1w x30, (x30)

5 # 230 now contains fresh randomness
6 xor x1, x1, x30

7 sw x1, (sp)

8 xor x2, x2, x30

9 sw x2, 4(sp)

10 xor x3, x3, x30
11 sw x3, 8(sp)
12 xor x4, x4, x30
13 sw x4, 12(sp)
14 # Store 230 to TCB
15 # ...
16 # Select next task
17 # ...
18 # Load Tandomness wused in previous store from TCB to z30
19 1w x1, (sp)
20 xor x1, x1, x30
21 1w x2, 4(sp)
22 xor x2, x2, x30
23 1w x3, 8(sp)
24 xor x3, x3, x30
25 N
26 ret
27
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